地学前缘 ›› 2024, Vol. 31 ›› Issue (3): 520-529.DOI: 10.13745/j.esf.sf.2023.5.90

• 人工智能与地质应用 • 上一篇    下一篇

机器学习:海底矿产资源智能勘探的新途径

刘洋1,2(), 李三忠1,2, 钟世华1,2,*(), 郭广慧1,2, 刘嘉情1,2, 牛警徽1,2, 薛梓萌1,2, 周建平1,2, 董昊1,2, 索艳慧1,2   

  1. 1.中国海洋大学 海洋地球科学学院 深海圈层与地球系统教育部前沿科学中心/海底科学与探测技术教育部重点实验室, 山东 青岛 266100
    2.青岛海洋科学与技术国家实验室 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266237
  • 收稿日期:2022-11-23 修回日期:2023-04-13 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: *钟世华(1989—),男,副教授,主要从事矿床学和地质大数据研究。E-mail: zhongshihua@ouc.edu.cn
  • 作者简介:刘洋(1997—),男,博士研究生,海洋地质专业。E-mail: liuyang9553@stu.ouc.edu.cn
  • 基金资助:
    青岛海洋科学与技术试点国家实验室山东省专项(2022QNLM05032);中央高校基本科研业务费专项(202172002);国家自然科学基金项目(42203066);山东省自然科学基金项目(ZR2020QD027)

Machine learning: A new approach to intelligent exploration of seafloor mineral resources

LIU Yang1,2(), LI Sanzhong1,2, ZHONG Shihua1,2,*(), GUO Guanghui1,2, LIU Jiaqing1,2, NIU Jinghui1,2, XUE Zimeng1,2, ZHOU Jianping1,2, DONG Hao1,2, SUO Yanhui1,2   

  1. 1. MOE Frontiers Science Center for Deep Ocean Multispheres and Earth System/MOE Key Lab of Submarine Geosciences and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
    2. Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
  • Received:2022-11-23 Revised:2023-04-13 Online:2024-05-25 Published:2024-05-25

摘要:

海底蕴藏着丰富的关键矿产资源,是当前研究的热点,也是未来产业新领域。随着海洋探测技术的不断进步,海底矿产勘探的数据量和数据维数急剧增加,给数据处理与解释带来了巨大困难和挑战。面对海量数据,传统的数据解释与分析方法暴露出许多问题。机器学习以其强大的自学能力,为无法解决或难以解决的问题提供了一系列智能分析决策方案,提高了数据分析的效率,是海底矿产资源智能勘探的新途径。近年来,机器学习在地球科学领域获得了广泛的关注和研究。为此,围绕机器学习技术应用于海底资源勘探技术,本文首先简要介绍了机器学习中经典的模型算法,然后详细阐述了机器学习在海底能源矿产和金属矿产两个方面的应用现状,最后总结了机器学习在海底矿产智能勘探领域的应用前景,指出了现有研究中存在的问题,提出了解决方案和未来的发展方向。

关键词: 机器学习, 铁锰结核, 富钴结壳, 天然气水合物, 海底矿产

Abstract:

The seafloor is characterized by abundant key mineral resources, which is a hotspot of current research and a new field of industry in the future. With the continuous progress of ocean exploration technology, the volume and dimensions of data from seafloor mineral exploration have increased dramatically, which has brought great difficulties and challenges to data processing and interpretation. In the face of massive data, traditional data interpretation and analysis methods expose many problems. Machine learning, with its strong self-learning ability, provides a series of intelligent analysis and decision-making solutions for unsolvable or difficult problems, improving the efficiency of data analysis. It is a new way for the intelligent exploration of subsea mineral resources. In recent years, machine learning has obtained extensive attention and research in the field of geosciences. Therefore, focusing on the application of machine learning to seafloor resource exploration technology, this paper firstly briefly introduces the classical model algorithms in machine learning; then elaborates on the application status of machine learning in two aspects of seafloor energy resources and metal mineral, and finally summarizes the application prospects of machine learning in the field of intelligent exploration of seafloor minerals, points out the problems in existing research, and proposes solutions and future development directions.

Key words: machine learning, ferromanganese nodule, cobalt-rich crusts, natural gas hydrate, seafloor minerals

中图分类号: