地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 290-310.DOI: 10.13745/j.esf.sf.2024.2.22
收稿日期:
2023-12-13
修回日期:
2024-02-29
出版日期:
2025-03-25
发布日期:
2025-03-25
通信作者:
*朱光有(1973—),男,博士,教授级高级工程师,主要从事深层油气地质与成藏研究工作。E-mail: zhuguangyou@petrochina.com.cn
作者简介:
朱紫光(2000—),男,在读博士研究生,矿产普查与勘探专业。E-mail: 2594540756@qq.com
基金资助:
ZHU Ziguang1(), ZHU Guangyou2,*(
), LI Xi1
Received:
2023-12-13
Revised:
2024-02-29
Online:
2025-03-25
Published:
2025-03-25
摘要:
国内外沉积盆地黑色页岩的形成常伴随着不同程度的U元素富集,厘清黑色页岩中U的富集机理及其对有机矿产形成的影响至关重要。为此本文系统梳理了U元素在有机质、微生物、黏土矿物、含铁矿物、含硫矿物和含磷矿物中的富集过程,并重点阐述了黑色页岩中U元素的赋存机理,以及U元素对有机质生油性能、生气性能和干酪根结构的影响。总体而言,黑色页岩富集U的途径是丰富而多样的,页岩中的多种组分均可通过络合、吸附、还原等方式富集环境中的U元素,富集效率会受到pH、干扰离子浓度等多因素的控制。此外,U对页岩有机质生油气性能的影响也较为复杂,可能是模拟条件和样品存在差异,模拟实验展现出的结果不尽相同,目前仍存在较大争议。尽管诸多学者已开展了大量的研究工作,但国内外关于U元素对有机质影响的研究工作大多数局限于定性分析,目前也存在一些问题亟待解决,主要包括以下几个方面: U元素在黑色页岩中富集的微观机理,难以建立U在黑色页岩中的富集模式;有效表征石油受辐射剂量的指标,难以分析原油的储层滞留时间;人工辐射和自然辐射对有机质生油气影响的异同性,难以揭示有机质在辐射作用下演化的主控因素。未来,应采用先进手段分析辐射影响的微观机理,开展分子组成和结构分析,识别石油中有效的辐解指标,扩展辐射影响在地质领域中的应用。本文对于扩展油气形成机理、探索新型油气资源、丰富黑色页岩中U的地质认识有着较高的借鉴意义。
中图分类号:
朱紫光, 朱光有, 李茜. U元素在黑色页岩中的富集机理及其对有机质生油气性能的影响[J]. 地学前缘, 2025, 32(2): 290-310.
ZHU Ziguang, ZHU Guangyou, LI Xi. The enrichment mechanism of U element in black shale and its significant influence on the performance of organic matter oil and gas production[J]. Earth Science Frontiers, 2025, 32(2): 290-310.
图1 海水体系U形态随Eh-Ph变化示意图(据[24]修改) 注:灰色区域代表矿物,白色区域代表可溶解的铀酰络合物。
Fig.1 Schematic diagram of U morphology of seawater system with Eh-Ph. Modified after [24]. (gray area represents minerals, white area represents dissolved uranyl complex)
图3 不同类型微生物对U的吸附能力及影响因素(据[68-69]修改)
Fig.3 Adsorption capacity and influencing factors of different types of microorganisms on U. Modified after [68-69].
富集类型 | 富集方式 | 富集机理 | 价态 | 实例 | 数据来源 |
---|---|---|---|---|---|
有机质 | 络合 | 有机化合物(富里酸和腐殖酸)和U络合形成稳定的化合物 | U(Ⅳ) U(Ⅵ) | 有机化合物的类型 环境的pH值 | 文献[ |
物理吸附 | 有机质本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境的pH值 | 文献[ | |
还原 | 有机质热演化过程中分解的H2S,CH4,H2和NH3等强还原物质 | U(Ⅵ) | 温度 | 文献[ | |
微生物 | 生物还原作用 | 微生物通过细胞色素、菌毛、电子穿梭体等介质向U传输电子 | U(Ⅵ) | 乙醇或乙酸盐浓度 环境金属离子浓度 | 文献[ |
生物吸附作用 | U被动且快速地吸附在微生物的表面 | U(Ⅳ) U(Ⅵ) | 环境pH和离子强度,环境 金属离子浓度,环境U浓度 | 文献[ | |
生物矿化作用 | U在微生物表面沉淀形成结晶或结晶结构 | U(Ⅵ) | 环境的pH值 | 文献[ | |
生物积聚作用 | 微生物主动摄取与微生物必需元素相近的金属元素 | U(Ⅳ) U(Ⅵ) | 环境pH值 碳酸盐碱度 | 文献[ | |
黏土矿物 | 吸附 | 黏土矿物的结构表面和颗粒边缘产生电荷对U产生吸附作用 | U(Ⅳ) U(Ⅵ) | 硫酸盐、碳酸盐、磷酸盐,黏土矿物的类型,环境金属离子浓度,腐殖酸;环境pH | 文献[ |
含铁矿物 | 吸附 | 含铁矿物本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境pH,碳酸盐浓度 | 文献[ |
还原 | 含铁矿物对U的还原主要通过Fe(Ⅱ)来完成 | U(Ⅵ) | 矿物的表面催化作用, 环境pH,可溶性的Fe(Ⅱ) | 文献[ | |
含硫矿物 | 吸附 | 含硫矿物表面不均匀吸附U | U(Ⅵ) | 环境pH、溶解性有机质 | 文献[ |
还原 | 含硫基团对U(Ⅵ)的还原 | U(Ⅵ) | 环境pH | 文献[ | |
含磷矿物 | 络合 | 磷酸盐和U形成稳定的络合物 | U(Ⅵ) | 环境pH,碳酸盐含量 | 文献[ |
表1 黑色页岩中不同组分富集U的方式和类型
Table 1 Methods and types of U enrichment of different components in black shale
富集类型 | 富集方式 | 富集机理 | 价态 | 实例 | 数据来源 |
---|---|---|---|---|---|
有机质 | 络合 | 有机化合物(富里酸和腐殖酸)和U络合形成稳定的化合物 | U(Ⅳ) U(Ⅵ) | 有机化合物的类型 环境的pH值 | 文献[ |
物理吸附 | 有机质本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境的pH值 | 文献[ | |
还原 | 有机质热演化过程中分解的H2S,CH4,H2和NH3等强还原物质 | U(Ⅵ) | 温度 | 文献[ | |
微生物 | 生物还原作用 | 微生物通过细胞色素、菌毛、电子穿梭体等介质向U传输电子 | U(Ⅵ) | 乙醇或乙酸盐浓度 环境金属离子浓度 | 文献[ |
生物吸附作用 | U被动且快速地吸附在微生物的表面 | U(Ⅳ) U(Ⅵ) | 环境pH和离子强度,环境 金属离子浓度,环境U浓度 | 文献[ | |
生物矿化作用 | U在微生物表面沉淀形成结晶或结晶结构 | U(Ⅵ) | 环境的pH值 | 文献[ | |
生物积聚作用 | 微生物主动摄取与微生物必需元素相近的金属元素 | U(Ⅳ) U(Ⅵ) | 环境pH值 碳酸盐碱度 | 文献[ | |
黏土矿物 | 吸附 | 黏土矿物的结构表面和颗粒边缘产生电荷对U产生吸附作用 | U(Ⅳ) U(Ⅵ) | 硫酸盐、碳酸盐、磷酸盐,黏土矿物的类型,环境金属离子浓度,腐殖酸;环境pH | 文献[ |
含铁矿物 | 吸附 | 含铁矿物本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境pH,碳酸盐浓度 | 文献[ |
还原 | 含铁矿物对U的还原主要通过Fe(Ⅱ)来完成 | U(Ⅵ) | 矿物的表面催化作用, 环境pH,可溶性的Fe(Ⅱ) | 文献[ | |
含硫矿物 | 吸附 | 含硫矿物表面不均匀吸附U | U(Ⅵ) | 环境pH、溶解性有机质 | 文献[ |
还原 | 含硫基团对U(Ⅵ)的还原 | U(Ⅵ) | 环境pH | 文献[ | |
含磷矿物 | 络合 | 磷酸盐和U形成稳定的络合物 | U(Ⅵ) | 环境pH,碳酸盐含量 | 文献[ |
图6 α、β粒子和γ射线对页岩有机质和砂岩油藏的影响示意图(据[22]修改)
Fig.6 Schematic diagram of the effects of α, β particles and gamma rays on shale organic matter and sandstone reservoirs. Modified after [22].
图7 辐射作用诱导干酪根C—C键和C—H键裂解生气示意图(据[143]修改)
Fig.7 Schematic diagram of radiation-induced cleavage of kerogen C—C bond and C—H bond pyrolysis gas. Modified after [13].
[1] | SWANSON V E. Uranium in marine black shales of the United States[C]// Proc. Geneva Conference on peaceful uses of Atomic Energy, 1956, 6: 430-434. |
[2] | LEWAN M D, BUCHARDT B. Irradiation of organic matter by uranium decay in the Alum Shale, Sweden[J]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1307-1322. |
[3] | LEV S M, FILER J K. Assessing the impact of black shale processes on REE and the U-Pb isotope system in the southern Appalachian Basin[J]. Chemical Geology, 2004, 206(3/4): 393-406. |
[4] | FISHER Q J, WIGNALL P B. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England[J]. Chemical Geology, 2001, 175(3/4): 605-621. |
[5] |
GALINDO C, MOUGIN L, FAKHI S, et al. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco)[J]. Journal of Environmental Radioactivity, 2007, 92(1): 41-54.
PMID |
[6] | YANG H, ZHANG W Z, WU K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293. |
[7] |
朱光有, 赵坤, 李婷婷, 等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报, 2020, 41(12): 1567-1586.
DOI |
[8] | DISNAR J R, SUREAU J F. Organic matter in ore genesis: progress and perspectives[J]. Organic Geochemistry, 1990, 16(1/2/3): 577-599. |
[9] | WEI X F. Causes of high U and characteristics of hot shale at Longmaxi Formation in the Sichuan Basin and surrounding areas[J]. Reservoir Evaluation and Development, 2017, 7(3): 59-66. |
[10] | REGENSPURG S, MARGOT-ROQUIER C, HARFOUCHE M, et al. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland)[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2082-2098. |
[11] | MEUNIER J D, TROUILLER A, BRULHERT J, et al. Uranium and organic matter in a paleodeltaic environment; the Coutras Deposit (Gironde, France)[J]. Economic Geology, 1989, 84(6): 1541-1556. |
[12] | LENHART J J, CABANISS S E, MACCARTHY P, et al. Uranium(VI) complexation with citric, humic and fulvic acids[J]. Radiochimica Acta, 2000, 88(6): 345-354. |
[13] | NEWSOME L, MORRIS K, LLOYD J R. The biogeochemistry and bioremediation of uranium and other priority radionuclides[J]. Chemical Geology, 2014, 363: 164-184. |
[14] | BACHMAF S, MERKEL B J. Sorption of uranium(VI) at the clay mineral-water interface[J]. Environmental Earth Sciences, 2011, 63(5): 925-934. |
[15] | CHAKRABORTY S, FAVRE F, BANERJEE D, et al. U(Ⅵ) sorption and reduction by Fe(II) sorbed on montmorillonite[J]. Environmental Science and Technology, 2010, 44(10): 3779-3785. |
[16] | GOLDHABER M B, HEMINGWAY B S, MOHAGHEGHI A, et al. Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism[J]. Bulletin de Minéralogie, 1987, 110(2): 131-144. |
[17] | XU J, ZHU S Y, LUO T Y, et al. Uranium mineralization and its radioactive decay-induced carbonization in a black shale-hosted polymetallic sulfide ore layer, southwest China[J]. Economic Geology, 2015, 110(6): 1643-1652. |
[18] | LEWAN M D, ULMISHEK G F, HARRISON W, et al. Gamma 60Co-irradiation of organic matter in the phosphoria retort shale[J]. Geochimica et Cosmochimica Acta, 1991, 55(4): 1051-1063. |
[19] | WANG W Q, LIU C Y, LIU W H, et al. Dominant products and reactions during organic matter radiolysis: implications for hydrocarbon generation of uranium-rich shales[J]. Marine and Petroleum Geology, 2022, 137: 105497. |
[20] | YANG S Y, SCHULZ H, HORSFIELD B, et al. On the changing petroleum generation properties of Alum Shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. |
[21] | SILVA R C, SNOWDON L R, HUANG H P, et al. Radiolysis as a source of 13C depleted natural gases in the geosphere[J]. Organic Geochemistry, 2019, 138: 103911. |
[22] | YIN M S, SNOWDON L R, SILVA R C, et al. Impacts of natural irradiation on sedimentary organic matter-a review[J]. Organic Geochemistry, 2023, 180: 104602. |
[23] |
李茜, 朱光有, 李婷婷, 等. U同位素分馏行为及其在环境地球科学中的应用研究进展[J]. 地学前缘, 2024, 31(2): 447-471.
DOI |
[24] | CUMBERLAND S A, DOUGLAS G, GRICE K, et al. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159: 160-185. |
[25] | FERRONSKIİ V I, POL$\overset\frown{\text{IA}}$KOV V A. Isotopes of the Earth’s hydrosphere[M]. Dordrecht: Springer, 2012. |
[26] | LANGMUIR D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 547-569. |
[27] | JANG J H, DEMPSEY B A, BURGOS W D. Solubility of schoepite: comparison and selection of complexation constants for U(Ⅵ)[J]. Water Research, 2006, 40(14): 2738-2746. |
[28] |
BANNING A, DEMMEL T, RÜDE T R, et al. Groundwater uranium origin and fate control in a river valley aquifer[J]. Environmental Science and Technology, 2013, 47(24): 13941-13948.
DOI PMID |
[29] | GORMAN-LEWIS D, BURNS P C, FEIN J B. Review of uranyl mineral solubility measurements[J]. The Journal of Chemical Thermodynamics, 2008, 40(3): 335-352. |
[30] | REILLER P E, VERCOUTER T, DURO L, et al. Thermodynamic data provided through the FUNMIG project: analyses and prospective[J]. Applied Geochemistry, 2012, 27(2): 414-426. |
[31] |
VAZQUEZ G J, DODGE C J, FRANCIS A J. Interactions of uranium with polyphosphate[J]. Chemosphere, 2007, 70(2): 263-269.
PMID |
[32] |
MAHER K, BARGAR J R, BROWN G E Jr. Environmental speciation of actinides[J]. Inorganic Chemistry, 2013, 52(7): 3510-3532.
DOI PMID |
[33] | HOSTETLER P B, GARRELS R M. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits[J]. Economic Geology, 1962, 57(2): 137-167. |
[34] | WANG Z M, ULRICH K U, PAN C, et al. Measurement and modeling of U(Ⅳ) adsorption to metal oxide minerals[J]. Environmental Science and Technology Letters, 2015, 2(8): 227-232. |
[35] | ALESSI D S, LEZAMA-PACHECO J S, JANOT N, et al. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer[J]. Environmental Science and Technology, 2014, 48(21): 12842-12850. |
[36] | BERNIER-LATMANI R, VEERAMANI H, DALLA VECCHIA E, et al. Non-uraninite products of microbial U(Ⅵ) reduction[J]. Environmental Science and Technology, 2010, 44(24): 9456-9462. |
[37] | STYLO M, ALESSI D S, SHAO P P, et al. Biogeochemical controls on the product of microbial U(Ⅵ) reduction[J]. Environmental Science and Technology, 2013, 47(21): 12351-12358. |
[38] |
BONE S E, DYNES J J, CLIFF J, et al. Uranium(IV) adsorption by natural organic matter in anoxic sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(4): 711-716.
DOI PMID |
[39] | CROUÉ J P. Isolation of humic and non-humic NOM fractions: structural characterization[J]. Environmental Monitoring and Assessment, 2004, 92(1): 193-207. |
[40] | JOSEPH C, VAN LOON L R, JAKOB A, et al. Diffusion of U(Ⅵ) in opalinus clay: influence of temperature and humic acid[J]. Geochimica et Cosmochimica Acta, 2013, 109: 74-89. |
[41] | LI P C, XU Z Q, WANG Y, et al. The relationships between uranium mineralization and organic matter in 373 uranium deposit[J]. Advanced Materials Research, 2014, 962/963/964/965: 203-207. |
[42] | MIN M Z, MENG Z W, SHENG G Y, et al. Organic geochemistry of paleokarst-hosted uranium deposits, South China[J]. Journal of Geochemical Exploration, 2000, 68(3): 211-229. |
[43] | SPIRAKIS C S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11(1/2/3): 53-69. |
[44] | WARWICK P, EVANS N, HALL A, et al. Stability constants of U(Ⅵ) and U(Ⅳ)-humic acid complexes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 266(2): 179-190. |
[45] | REIMOLD W U, GIBSON R L. Processes on the early Earth[M]. Boulder, Colo.: Geological Society of America, 2006. |
[46] | MANAKA M, SEKI Y, OKUZAWA K, et al. Uranium sorption onto natural sediments within a small stream in central Japan[J]. Limnology, 2008, 9(3): 173-183. |
[47] |
TINNACHER R M, NICO P S, DAVIS J A, et al. Effects of fulvic acid on uranium(VI) sorption kinetics[J]. Environmental Science and Technology, 2013, 47(12): 6214-6222.
DOI PMID |
[48] | WILLIAMS K H, LONG P E, DAVIS J A, et al. Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater[J]. Geomicrobiology Journal, 2011, 28(5/6): 519-539. |
[49] | LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350: 413-416. |
[50] | SUZUKI Y, KELLY S D, KEMNER K M, et al. Nanometre-size products of uranium bioreduction[J]. Nature, 2002, 419(6903): 134. |
[51] |
RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration[J]. Applied and Environmental Microbiology, 2012, 78(4): 913-921.
DOI PMID |
[52] |
LLOYD JON R, CHING L, HODGES MYERSON ALLISON L, et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens[J]. Biochemical Journal, 2003, 369(Pt 1): 153-161.
PMID |
[53] | SHELOBOLINA E S, COPPI M V, KORENEVSKY A A, et al. Importance of c-Type cytochromes for U(Ⅵ) reduction by Geobacter sulfurreducens[J]. BMC Microbiology, 2007, 7(1): 16. |
[54] | LEANG C, QIAN X L, MESTER T, et al. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2010, 76(12): 4080-4084. |
[55] | COLOGGI D L, LAMPA-PASTIRK S, SPEERS A M, et al. Extracellular reduction of uranium via Geobacterconductive pili as a protective cellular mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15248-15252. |
[56] | ORELLANA R, LEAVITT J J, COMOLLI L R, et al. U(Ⅵ) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2013, 79(20): 6369-6374. |
[57] |
HARALD V C, JUN O, SAKAYU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3): 615-623.
DOI PMID |
[58] | TURICK C E, TISA L S, CACCAVO F Jr. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Applied and Environmental Microbiology, 2002, 68(5): 2436-2444. |
[59] | LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. |
[60] | LOVLEY D R. Environmental microbe-metal interactions[M]. Washington: ASM Press, 2014. |
[61] | ALESSI D S, LEZAMA-PACHECO J S, STUBBS J E, et al. The product of microbial uranium reduction includes multiple species with U(Ⅳ)-phosphate coordination[J]. Geochimica et Cosmochimica Acta, 2014, 131: 115-127. |
[62] | BARGAR J R, WILLIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Science, 2013, 110(12): 4506-4511. |
[63] | ULRICH K U, VEERAMANI H, BERNIER-LATMANI R, et al. Speciation-dependent kinetics of uranium(VI) bioreduction[J]. Geomicrobiology Journal, 2011, 28(5/6): 396-409. |
[64] | PLETTE A C C, BENEDETTI M F, VAN RIEMSDIJK W H. Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium[J]. Environmental Science and Technology, 1996, 30(6): 1902-1910. |
[65] | STEWART B D, AMOS R T, NICO P S, et al. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions[J]. Geomicrobiology Journal, 2011, 28(5/6): 444-456. |
[66] | OZAKI T, KIMURA T, OHNUKI T, et al. Associations of Eu (III) with Gram-Negative Bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans[J]. Journal of Nuclear and Radiochemical Sciences, 2005, 6(1): 73-76. |
[67] | SCHIEWER S, VOLESKY B. Biosorption processes for heavy metal removal[M]// LOVLEY D R. Environmental Microbe-Metal Interactions. Washington: ASM Press, 2014: 329-362. |
[68] |
TSURUTA T. Removal and recovery of uranyl ion using various microorganisms[J]. Journal of Bioscience and Bioengineering, 2002, 94(1): 23-28.
PMID |
[69] |
TSURUTA T. Adsorption of uranium from acidic solution by microbes and effect of thorium on uranium adsorption by Streptomyces levoris[J]. Journal of Bioscience and Bioengineering, 2004, 97(4): 275-277.
PMID |
[70] | BYERLEY J J, SCHARER J M, CHARLES A M. Uranium (VI) biosorption from process solutions[J]. The Chemical Engineering Journal, 1987, 36(3): B49-B59. |
[71] |
SUZUKI Y, KELLY S D, KEMNER K M, et al. Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment[J]. Applied and Environmental Microbiology, 2005, 71(4): 1790-1797.
PMID |
[72] | MIN M Z, XU H F, CHEN J, et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China[J]. Ore Geology Reviews, 2005, 26(3/4): 198-206. |
[73] | MONDANI L, BENZERARA K, CARRIÈRE M, et al. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls[J]. PLoS One, 2011, 6(10): e25771. |
[74] | SALOME K R, GREEN S J, BEAZLEY M J, et al. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals[J]. Geochimica et Cosmochimica Acta, 2013, 106: 344-363. |
[75] |
MACASKIE L E, EMPSON R M, CHEETHAM A K, et al. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071): 782-784.
PMID |
[76] | MACASKIE L E, BONTHRONE K M, YONG P, et al. Enzymically mediated bioprecipitation of uranium by a citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation[J]. Microbiology, 2000, 146(8): 1855-1867. |
[77] | BEAZLEY M J, MARTINEZ R J, WEBB S M, et al. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5648-5663. |
[78] | ACHARYA C, APTE S K. Insights into the interactions of cyanobacteria with uranium[J]. Photosynthesis Research, 2013, 118(1): 83-94. |
[79] |
FOMINA M, CHARNOCK J M, HILLIER S, et al. Fungal transformations of uranium oxides[J]. Environmental Microbiology, 2007, 9(7): 1696-1710.
PMID |
[80] | DUFF M C, AMRHEIN C, BERTSCH P M, et al. The chemistry of uranium in evaporation pond sediment in the San Joaquin valley, California, USA, using X-ray fluorescence and XANES techniques[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 73-81. |
[81] | BACHMAF S, PLANER-FRIEDRICH B, MERKEL B J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite[J]. Radiochimica Acta, 2008, 96(6): 359-366. |
[82] | LIN Z, PULS R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 2000, 39(7): 753-759. |
[83] | GRABIAS E, GŁADYSZ-PŁASKA A, KSIĄŻEK A, et al. Efficient uranium immobilization on red clay with phosphates[J]. Environmental Chemistry Letters, 2014, 12(2): 297-301. |
[84] | GŁADYSZ-PŁASKA A, GRABIAS E, MAJDAN M. Simultaneous adsorption of uranium(VI) and phosphate on red clay[J]. Progress in Nuclear Energy, 2018, 104: 150-159. |
[85] | BENEŠ P, KRATZER K, VLČKOVÁ, et al. Adsorption of uranium on clay and the effect of humic substances[J]. Radiochimica Acta, 1998, 82(s1): 367-374. |
[86] | JOSEPH C, SCHMEIDE K, SACHS S, et al. Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water[J]. Chemical Geology, 2011, 284(3/4): 240-250. |
[87] | TOBILKO V, SPASONOVA L, KOVALCHUK I, et al. Adsorption of uranium (VI) from aqueous solutions by amino-functionalized clay minerals[J]. Colloids and Interfaces, 2019, 3(1): 41. |
[88] | WAITE T D, DAVIS J A, PAYNE T E, et al. Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model[J]. Geochimica et Cosmochimica Acta, 1994, 58(24): 5465-5478. |
[89] |
WAZNE M, KORFIATIS G P, MENG X G. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide[J]. Environmental Science and Technology, 2003, 37(16): 3619-3624.
PMID |
[90] | LATTA D E, BOYANOV M I, KEMNER K M, et al. Abiotic reduction of uranium by Fe(II) in soil[J]. Applied Geochemistry, 2012, 27(8): 1512-1524. |
[91] | HIEMSTRA T, VAN RIEMSDIJK W H, ROSSBERG A, et al. A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate[J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4437-4451. |
[92] | MASSEY M S, LEZAMA-PACHECO J S, JONES M E, et al. Competing retention pathways of uranium upon reaction with Fe(II)[J]. Geochimica et Cosmochimica Acta, 2014, 142: 166-185. |
[93] | LIGER E, CHARLET L, CAPPELLEN P. Surface catalysis of uranium(VI) reduction by iron(II)[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 2939-2955. |
[94] | BOYANOV M I, O’LOUGHLIN E J, RODEN E E, et al. Adsorption of FeII and U(Ⅵ) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studied by titration and XAFS[J]. Geochimica et Cosmochimica Acta, 2007, 71(8): 1898-1912. |
[95] | O’LOUGHLIN E J, KELLY S D, COOK R E, et al. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles[J]. Environmental Science and Technology, 2003, 37(4): 721-727. |
[96] | SCOTT T B, ALLEN G C, HEARD P J, et al. Reduction of U(Ⅵ) to U(Ⅳ) on the surface of magnetite[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5639-5646. |
[97] | EL AAMRANI S, GIMÉNEZ J, ROVIRA M, et al. A spectroscopic study of uranium(VI) interaction with magnetite[J]. Applied Surface Science, 2007, 253(21): 8794-8797. |
[98] | VEERAMANI H, ALESSI D S, SUVOROVA E I, et al. Products of abiotic U(Ⅵ) reduction by biogenic magnetite and vivianite[J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2512-2528. |
[99] | DUFF M C, COUGHLIN J U, HUNTER D B. Uranium co-precipitation with iron oxide minerals[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3533-3547. |
[100] | ILTON E S, PACHECO J S L, BARGAR J R, et al. Reduction of U(Ⅵ) incorporated in the structure of hematite[J]. Environmental Science and Technology, 2012, 46(17): 9428-9436. |
[101] |
MARSHALL T A, MORRIS K, LAW G T W, et al. Incorporation of uranium into hematite during crystallization from ferrihydrite[J]. Environmental Science and Technology, 2014, 48(7): 3724-3731.
DOI PMID |
[102] | BOLAND D D, COLLINS R N, PAYNE T E, et al. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(Ⅵ)[J]. Environmental Science and Technology, 2011, 45(4): 1327-1333. |
[103] |
STEWART B D, NICO P S, FENDORF S. Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions[J]. Environmental Science and Technology, 2009, 43(13): 4922-4927.
PMID |
[104] | DONG H L, ZENG Q, SHENG Y Z, et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth and Environment, 2023, 4(9): 659-673. |
[105] | WERSIN P, HOCHELLA M F, PERSSON P, et al. Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction[J]. Geochimica et Cosmochimica Acta, 1994, 58(13): 2829-2843. |
[106] | DESCOSTES M, SCHLEGEL M L, EGLIZAUD N, et al. Uptake of uranium and trace elements in pyrite (FeS2) suspensions[J]. Geochimica et Cosmochimica Acta, 2010, 74(5): 1551-1562. |
[107] |
BRUGGEMAN C, MAES N. Uptake of uranium(VI) by pyrite under boom clay conditions: influence of dissolved organic carbon[J]. Environmental Science and Technology, 2010, 44(11): 4210-4216.
DOI PMID |
[108] | MOYES L N, PARKMAN R H, CHARNOCK J M, et al. Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite: an X-ray absorption spectroscopy study[J]. Environmental Science and Technology, 2000, 34(6): 1062-1068. |
[109] |
HUA B, DENG B. Reductive immobilization of uranium(VI) by amorphous iron sulfide[J]. Environmental Science and Technology, 2008, 42(23): 8703-8708.
PMID |
[110] |
AREY J S, SEAMAN J C, BERTSCH P M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition[J]. Environmental Science and Technology, 1999, 33(2): 337-342.
DOI PMID |
[111] | MILLS, BIRCH, MAAS, et al. Lake boga granite, northwestern victoria: mineralogy, geochemistry and geochronology[J]. Australian Journal of Earth Sciences, 2008, 55(3): 281-299. |
[112] | FINCH R, MURAKAMI T. Systematics and paragenesis of uranium minerals[M]//Uranium. Berlin: De Gruyter, 1999: 91-180. |
[113] | MEHTA V S, MAILLOT F, WANG Z M, et al. Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate[J]. Chemical Geology, 2014, 364: 66-75. |
[114] |
ZHOU P, GU B. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH[J]. Environmental science and technology, 2005, 39(12): 4435-4440.
PMID |
[115] | BUCK E C, BROWN N R, DIETZ N L. Contaminant uranium phases and leaching at the fernald site in Ohio[J]. Environmental Science and Technology, 1996, 30(1): 81-88. |
[116] | SINGH A, ULRICH K U, GIAMMAR D E. Impact of phosphate on U(Ⅵ) immobilization in the presence of goethite[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6324-6343. |
[117] | BERRY W, WILDE P, QUINBY-HUNT M, et al. Trace element signatures in Dictyonema Shales and their geochemical and stratigraphic significance[J]. Norsk Geol. Tidsskr, 1986, 66: 45-51. |
[118] | LEVENTHAL J S. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991, 26(2): 104-112. |
[119] | SCHOVSBO N H. Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale[J]. Gff, 2002, 124(2): 107-115. |
[120] | DOVETON J H, MERRIAM D F. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface[J]. Chemical Geology, 2004, 206(3/4): 249-258. |
[121] | YANG S Y, SCHULZ H M, SCHOVSBO N, et al. The organic geochemistry of “Kolm”, a unique analogue for the understanding of molecular changes after significant uranium irradiation[J]. International Journal of Coal Geology, 2019, 209: 89-93. |
[122] | SCHULZ H M, YANG S Y, PANOVA E, et al. The role of Pleistocene meltwater-controlled uranium leaching in assessing irradiation-induced alteration of organic matter and petroleum potential in the Tremadocian Koporie Formation (Western Russia)[J]. Geochimica et Cosmochimica Acta, 2019, 245: 133-153. |
[123] | 曾天柱. 碳硅泥岩型铀矿成矿特征、形成机理及找矿前景的讨论[J]. 铀矿地质, 2002, 18(1): 46-51. |
[124] | 张本浩, 吴柏林, 刘池阳, 等. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态[J]. 西北地质, 2011, 44(2): 124-132. |
[125] | BAILEY D L, HUMM J L, TODD-POKROPEK A, et al. Nuclear medicine physics: a handbook for teachers and students[J]. Medical Physics, 2014, 38(8): 766. |
[126] | LARTER S, SILVA R C, MARCANO N, et al. The dating of petroleum fluid residence time in subsurface reservoirs. Part 1: a radiolysis-based geochemical toolbox[J]. Geochimica et Cosmochimica Acta, 2019, 261: 305-326. |
[127] | COURT R W, SEPHTON M A, PARNELL J, et al. The alteration of organic matter in response to ionising irradiation: chemical trends and implications for extraterrestrial sample analysis[J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 1020-1039. |
[128] | CHARLESBY A. The cross-linking and degradation of paraffin chains by high-energy radiation[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1954, 222(1148): 60-74. |
[129] | DEWHURST H A. Radiation chemistry of organic compounds. I. n-alkane liquids[J]. The Journal of Physical Chemistry, 1957, 61(11): 1466-1471. |
[130] | WANG H J, ZHAO W Z, CAI Y W, et al. Oil generation from the immature organic matter after artificial neutron irradiation[J]. Energy and Fuels, 2020, 34(2): 1276-1287. |
[131] | WANG H J, ZHAO W Z, CAI Y W, et al. Irradiation caused petroleum generation: evidence from simulation experiments at room temperature[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012037. |
[132] | ZHENG X W, SCHOVSBO N H, BIAN L B, et al. Alteration of organic macerals by uranium irradiation in lower Paleozoic marine shales[J]. International Journal of Coal Geology, 2021, 239: 103713. |
[133] | MOSSMAN D J, GAUTHIER-LAFAYE F, JACKSON S E. Carbonaceous substances associated with the Paleoproterozoic natural nuclear fission reactors of Oklo, Gabon: paragenesis, thermal maturation and carbon isotopic and trace element compositions[J]. Precambrian Research, 2001, 106(1/2): 135-148. |
[134] | YANG S Y, HORSFIELD B. Some predicted effects of minerals on the generation of petroleum in nature[J]. Energy and Fuels, 2016, 30(8): 6677-6687. |
[135] | FROLOV E, SMIRNOV M, MELIKHOV V, et al. Olefins of radiogenic origin in crude oils[J]. Organic Geochemistry, 1998, 29(1): 409-420. |
[136] | ZHAO J, TU K Y, LIU Y L, et al. Photo-controlled aptamers delivery by dual surface gold-magnetic nanoparticles for targeted cancer therapy[J]. Materials Science and Engineering: C, 2017, 80: 88-92. |
[137] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[138] | BROWN A A. PS formation of high helium gases: a guide for explorationists[C]// AAPG Convention. New Orleans: AAPG. 2010, 80115. |
[139] |
赵栋, 王晓锋, 刘文汇, 等. 壳源富氦天然气藏潜在氦源岩主要特征及有效性分析[J]. 天然气地球科学, 2024, 35(3): 507-517.
DOI |
[140] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]: 地球科学, 2019, 44(3): 1024-1041. |
[141] | PENG W L, LIU Q Y, ZHANG Y, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China Earth Sciences, 2022, 65(5): 874-881. |
[142] | MAIONE S J. Helium exploration-A 21st century challenge[J], Houston Geological Society Bulletin, 2004, 46(4): 27-28. |
[143] | WANG H J, ZHAO W Z, CAI Y W, et al. Irradiation caused gas generation from organic matter: evidence from the neutron irradiation experiment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 569(1): 012090. |
[144] | LE GUILLOU C, REMUSAT L, BERNARD S, et al. Amorphization and D/H fractionation of kerogens during experimental electron irradiation: comparison with chondritic organic matter[J]. Icarus, 2013, 226(1): 101-110. |
[145] | WANG W Q, LIU C Y, ZHANG D D, et al. Radioactive genesis of hydrogen gas under geological conditions: an experimental study[J]. Acta Geologica Sinica - English Edition, 2019, 93(4): 1125-1134. |
[146] | WANG W Q, LIU C Y, LIU W H, et al. Factors influencing hydrogen yield in water radiolysis and implications for hydrocarbon generation: a review[J]. Arabian Journal of Geosciences, 2018, 11(18): 542. |
[147] | 毛光周, 刘池洋, 张东东, 等. 铀对(Ⅱ型)低熟烃源岩生烃演化的影响[J]. 地质学报, 2012, 86(11): 1833-1840. |
[148] | ZHANG F, JIAO Y Q, WU L Q, et al. Changes in physicochemical properties of organic matter by uranium irradiation: a case study from the Ordos Basin in China[J]. Journal of Environmental Radioactivity, 2020, 211: 106105. |
[149] | SASSEN R. Effects of radiation exposure on indicators of thermal maturity[J]. Organic Geochemistry, 1984, 5(4): 183-186. |
[150] | CLAXTON M J, PATIENCE R L, PARK P J D, et al. Molecular modelling of bond energies in potential kerogen sub-units[J]. Organic Geochemistry, 1993: 198-201. |
[151] | DAHL J, HALLBERG R, KAPLAN I R. The effects of radioactive decay of uranium on elemental and isotopic ratios of Alum shale kerogen[J]. Applied Geochemistry, 1988, 3(6): 583-589. |
[1] | 康凤新, 郑婷婷, 史猛, 隋海波, 徐蒙, 江海洋, 钟振楠, 秦鹏, 张保建, 赵季初, 马哲民, 崔洋, 李嘉龙, 段晓飞, 白通, 张平平, 姚松, 刘肖, 史启鹏, 王学鹏, 杨海涛, 陈京鹏, 刘琲琲. 山东省地热资源赋存规律及其富集机制[J]. 地学前缘, 2024, 31(6): 67-94. |
[2] | 黄思宇, 蒲俊兵, 潘谋成, 李建鸿, 张陶. 岩溶水库藻源性有机质来源对表层沉积物有机碳矿化过程的影响[J]. 地学前缘, 2024, 31(5): 387-396. |
[3] | 窦立荣, 黄文松, 孔祥文, 汪萍, 赵子斌. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[4] | 邱林飞, 李子颖, 张字龙, 王龙辉, 李振成, 韩美芝, 王婷婷. 鄂尔多斯盆地北部下白垩统赋矿砂岩中有机质特征及其与铀成矿的关系[J]. 地学前缘, 2024, 31(4): 281-296. |
[5] | 张家志, 姜在兴, 徐杰, 魏思源, 宋立舟, 刘桐, 沈志晗, 姜晓龙, 李永飞, 张玺. 朝阳盆地白垩系九佛堂组火山沉积作用及其对有机质富集的影响[J]. 地学前缘, 2024, 31(3): 284-297. |
[6] | 陈践发, 许锦, 王杰, 刘鹏, 陈斐然, 黎茂稳. 塔里木盆地西北缘玉尔吐斯组黑色岩系沉积环境演化及其对有机质富集的控制作用[J]. 地学前缘, 2023, 30(6): 150-161. |
[7] | 张力钰, 陈强路, 黎茂稳, 袁坤, 马晓潇, 席斌斌, 岳勇, 黄泰誉. 鄂西-黔东北地区早寒武世有机质富集机理对比研究[J]. 地学前缘, 2023, 30(6): 181-198. |
[8] | 吴陈君, 刘新社, 文志刚, 妥进才. 黔北地区牛蹄塘组页岩有机质富集及有机质孔隙发育机制研究[J]. 地学前缘, 2023, 30(3): 101-109. |
[9] | 马子杰, 唐玄, 张金川, 翟刚毅, 王玉芳, 梁国栋, 罗欢. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素[J]. 地学前缘, 2023, 30(3): 124-137. |
[10] | 邵德勇, 李艳芳, 张六六, 罗欢, 孟康, 张瑜, 宋辉, 张同伟. 泥岩微观组构对有机质赋存形式和孔隙发育的影响研究:以白垩系Eagle Ford页岩为例[J]. 地学前缘, 2023, 30(3): 151-164. |
[11] | 陈宗铭, 唐玄, 梁国栋, 关子珩. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220. |
[12] | 罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[13] | 何文渊. 松辽盆地古龙凹陷页岩油储层中的纳孔纳缝及其原位成藏理论初探[J]. 地学前缘, 2023, 30(1): 156-173. |
[14] | 卢双舫, 王峻, 李文镖, 曹怿昕, 陈方文, 李吉君, 薛海涛, 王民. 从能耗比论低熟富有机质页岩原位改质转化的经济可行性及增效途径[J]. 地学前缘, 2023, 30(1): 187-198. |
[15] | 邹建军, 宗娴, 朱爱美, 豆汝席, 林锦辉, 冯旭光, 董智, Sergey A. GORBARENKO, 郑立伟, 石学法. 37 ka以来日本海沉积物有机质碳和氮稳定同位素变化及其古海洋学意义[J]. 地学前缘, 2022, 29(4): 123-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||