

地学前缘 ›› 2025, Vol. 32 ›› Issue (3): 445-461.DOI: 10.13745/j.esf.sf.2025.3.28
• 地球系统关键带水循环过程 • 上一篇
桑丽源1,2(
), 郭威1,2, 张静文1,2, 刘艺轩1,2, 章同坤1,2, 张竹卿1,2, 岳展鹏1,2, 李丹阳1,2, 张润1,2, 张旭1,2, 唐伟平1,2, 刘展航1,2, 丁虎1,2, 郎赟超1,2, 刘丛强1,2,*(
)
收稿日期:2025-02-09
修回日期:2025-02-20
出版日期:2025-05-25
发布日期:2025-04-20
通信作者:
*刘丛强(1955—),男,中国科学院院士,美国地球化学学会和欧洲地球化学学会会士,爱丁堡皇家学会外籍院士,主要从事表层地球系统科学研究。E-mail:作者简介:桑丽源(1996—),女,博士研究生,地球系统科学专业,致力于城市地球关键带水文与水环境方面的研究。E-mail:sangliyuan@tju.edu.cn
基金资助:
SANG Liyuan1,2(
), GUO Wei1,2, ZHANG Jingwen1,2, LIU Yixuan1,2, ZHANG Tongkun1,2, ZHANG Zhuqing1,2, YUE Zhanpeng1,2, LI Danyang1,2, ZHANG Run1,2, ZHANG Xu1,2, TANG Weiping1,2, LIU Zhanhang1,2, DING Hu1,2, LANG Yunchao1,2, Liu Cong-Qiang1,2,*(
)
Received:2025-02-09
Revised:2025-02-20
Online:2025-05-25
Published:2025-04-20
摘要:
城市化和城市发展是对生态环境影响最显著的人类活动,伴随人口增长和消费水平提升,城市化引发了一系列复杂的水资源与水环境问题。尤其在发展中国家,城市排水系统不足加剧了水环境恶化,严重威胁城市健康与可持续发展目标。为此,从地球系统科学视角探讨城市三维下垫面结构、水文过程与水资源管理之间的复杂关系成为关键科学问题。本研究基于“地球关键带科学”和“社会-生态系统科学理论”,系统梳理了城市下垫面结构与水循环动态变化、水环境质量及水资源可持续利用的耦合机制。通过整合物理、化学与生物过程,研究揭示了不透水面扩张对降水-径流-渗透动态平衡、污染物迁移及水资源供需分配的影响机制,强调社会与自然系统耦合研究对水资源优化管理的重要性。此外,研究结合水文过程与生态系统服务的关联,深入分析了水文动态对生态系统服务功能及人类福祉的调控作用,初步提出了基于社会-生态系统理论的城市水资源可持续管理框架。该框架为理解城市水文系统结构-过程-功能的耦合机制提供了科学支撑。本综述研究不仅有助于理解复杂的城市水文动态与生态服务关系,打通水文分支学科间壁垒,还为城市水资源管理和政策制定提供了理论依据和实践指导。
中图分类号:
桑丽源, 郭威, 张静文, 刘艺轩, 章同坤, 张竹卿, 岳展鹏, 李丹阳, 张润, 张旭, 唐伟平, 刘展航, 丁虎, 郎赟超, 刘丛强. 城市地球关键带水文过程与水环境和水资源研究:现状、挑战与未来[J]. 地学前缘, 2025, 32(3): 445-461.
SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone[J]. Earth Science Frontiers, 2025, 32(3): 445-461.
图1 城市不同下垫面结构对气温和降水的不平衡影响(据文献[24]补充修改)
Fig.1 The imbalanced impacts of different urban underlying surface structures on temperature and precipitation. Modified after [24].
图2 城市和天然下垫面径流过程理论曲线对比示意图(据文献[38]修改)
Fig.2 Comparative diagram of theoretical runoff process curves between urban and natural underlying surfaces. Modified after [38].
图3 城市化导致的水质下降及水生态系统退化示意图(主要据文献[56]补充修改)
Fig.3 Schematic diagram of water quality deterioration and water ecosystem degradation caused by urbanization. Modified after [56].
图5 城市地球关键带水循环、水环境与水资源的系统模式图(据文献[123]补充修改)
Fig.5 System model diagram of the water cycle, water environment and water resources in the urban Earth’s critical zone. Modified after [123].
图6 基于社会生态系统理论框架的城市地球关键带水文水资源管理流程图(据文献[142]补充修改)
Fig.6 Flowchart of hydrological water resources management in the urban Earth’s critical zone based on the socio-ecological system theoretical framework. Modified after [142].
| [1] | ZHANG H, WU C H, CHEN W J, et al. Effect of urban expansion on summer rainfall in the Pearl River Delta, South China[J]. Journal of Hydrology, 2019, 568: 747-757. |
| [2] | MILLER J D, KIM H J, KJELDSEN T R, et al. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover[J]. Journal of Hydrology, 2014, 515: 59-70. |
| [3] | ZHANG W, VILLARINI G, VECCHI G A, et al. Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston[J]. Nature, 2018, 563(7731): 384-388. |
| [4] |
SUN L Q, CHEN J, LI Q L, et al. Dramatic uneven urbanization of large cities throughout the world in recent decades[J]. Nature Communications, 2020, 11(1): 5366.
DOI PMID |
| [5] | PAUL M J, LEDUC S D, LASSITER M G, et al. Wildfire induces changes in receiving waters; a review with considerations for water quality management[J]. Water Resources Research, 2022, 58(9): 1. |
| [6] | HUANG J C, ZHANG Y J, BING H J, et al. Characterizing the river water quality in China: recent progress and on-going challenges[J]. Water Research, 2021, 201: 117309. |
| [7] | XUE J Y, WANG Q R, ZHANG M H. A review of non-point source water pollution modeling for the urban-rural transitional areas of China: research status and prospect[J]. Science of The Total Environment, 2022, 826: 154146. |
| [8] | LIANG W, YANG M. Urbanization, economic growth and environmental pollution: evidence from China[J]. Sustainable Computing Informatics and Systems, 2019, 21: 1-9. |
| [9] | ZHANG Y, LIU Y F, ZHANG Y, et al. On the spatial relationship between ecosystem services and urbanization: a case study in Wuhan, China[J]. Science of The Total Environment, 2018, 637-638: 780-790. |
| [10] | LIU H M, CUI W J, ZHANG M. Exploring the causal relationship between urbanization and air pollution: evidence from China[J]. Sustainable Cities and Society, 2022, 80: 103783. |
| [11] | WANG J L, ZHOU W Q, PICKETT S T A, et al. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion[J]. Science of The Total Environment, 2019, 662: 824-833. |
| [12] | LIN H. Earth’s critical zone and hydropedology: concepts, characteristics, and advances[J]. Hydrology and Earth System Sciences, 2010, 14(1): 25-45. |
| [13] | OSWALD C J, KELLEHER C, LEDFORD S H, et al. Integrating urban water fluxes and moving beyond impervious surface cover: A review[J]. Journal of Hydrology, 2023, 618: 129188. |
| [14] | SZABÓ B, KORÁNYI D, GALLÉ R, et al. Urbanization decreases species richness, and increases abundance in dry climates whereas decreases in wet climates: a global meta-analysis[J]. Science of The Total Environment, 2023, 859: 160145. |
| [15] | ULPIANI G. On the linkage between urban heat island and urban pollution island: three-decade literature review towards a conceptual framework[J]. Science of The Total Environment, 2021, 751: 141727. |
| [16] | 徐宗学, 李鹏. 城市化水文效应研究进展: 机理、方法与应对措施[J]. 水资源保护, 2022, 38(1): 7-17. |
| [17] | LI C L, LIU M, HU Y M, et al. Effects of urbanization on direct runoff characteristics in urban functional zones[J]. Science of The Total Environment, 2018, 643: 301-311. |
| [18] |
LARSEN T A, HOFFMANN S, LÜTHI C, et al. Emerging solutions to the water challenges of an urbanizing world[J]. Science, 2016, 352(6288): 928-933.
DOI PMID |
| [19] |
GRIMM N B, FAETH S H, GOLUBIEWSKI N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756-760.
DOI PMID |
| [20] | LI Z W, XU X L, ZHU J X, et al. Can precipitation extremes explain variability in runoff and sediment yield across heterogeneous karst watersheds?[J]. Journal of Hydrology, 2021, 596: 125698. |
| [21] | TANG Z Y, WANG P, LI Y, et al. Contributions of climate change and urbanization to urban flood hazard changes in China’s 293 major cities since 1980[J]. Journal of Environmental Management, 2024, 353: 120113. |
| [22] | JIE Y, YU D P, YIN Z N, et al. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: a case study in the city center of Shanghai, China[J]. Journal of Hydrology, 2016, 537: 138-145. |
| [23] | MANOLI G, FATICHI S, SCHLAPFER M, et al. Magnitude of urban heat islands largely explained by climate and population[J]. Nature, 2019, 573(7772): 55-60. |
| [24] | XIAO S, ZOU L, XIA J, et al. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China[J]. Science of The Total Environment, 2023, 866: 161321. |
| [25] | 丁乙, 窦晶晶, 王迎春, 等. 华北平原及沿山和沿海五个城市夏季短历时降水过程的日变化分析[J]. 气象学报, 2024, 82(4): 490-509. |
| [26] | CHAPMAN S, WATSON J E M, SALAZAR A, et al. The impact of urbanization and climate change on urban temperatures: a systematic review[J]. Landscape Ecology, 2017, 32: 1921-1935. |
| [27] |
张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
DOI |
| [28] | QIU G Y, YAN C H, LIU Y B. Urban evapotranspiration and its effects on water budget and energy balance: review and perspectives[J]. Earth-Science Reviews, 2023, 246: 104577. |
| [29] | MILLS G. Urban climatology: history, status and prospects[J]. Urban Climate, 2014, 10: 479-489. |
| [30] | CHRISTEN A, VOGT R. Energy and radiation balance of a central European city[J]. International Journal of Climatology, 2004, 24(11): 1395-1421. |
| [31] | PETERS E B, HILLER R V, MCFADDEN J P. Seasonal contributions of vegetation types to suburban evapotranspiration[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G1). |
| [32] | JACOBS C, ELBERS J, BROLSMA R, et al. Assessment of evaporative water loss from Dutch cities[J]. Building and Environment, 2015, 83: 27-38. |
| [33] |
CASCONE S, COMA J, GAGLIANO A, et al. The evapotranspiration process in green roofs: a review[J]. Building and Environment, 2019, 147: 337-355.
DOI |
| [34] | ZITER C D, PEDERSEN E J, KUCHARIK C J, et al. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer[J]. Proceedings of the National Academy of Sciences, 2019, 116(15): 7575-7580. |
| [35] | QIN L J, YAN C H, YU L Y, et al. High-resolution spatio-temporal characteristics of urban evapotranspiration measured by unmanned aerial vehicle and infrared remote sensing[J]. Building and Environment, 2022, 222: 109389. |
| [36] | ZHAO W L, GENTINE P, REICHSTEIN M, et al. Physics-constrained machine learning of evapotranspiration[J]. Geophysical Research Letters, 2019, 46(24): 14496-14507. |
| [37] | 梅超, 刘家宏, 王浩, 等. 城市下垫面空间特征对地表产汇流过程的影响研究综述[J]. 水科学进展, 2021, 32(5): 791-800. |
| [38] | 刘家宏, 王浩, 高学睿, 等. 城市水文学研究综述[J]. 科学通报, 2014, 59(36): 3581-3590. |
| [39] | PALMER M, RUHI A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration[J]. Science, 2019, 365(6459): 1264. |
| [40] |
LI D, LU X X, OVEREEM I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia[J]. Science, 2021, 374(6567): 599-603.
DOI PMID |
| [41] |
JARAMILLO F, DESTOUNI G. Local flow regulation and irrigation raise global human water consumption and footprint[J]. Science, 2015, 350(6265): 1248-1251.
DOI PMID |
| [42] | GEDNEY N, COX P M, BETTS R A, et al. Detection of a direct carbon dioxide effect in continental river runoff records[J]. Nature, 2006, 439(7078): 835-838. |
| [43] |
BERLAND A, SHIFLETT S A, SHUSTER W D, et al. The role of trees in urban stormwater management[J]. Landscape and Urban Planning, 2017, 162: 167-177.
DOI PMID |
| [44] | MILLER J D, HESS T. Urbanisation impacts on storm runoff along a rural-urban gradient[J]. Journal of Hydrology, 2017, 552: 474-489. |
| [45] | ZOUNEMAT-KERMANI M, BATELAAN O, FADAEE M, et al. Ensemble machine learning paradigms in hydrology; a review[J]. Journal of Hydrology, 2021, 598: 126266. |
| [46] | 王俊. 长江水文监测体系的创新实践[J]. 人民长江, 2015(19): 26-29, 34. |
| [47] | 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013(7): 779-790. |
| [48] | LAGOS M S, MUÑOZ J F, SUÁREZ F I, et al. Investigating the effects of channelization in the Silala River: a review of the implementation of a coupled MIKE-11 and MIKE-SHE modeling system[J]. Water, 2024, 11(1): e1673. |
| [49] | SCHEWE J, HEINKE J, GERTEN D, et al. Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3245-3250. |
| [50] | HADDELAND I, HEINKE J, BIEMANS H, et al. Global water resources affected by human interventions and climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3251-3256. |
| [51] | ELGA S, JAN B, OKKE B. Hydrological modelling of urbanized catchments: a review and future directions[J]. Journal of Hydrology, 2015, 529: 62-81. |
| [52] | SHAO Z F, FU H Y, LI D R, et al. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation[J]. Remote Sensing of Environment, 2019, 232: 111338. |
| [53] | PEKEL J F, COTTAM A, GORELICK N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422. |
| [54] | XUE Z S, HOU G L, ZHANG Z S, et al. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: case study of cities of Northeast China[J]. Landscape and Urban Planning, 2019, 182: 92-100. |
| [55] | HADADI F, MOAZENZADEH R, MOHAMMADI B. Estimation of actual evapotranspiration: a novel hybrid method based on remote sensing and artificial intelligence[J]. Journal of Hydrology, 2022, 609: 127774. |
| [56] | 江曙光. 中国水污染现状及防治对策[J]. 现代农业科技, 2010(7): 313-315. |
| [57] | 姜建军. 中国地下水污染现状与防治对策[J]. 环境保护, 2007(19): 16-17. |
| [58] |
ZHOU Y Q, MA J R, ZHANG Y L, et al. Improving water quality in China: environmental investment pays dividends[J]. Water Research, 2017, 118: 152-159.
DOI PMID |
| [59] | ZOU L L, LIU Y S, WANG Y S, et al. Assessment and analysis of agricultural non-point source pollution loads in China: 1978—2017[J]. Journal of Environmental Management, 2020, 263: 110400. |
| [60] |
CUI Q J, HUANG Y, WANG H, et al. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage[J]. Environmental Pollution, 2019, 249: 24-35.
DOI PMID |
| [61] | LIANG Z W, ABDILLAH A, FANG W W, et al. Unique microbiome in organic matter-polluted urban rivers[J]. Global Change Biology, 2023, 29(2): 391-403. |
| [62] | CAO J X, SUN Q, ZHAO D H, et al. A critical review of the appearance of black-odorous waterbodies in China and treatment methods[J]. Journal of Hazardous Materials, 2020, 385: 121511. |
| [63] | GAO H J, LI X, YUAN P, et al. Research on water quality improvement effects of China’s battle against Black-Odor water bodies[J]. Ecological Indicators, 2024, 158: 111374. |
| [64] | GIGLOU A N, NAZARI R, JAZAEI F, et al. Assessing the effects of increased impervious surface on the aquifer recharge through river flow network, case study of Jackson, Tennessee, USA[J]. Science of The Total Environment, 2023, 872: 162203. |
| [65] | WANG Z B, QI F, LIU L Y, et al. How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary[J]. Science of The Total Environment, 2021, 789: 148045. |
| [66] | FATICHI S, VIVONI E R, OGDEN F L, et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology[J]. Journal of Hydrology, 2016, 537: 45-60. |
| [67] | PAWELLEK F, FRAUENSTEIN F, VEIZER J. Hydrochemistry and isotope geochemistry of the upper Danube River[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3839-3853. |
| [68] | VEERASINGAM S, RANJANI M, VENKATACHALAPATHY R, et al. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: a review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(22): 2681-2743. |
| [69] | SANG L Y, ZHU G F, XU Y X, et al. Effects of agricultural large-and medium-sized reservoirs on hydrologic processes in the arid Shiyang River Basin, Northwest China[J]. Water Resources Research, 2023, 59(2): e2022WR033519. |
| [70] | LIU C Q, LI S L, LANG Y C, et al. Using δ15N-and δ18O-values to identify nitrate sources in karst ground water, Guiyang, Southwest China[J]. Environmental Science & Technology, 2006, 40(22): 6928-6933. |
| [71] | HE D, LI P H, HE C, et al. Eutrophication and watershed characteristics shape changes in dissolved organic matter chemistry along two river-estuarine transects[J]. Water Research, 2022, 214: 118196. |
| [72] | ROTHWELL J J, DISE N B, TAYLOR K G, et al. A spatial and seasonal assessment of river water chemistry across North West England[J]. Science of The Total Environment, 2010, 408(4): 841-855. |
| [73] | LIU M Y, LV J P, QIN C H, et al. Chemical fingerprinting of organic micropollutants in different industrial treated wastewater effluents and their effluent-receiving river[J]. Science of The Total Environment, 2022, 838: 156399. |
| [74] | 肖化云, 刘丛强, 李思亮. 贵阳地区夏季雨水硫和氮同位素地球化学特征[J]. 地球化学, 2003, 32(3): 248-254. |
| [75] | FERNÁNDEZ-CHACÓN F, BENAVENTE J, RUBIO-CAMPOS J C, et al. Isotopic composition (δ18O and δD) of precipitation and groundwater in a semi-arid, mountainous area (Guadiana Menor Basin, Southeast Spain)[J]. Hydrological Processes, 2010, 24(10): 1343-1356. |
| [76] | ALBARÈDE F. The stable isotope geochemistry of copper and zinc[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 409-427. |
| [77] | LIU S A, HUANG J, LIU J G, et al. Copper isotopic composition of the silicate Earth[J]. Earth and Planetary Science Letters, 2015, 427: 95-103. |
| [78] | CAUT S, ANGULO E, COURCHAMP F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction[J]. Journal of Applied Ecology, 2009, 46(2): 443-453. |
| [79] | XIONG W, LI Y, PFISTER S, et al. Improving water ecosystem sustainability of urban water system by management strategies optimization[J]. Journal of Environmental Management, 2020, 254: 109766. |
| [80] | ZHAO X Y, HUANG G R. Urban watershed ecosystem health assessment and ecological management zoning based on landscape pattern and SWMM simulation: a case study of Yangmei River Basin[J]. Environmental Impact Assessment Review, 2022, 95: 106794. |
| [81] | DELPHIN S, ESCOBEDO F J, ABD-ELRAHMAN A, et al. Urbanization as a land use change driver of forest ecosystem services[J]. Land Use Policy, 2016, 54: 188-199. |
| [82] | FANG Z, DING T H, CHEN J Y, et al. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions[J]. Science of The Total Environment, 2022, 831: 154967. |
| [83] | YANG G F, GE Y, XUE H, et al. Using ecosystem service bundles to detect trade-offs and synergies across urban-rural complexes[J]. Landscape and Urban Planning, 2015, 136: 110-121. |
| [84] | Wang J, Qin X, Guo J B, et al. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers[J]. Water Research, 2020, 183: 116113. |
| [85] | Greve P, Kahil T, Mochizuki J, et al. Global assessment of water challenges under uncertainty in water scarcity projections[J]. Nature Sustainability, 2018, 1(9): 486-494. |
| [86] | LIU L, JENSEN M B. Green infrastructure for sustainable urban water management: practices of five forerunner cities[J]. Cities, 2018, 74: 126-133. |
| [87] | WOLFRAM M. Conceptualizing urban transformative capacity: a framework for research and policy[J]. Cities, 2016, 51: 121-130. |
| [88] | XIA J, ZHANG Y Y, XIONG L H, et al. Opportunities and challenges of the Sponge City construction related to urban water issues in China[J]. Science China Earth Sciences, 2017, 60(4): 652-658. |
| [89] | SAVELLI E, MAZZOLENI M, BALDASSARRE G D, et al. Urban water crises driven by elites’ unsustainable consumption[J]. Nature Sustainability, 2023, 6(8): 929-940. |
| [90] | LONG D, YANG W T, SCANLON B R, et al. South-to-North water diversion stabilizing Beijing’s groundwater levels[J]. Nature Communications, 2020, 11(1): 1-10. |
| [91] | BASSOLAS A, BARBOSA-FILHO H, DICKINSON B, et al. Hierarchical organization of urban mobility and its connection with city livability[J]. Nature Communications, 2019, 10(1): 4810-4817. |
| [92] | LANGEMEYER J, MADRID-LOPEZ C, BELTRAN A M, et al. Urban agriculture-a necessary pathway towards urban resilience and global sustainability?[J]. Landscape and Urban Planning, 2021, 210: 104055. |
| [93] | VAN VLIET M T H, THORSLUND J, STROKAL M, et al. Global river water quality under climate change and hydroclimatic extremes[J]. Nature Reviews Earth & Environment, 2023, 4(10): 687-702. |
| [94] | ZHANG K, CAO C, CHU H R, et al. Increased heat risk in wet climate induced by urban humid heat[J]. Nature, 2023, 617(7962): 738-742. |
| [95] | IUNGMAN T, CIRACH M, MARANDO F, et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities[J]. The Lancet, 2023, 401(10376): 577-589. |
| [96] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. |
| [97] | SHARIFI A, ALLAM Z, BIBRI S E, et al. Smart cities and sustainable development goals (SDGs): a systematic literature review of co-benefits and trade-offs[J]. Cities, 2024, 146: 104659. |
| [98] | SABZIPOUR B, ARSENAULT R, TROIN M, et al. Comparing a long short-term memory (LSTM) neural network with a physically-based hydrological model for streamflow forecasting over a Canadian catchment[J]. Journal of Hydrology, 2023, 627: 130380. |
| [99] | ESPERON-RODRIGUEZ M, TJOELKER M G, LENOIR J, et al. Climate change increases global risk to urban forests[J]. Nature Climate Change, 2022, 12(10): 950-955. |
| [100] | POUR S H, WAHAB A K A, SHAHID S, et al. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: current trends, issues and challenges[J]. Sustainable Cities and Society, 2020, 62: 102373. |
| [101] | MOLNÉ F, DONATI G F A, BOLLIGER J, et al. Supporting the planning of urban blue-green infrastructure for biodiversity: a multi-scale prioritisation framework[J]. Journal of Environmental Management, 2023, 342: 118069. |
| [102] | WLOSTOWSKI A N, MOLOTCH N, ANDERSON S P, et al. Signatures of hydrologic function across the critical zone observatory network[J]. Water Resources Research, 2021, 57(3): e2019WR026635. |
| [103] |
FAN Y, CLARK M, LAWRENCE D M, et al. Hillslope hydrology in global change research and earth system modeling[J]. Water Resources Research, 2019, 55(2): 1737-1772.
DOI |
| [104] | FAN Y. Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes[J]. Water Resources Research, 2015, 51: 3052-3069. |
| [105] | LI C, SHI Y, LUO D, et al. Interventions of river network structures on urban aquatic microplastic footprint from a connectivity perspective[J]. Water Research, 2023, 243: 120418. |
| [106] | DASH S K, SINHA R. Space-time dynamics of soil moisture and groundwater in an agriculture-dominated critical zone observatory (CZO) in the Ganga basin, India[J]. Science of The Total Environment, 2022, 851: 158231. |
| [107] | ZHANG Z C, CHEN X, CHENG Q B, et al. Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone[J]. Science of The Total Environment, 2020, 732: 138902. |
| [108] | BUI E N. Data-driven Critical Zone science: a new paradigm[J]. Science of The Total Environment, 2016, 568: 587-593. |
| [109] | ESTOQUE R C, MURAYAMA Y, MYINT S W. Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia[J]. Science of The Total Environment, 2017, 577: 349-359. |
| [110] | BROERE W. Urban underground space: solving the problems of today’s cities[J]. Tunnelling and Underground Space Technology, 2016, 55: 245-248. |
| [111] | CONNOR N P, SARRAINO S, FRANTZ D E, et al. Geochemical characteristics of an urban river; influences of an anthropogenic landscape[J]. Applied Geochemistry, 2014, 47: 209-216. |
| [112] | YU P H, WEI Y J, MA L J, et al. Urbanization and the urban critical zone[J]. Earth Critical Zone, 2024: 100011. |
| [113] | Federal Interagency Stream Restoration Working Group (US). Stream corridor restoration: principles, processes, and practices[M]. Minnesota: Federal Interagency Stream Restoration Working Group, 1998. |
| [114] | STEEL E A, HUGHES R M, FULLERTON A H, et al. Are we meeting the challenges of landscape-scale riverine research? A Review[J]. Living Reviews in Landscape Research, 2010, 4(1): 60. |
| [115] | KUMAR P, DRUCKMAN A, GALLAGHER J, et al. The nexus between air pollution, green infrastructure and human health[J]. Environment International, 2019, 133: 105181. |
| [116] | KNAPP J L A, LI L, MUSOLFF A. Hydrologic connectivity and source heterogeneity control concentration-discharge relationships[J]. Hydrological Processes, 2022, 36(9): e14683. |
| [117] |
WOHL E, BRIERLEY G, CADOL D, et al. Connectivity as an emergent property of geomorphic systems[J]. Earth Surface Processes and Landforms, 2019, 44(1): 4-26.
DOI |
| [118] | ZHU G F, SANG L Y, ZHANG Z X, et al. Impact of landscape dams on river water cycle in urban and peri-urban areas in the Shiyang River Basin: evidence obtained from hydrogen and oxygen isotopes[J]. Journal of Hydrology, 2021, 602: 126779. |
| [119] | 刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应: 来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384-396. |
| [120] | LI L, KNAPP J L A, LINTERN A, et al. River water quality shaped by land-river connectivity in a changing climate[J]. Nature Climate Change, 2024, 14(3): 225-237. |
| [121] | 张建云. 城市化与城市水文学面临的问题[J]. 水利水运工程学报, 2012(1): 1-4. |
| [122] | HARTMANN J, LAUERWALD R, MOOSDORF N. A brief overview of the global river chemistry database, GLORICH[J]. Procedia Earth and Planetary Science, 2014, 10: 23-27. |
| [123] | STEFFEN W, RICHARDSON K, ROCKSTRM J, et al. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 2020, 1(1): 54-63. |
| [124] | RICHTER JR D B, MOBLEY M L. Monitoring Earth’s critical zone[J]. Science, 2009, 326(5956): 1067-1068. |
| [125] | CHAN F K S, GRIFFITHS J A, HIGGITT D, et al. “Sponge City” in China: a breakthrough of planning and flood risk management in the urban context[J]. Land Use Policy, 2018, 76: 772-778. |
| [126] | 夏军, 王惠筠, 甘瑶瑶, 等. 中国暴雨洪涝预报方法的研究进展[J]. 暴雨灾害, 2019, 38(5): 416-421. |
| [127] | NIRUPAMA N, SIMONOVIC S P. Increase of flood risk due to urbanisation: a canadian example[J]. Natural Hazards, 2007, 40(1): 25-41. |
| [128] | DI BALDASSARRE G, VIGLIONE A, CARR G, et al. Socio-hydrology: conceptualising human-flood interactions[J]. Hydrology and Earth System Sciences, 2013, 17(8): 3295-3303. |
| [129] | STEFFEN W, ROCKSTRÖM J, RICHARDSON K, et al. Trajectories of the earth system in the anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8252-8259. |
| [130] | KAUFFMAN G J, BELDEN A C, VONCK K J, et al. Link between impervious cover and base flow in the white clay creek wild and scenic watershed in delaware[J]. Journal of Hydrologic Engineering, 2009, 14(4): 324-334. |
| [131] |
GOONETILLEKE A, THOMAS E, GINN S, et al. Understanding the role of land use in urban stormwater quality management[J]. Journal of Environmental Management, 2005, 74(1): 31-42.
PMID |
| [132] | DE SÁ SILVA A C R, BIMBATO A M, BALESTIERI J A P, et al. Exploring environmental, economic and social aspects of rainwater harvesting systems: a review[J]. Sustainable Cities and Society, 2022, 76: 103475. |
| [133] | MILLINGTON N, SCHEBA S. Day zero and the infrastructures of climate change: water governance, inequality, and infrastructural politics in cape town’s water crisis[J]. International Journal of Urban and Regional Research, 2021, 45(1): 116-132. |
| [134] | BLOUNT K, ABDI R, PANOS C L, et al. Building to conserve: quantifying the outdoor water savings of residential redevelopment in Denver, Colorado[J]. Landscape and Urban Planning, 2021, 214: 104178. |
| [135] | SOJOBI A O, ZAYED T. Impact of sewer overflow on public health: a comprehensive scientometric analysis and systematic review[J]. Environmental Research, 2022, 203: 111609. |
| [136] |
刘小茜, 王仰麟, 彭建. 人地耦合系统脆弱性研究进展[J]. 地球科学进展, 2009, 24(8): 917-927.
DOI |
| [137] | LEE B X, KJAERULF F, TURNER S, et al. Transforming our world: implementing the 2030 agenda through sustainable development goal indicators[J]. Journal of Public Health Policy, 2016, 37(Suppl 1): 13-31. |
| [138] | 李双成, 刘金龙, 张才玉, 等. 生态系统服务研究动态及地理学研究范式[J]. 地理学报, 2011, 66(12): 1618-1630. |
| [139] | MARTÍN-LÓPEZ B, PALOMO I, GARCÍA-LLORENTE M, et al. Delineating boundaries of social-ecological systems for landscape planning: a comprehensive spatial approach[J]. Land Use Policy, 2017, 66: 90-104. |
| [140] | MCGINNIS M D, OSTROM E. Social-ecological system framework: initial changes and continuing challenges[J]. Ecology and Society, 2014, 19(2): 1-12. |
| [141] | 赵景柱. 社会-经济-自然复合生态系统持续发展评价指标的理论研究[J]. 生态学报, 1995(3): 327-330. |
| [142] |
OSTROM E. A general framework for analyzing sustainability of social-ecological systems[J]. Science, 2009, 325(5939): 419-422.
DOI PMID |
| [143] | 毛齐正, 黄甘霖, 邬建国. 城市生态系统服务研究综述[J]. 应用生态学报, 2015, 26(4): 1023. |
| [1] | 陈喜, 董建志, 王礼春, 张永根, 王学静, 狄崇利, 高满, 刘丛强. 全球变化下生态水文学发展与展望[J]. 地学前缘, 2025, 32(3): 52-61. |
| [2] | 陈喜, 高满, 董建志, 王哲. 京津冀地区水资源供需演变面临挑战问题及研究途径[J]. 地学前缘, 2025, 32(3): 436-444. |
| [3] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
| [4] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
| [5] | 宋轩宇, 许民, 康世昌, 孙立平. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469. |
| [6] | 郭永丽, 肖琼, 章程, 吴庆. 石油类污染的岩溶地下水环境特征:以淄博市大武水源地为例[J]. 地学前缘, 2023, 30(2): 539-547. |
| [7] | 朱亮, 刘景涛, 张玉玺, 刘丹丹, 角世哲. 基于水循环分析的水资源乘数效应评价:以黄河上游北川河流域为例[J]. 地学前缘, 2022, 29(3): 263-270. |
| [8] | 何静, 韩再生, 牛磊. 澜沧江—湄公河流域跨界含水层研究[J]. 地学前缘, 2011, 18(6): 358-. |
| [9] | 刘招君,孙平昌,贾建亮,柳蓉,孟庆涛. 陆相深水环境层序识别标志及成因解释:以松辽盆地青山口组为例[J]. 地学前缘, 2011, 18(4): 171-180. |
| [10] | 聂忆黄, 龚斌, 李忠. 青藏高原水源涵养能力时空变化规律[J]. 地学前缘, 2010, 17(1): 373-377. |
| [11] | 闫丽娜 李胜荣罗军燕 杜凤琴 马国林 王玉丽 王武. X射线断层扫描技术在鲤鱼耳石对环境响应研究中的应用初探[J]. 地学前缘, 2008, 15(6): 25-31. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||