[1] |
PETERSEN S. Marine mineral resources[M]//HARFF J, MESCHEDE M, PETERSEN S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 475-480.
|
[2] |
PETERSEN S, KRÄTSCHELL A, AUGUSTIN N, et al. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175-187.
|
[3] |
RONA P A. The changing vision of marine minerals[J]. Ore Geology Reviews, 2007, 33(3): 618-666.
|
[4] |
石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318.
|
[5] |
周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31.
|
[6] |
HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
|
[7] |
杨燕子, 陈华勇. 大洋富钴结壳研究进展及展望[J]. 大地构造与成矿学, 2023, 47(1): 1-19.
|
[8] |
HANNINGTON M, JAMIESON J, MONECKE T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158.
|
[9] |
KVENVOLDEN K. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187.
|
[10] |
BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323.
|
[11] |
DAI H C, MACBETH C. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophysical Journal International, 1995, 120(3): 758-774.
|
[12] |
DOWLA F, TAYLOR S R, ANDERSON R W. Seismic discrimination with artificial neural networks: preliminary results with regional spectral data[J]. Bulletin of the Seismological Society of America, 1990, 80(5): 1346-1373.
|
[13] |
DYSART P, PULLI J. Regional seismic event classification at the NORESS array: seismological measurements and the use of trained neural networks[J]. Bulletin of the Seismological Society of America, 1990, 80(6B): 1910-1933.
|
[14] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
|
[15] |
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
|
[16] |
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
|
[17] |
COX D R. The regression analysis of binary sequences[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1959, 21(1): 238.
|
[18] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
[19] |
VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
DOI
PMID
|
[20] |
BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
|
[21] |
CHANG C C, LIN C J. LIBSVM[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
|
[22] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
[23] |
BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
|
[24] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[25] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[26] |
ABDEYAZDAN M. Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm[J]. The Journal of Supercomputing, 2014, 68(2): 574-598.
|
[27] |
FRADKIN D. Within-class and unsupervised clustering improve accuracy and extract local structure for supervised classification[D]. New Brunswick: Rutgers, The State University of New Jersey, 2006.
|
[28] |
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016.
|
[29] |
BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4): 291-294.
|
[30] |
ZHAI J H, ZHANG S F, CHEN J F, et al. Autoencoder and its various variants[C]//Proceedings of 2018 IEEE international conference on systems, man, and cybernetics (SMC). Miyazaki: IEEE, 2018: 415-419.
|
[31] |
LIM B, YU H, YOON D, et al. Machine learning derived AVO analysis on marine 3D seismic data over gas reservoirs near South Korea[J]. Journal of Petroleum Science and Engineering, 2021, 197: 108105.
|
[32] |
ZHU L Q, WEI J G, WU S G, et al. Application of unlabelled big data and deep semi-supervised learning to significantly improve the logging interpretation accuracy for deep-sea gas hydrate-bearing sediment reservoirs[J]. Energy Reports, 2022, 8: 2947-2963.
|
[33] |
MONDAL I, SINGH H K. Core-log integration and application of machine learning technique for better reservoir characterisation of Eocene carbonates, Indian offshore[J]. Energy Geoscience, 2022, 3(1): 49-62.
|
[34] |
YOU J C, CAO J X, WANG X J, et al. Shear wave velocity prediction based on LSTM and its application for morphology identification and saturation inversion of gas hydrate[J]. Journal of Petroleum Science and Engineering, 2021, 205: 109027.
|
[35] |
PANG Y M, SHI B B, GUO X W, et al. Source-reservoir relationships and hydrocarbon charging history in the central uplift of the South Yellow Sea Basin (East Asia): constrained by machine learning procedure and basin modeling[J]. Marine and Petroleum Geology, 2021, 123: 104731.
|
[36] |
HAN F L, ZHANG H B, RUI J W, et al. Multiple point geostatistical simulation with adaptive filter derived from neural network for sedimentary facies classification[J]. Marine and Petroleum Geology, 2020, 118: 104406.
|
[37] |
BROWN N, ROUBÍČKOVÁ A, LAMPAKI I, et al. Machine learning on Crays to optimize petrophysical workflows in oil and gas exploration[J]. Concurrency and Computation: Practice and Experience, 2020, 32(20): e5655.
|
[38] |
MUKHERJEE B, SAIN K. Prediction of reservoir parameters in gas hydrate sediments using artificial intelligence (AI): a case study in Krishna-Godavari Basin (NGHP Exp-02)[J]. Journal of Earth System Science, 2019, 128(7): 199.
|
[39] |
CHONG L, SINGH H, CREASON C G, et al. Application of machine learning to characterize gas hydrate reservoirs in Mackenzie Delta (Canada) and on the Alaska north slope (USA)[J]. Computational Geosciences, 2022, 26(5): 1151-1165.
|
[40] |
SINGH H, SEOL Y, MYSHAKIN E M. Prediction of gas hydrate saturation using machine learning and optimal set of well-logs[J]. Computational Geosciences, 2021, 25(1): 267-283.
|
[41] |
LI C, LIU X. Research on the estimate of gas hydrate saturation based on LSTM recurrent neural network[J]. Energies, 2020, 13(24): 6536.
|
[42] |
LEE J, BYUN J, KIM B, et al. Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 326-337.
|
[43] |
DUTKIEWICZ A, JUDGE A, MÜLLER R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean[J]. Geology, 2020, 48(3): 293-297.
|
[44] |
HARI V N, KALYAN B, CHITRE M, et al. Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 997-1014.
|
[45] |
JULIANI C, JULIANI E. Deep learning of terrain morphology and pattern discovery via network-based representational similarity analysis for deep-sea mineral exploration[J]. Ore Geology Reviews, 2021, 129: 103936.
|
[46] |
MIMURA K, NAKAMURA K, TAKAO K, et al. Automated detection of hydrothermal emission signatures from multi-beam echo sounder images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2703-2710.
|
[47] |
GAZIS I Z, GREINERT J. Importance of spatial autocorrelation in machine learning modeling of polymetallic nodules, model uncertainty and transferability at local scale[J]. Minerals, 2021, 11(11): 1172.
|
[48] |
SCHOENING T, KUHN T, NATTKEMPER T. Estimation of poly-metallic nodule coverage in benthic images[C]//Proceedings of the 41st conference of the Underwater Mining Institute (UMI). Shanghai: UMI, 2012: 15-20.
|
[49] |
邓君兰, 董澧辉, 宋伟, 等. 基于Sea-thru和Mask R-CNN的深海多金属结核图像处理[J]. 矿冶工程, 2022, 42(2): 9-13.
|
[50] |
PRABHAKARAN K, VARSHNEY N, RAMESH R, et al. Underwater image and video processing to detect polymetallic nodule abundance using haar-cascade and template matching feature[C]//Proceedings of OCEANS 2022-Chennai. Chennai: IEEE, 2022: 1-6.
|
[51] |
GAZIS I Z, SCHOENING T, ALEVIZOS E, et al. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning[J]. Biogeosciences, 2018, 15(23): 7347-7377.
|
[52] |
HU G, ZHAO H M, HAN F L, et al. Recognition of cobalt-rich crusts based on multi-classifier fusion in seafloor mining environments[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1205-1214.
|
[53] |
HONG F, HUANG M Y, FENG H H, et al. First demonstration of recognition of manganese crust by deep-learning networks with a parametric acoustic probe[J]. Minerals, 2022, 12(2): 249.
|
[54] |
NEETTIYATH U, SATO T, SANGEKAR M, et al. Identification of manganese crusts in 3D visual reconstructions to filter geo-registered acoustic sub-surface measurements[C]//Proceedings of OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1-6.
|
[55] |
NEETTIYATH U, THORNTON B, SANGEKAR M, et al. An AUV based method for estimating hectare-scale distributions of deep sea cobalt-rich manganese crust deposits[C]//Proceedings of OCEANS 2019-Marseille. Marseille: IEEE, 2019: 1-6.
|
[56] |
LIU L S, LU J L, TAO C H, et al. Fuzzy forest machine learning predictive model for mineral prospectivity: a case study on southwest Indian ridge 48. 7°E-50. 5°E[J]. Natural Resources Research, 2022, 31(1): 99-116.
|
[57] |
ZHANG X N, SONG S J, LI J B, et al. Robust LS-SVM regression for ore grade estimation in a seafloor hydrothermal sulphide deposit[J]. Acta Oceanologica Sinica, 2013, 32(8): 16-25.
|
[58] |
ZHANG X N, SONG S J, WU C. Robust Bayesian classification with incomplete data[J]. Cognitive Computation, 2013, 5(2): 170-187.
|