地学前缘 ›› 2022, Vol. 29 ›› Issue (5): 342-354.DOI: 10.13745/j.esf.sf.2021.9.53
孙炜毅1(), 刘健1,2,3,*(
), 严蜜1,3, 宁亮1,3
收稿日期:
2021-08-06
修回日期:
2021-09-21
出版日期:
2022-09-25
发布日期:
2022-08-24
通信作者:
刘健
作者简介:
孙炜毅(1991—),男,博士,讲师,主要从事古气候模拟研究工作。E-mail: 09435@njnu.edu.cn
基金资助:
SUN Weiyi1(), LIU Jian1,2,3,*(
), YAN Mi1,3, NING Liang1,3
Received:
2021-08-06
Revised:
2021-09-21
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Jian
摘要:
气候重建工作的深入开展极大地促进了全新世亚洲季风变化的研究,然而当前重建结果对亚洲季风的演变特征和机理存在很大争议,开展古气候模拟对理解全新世亚洲季风演变的时空特征和成因机制具有重要意义。为此,本文主要从气候模式模拟的角度回顾全新世亚洲季风百年-千年尺度变化的模拟研究工作,并将从外强迫和气候系统内部变率这两个角度对机制进行探讨。主要有以下进展:全新世瞬变模拟试验结果反映早全新世以来亚洲季风降水呈下降趋势,这主要受到地球轨道参数的影响,并通过改变海陆热力差异和半球间温度梯度来影响亚洲季风降水。在百年尺度弱季风事件上,模拟的8.2 ka BP时期的亚洲季风弱事件主要是由冰川融水触发,引起大西洋经向翻转环流AMOC减弱并通过大气遥相关导致季风降水减少;而4.2 ka BP时期模式模拟的亚洲弱季风事件主要是受内部变率所主导而并非外强迫因子影响。亚洲季风百年尺度变化的模拟研究主要集中在过去2 000年时段,中世纪气候异常期季风明显增强,而在小冰期逐渐减弱,太阳辐射和火山活动是影响其变化的主导因子,它们通过影响海陆热力差异、印—太海温变化来影响季风变化。
中图分类号:
孙炜毅, 刘健, 严蜜, 宁亮. 全新世亚洲季风百年-千年尺度变化的模拟研究进展[J]. 地学前缘, 2022, 29(5): 342-354.
SUN Weiyi, LIU Jian, YAN Mi, NING Liang. Centennial to millennial variability of the Asian monsoon during the Holocene: Progress in simulation studies[J]. Earth Science Frontiers, 2022, 29(5): 342-354.
图1 模拟的全新世以来亚洲季风区6—8月降水距平 a—Trace-21ka试验结果,依次为全强迫(AF,黑线)、地球轨道参数(ORB,蓝线)、温室气体(GHGs,红线)、冰盖(ICE,橘黄线)和淡水通量(MWF,黄线);b—NNU-12ka 10年加速试验结果,依次为地球轨道参数(黑线)以及分别叠加温室气体(蓝线)、太阳活动(TSI,红线)和土地利用/覆盖(LUCC,橘黄线)。Trace-21ka试验结果经过了10 a插值,NNU-12ka试验结果是10 a分辨率,之后对两套数据进行11点滑动平均处理。本图所模拟结果相对于整个时段平均。
Fig.1 The simulated June-August mean precipitation anomaly in Asian monsoon region during the Holocene
图3 中全新世地球轨道参数引起的北半球夏季太阳辐射变化对亚洲季风的影响机理示意图
Fig.3 Mechanism diagram of the impact of mid-Holocene Earth orbit parameters on the Asian monsoon through the variation of summer solar radiation in the Northern Hemisphere
[1] | 汪品先. 新生代亚洲形变与海陆相互作用[J]. 地球科学: 中国地质大学学报, 2005, 30(1): 1-18. |
[2] | 吴国雄. 亚洲季风区海-陆-气相互作用对我国气候变化的影响(全4卷)[M]. 北京: 气象出版社, 2005. |
[3] |
AN Z S, WU G X, LI J P, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 29-77.
DOI URL |
[4] |
WANG P X, WANG B, CHENG H, et al. The global monsoon across time scales: mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174: 84-121.
DOI URL |
[5] | 刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, 18(3): 194-204. |
[6] |
FU C B, AILIKUN, ZHANG R J, et al. Introducing a new international program: monsoon Asia integrated regional study (MAIRS)[J]. China Particuology, 2006, 4(6): 352-355.
DOI URL |
[7] | 丁一汇, 孙颖, 刘芸芸, 等. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 2013, 37(2): 253-280. |
[8] | 汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5): 535-556. |
[9] |
陈发虎, 董广辉, 陈建徽, 等. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
DOI |
[10] |
MAYEWSKI P A, ROHLING E E, STAGER J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3): 243-255.
DOI URL |
[11] | 郭正堂, PETIT-MAIRE N, 刘东生. 全新世期间亚洲和非洲干旱区环境的短尺度变化[J]. 古地理学报, 1999, 1(1): 68-74. |
[12] | 安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(6): 341-381. |
[13] | 鹿化煜, 郭正堂. 末次盛冰期以来气候变化和人类活动对我国沙漠和沙地环境的影响[J]. 中国基础科学, 2015, 17(2): 3-8. |
[14] | 肖举乐, 蔡演军, 强明瑞, 等. 全新世亚洲季风变异与干旱演变及其驱动机制[J]. 中国基础科学, 2017, 19(5): 12-17. |
[15] | 程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10): 1565-1589. |
[16] | 汪永进, 刘殿兵. 亚洲古季风变率和机制的洞穴石笋档案[J]. 科学通报, 2016, 61(9): 938-951. |
[17] |
CHEN F, XU Q, CHEN J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 11186.
DOI URL |
[18] |
CAI Y J, CHENG X, MA L, et al. Holocene variability of East Asian summer monsoon as viewed from the speleothem δ18O records in central China[J]. Earth and Planetary Science Letters, 2021, 558(6): 116758.
DOI URL |
[19] | 谭明. 环流效应: 中国季风区石笋氧同位素短尺度变化的气候意义: 古气候记录与现代气候研究的一次对话[J]. 第四纪研究, 2009, 29(5): 851-862. |
[20] |
WANG H J. Role of vegetation and soil in the Holocene megathermal climate over China[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D8): 9361-9367.
DOI URL |
[21] |
JIANG D B, LANG X M, TIAN Z P, et al. Mid-Holocene East Asian summer monsoon strengthening: insights from paleoclimate modeling intercomparison project (PMIP) simulations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 422-429.
DOI URL |
[22] | 任国玉, 姜大膀, 燕青. 古气候演化特征、驱动与反馈及对现代气候变化研究的启示意义[J]. 第四纪研究, 2021, 41(3): 824-841. |
[23] |
MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11 300 years[J]. Science, 2013, 339(6124): 1198-1201.
DOI URL |
[24] |
MARSICEK J, SHUMAN B N, BARTLEIN P J, et al. Reconciling divergent trends and millennial variations in Holocene temperatures[J]. Nature, 2018, 554: 92-96.
DOI URL |
[25] |
KAUFMAN D, MCKAY N, ROUTSON C, et al. A global database of Holocene paleotemperature records[J]. Scientific Data, 2020, 7: 115.
DOI URL |
[26] |
BOVA S, ROSENTHAL Y, LIU Z, et al. Seasonal origin of the thermal maxima at the Holocene and the last interglacial[J]. Nature, 2021, 589: 548-533.
DOI URL |
[27] |
JIANG D B, LANG X M, TIAN Z P, et al. Considerable model-data mismatch in temperature over China during the mid-Holocene: results of PMIP simulations[J]. Journal of. Climate, 2012, 25: 4135-4153.
DOI URL |
[28] |
TIMM O, TIMMERMANN A. Simulation of the last 21 000 years using accelerated transient boundary conditions[J]. Journal of Climate, 2007, 20(17): 4377-4401.
DOI URL |
[29] | HE F. Simulating transient climate evolution of the last deglaciation with CCSM3[D]. Madison: University of Wisconsin-Madison, 2010. |
[30] |
SMITH R S, GREGORY J. The last glacial cycle: transient simulations with an AOGCM[J]. Climate Dynamics, 2012, 38(7/8): 1545-1559.
DOI URL |
[31] | LIU Z, ZHU J, ROSENTHAL Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): E3501-E3505. |
[32] |
BADER J, JUNGCLAUS J, KRIVOVA N, et al. Global temperature modes shed light on the Holocene temperature conundrum[J]. Nature Communications, 2020, 11: 4726.
DOI URL |
[33] |
OTTO-BLIESNER B L, BRACONNOT P, HARRISON S P, et al. The PMIP4 contribution to CMIP6-Part 2: two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations[J]. Geoscientific Model Development, 2017, 10(11): 3979-4003.
DOI URL |
[34] |
JIANG D B, TIAN Z P, LANG X M. Mid-Holocene global monsoon area and precipitation from PMIP simulations[J]. Climate Dynamics, 2015, 44(9/10): 2493-2512.
DOI URL |
[35] |
JIANG D B, TIAN Z P, LANG X M. Mid-Holocene net precipitation changes over China: model-data comparison[J]. Quaternary Science Reviews, 2013, 82: 104-120.
DOI URL |
[36] |
BARTLEIN P J, HARRISON S P, BREWER S, et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis[J]. Climate Dynamics, 2011, 37(3/4): 775-802.
DOI URL |
[37] |
BRACONNOT P, HARRISON S P, KAGEYAMA M, et al. Evaluation of climate models using palaeoclimatic data[J]. Nature Climate Change, 2012, 2(6): 417-424.
DOI URL |
[38] |
BRIERLEY C M, ZHAO A N, HARRISON S P, et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations[J]. Climate of the Past, 2020, 16(5):1847-1872.
DOI URL |
[39] |
SUN Y B, KUTZBACH J, AN Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142.
DOI URL |
[40] | 李新周, 刘晓东. 早全新世与未来10 ka后东亚区域气候变化对比: 自然强迫和人类活动的影响[J]. 第四纪研究, 2020, 40(6): 1611-1621. |
[41] | 万凌峰, 刘健, 高超超, 等. 全新世火山喷发对温度变化趋势影响的模拟研究[J]. 第四纪研究, 2020, 40(6): 1597-1610. |
[42] |
LIU Z Y, WEN X Y, BRADY E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128.
DOI URL |
[43] |
WEN X, LIU Z, WANG S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoon during the last 21,000 years[J]. Nature Communications, 2016, 7: 11999.
DOI URL |
[44] |
CHENG J, MA W Y, LIU Z Y, et al. Varying sensitivity of East Asia summer monsoon circulation to temperature change since last glacial maximum[J]. Geophysical Research Letters, 2019, 46(15): 9103-9109.
DOI URL |
[45] |
SHI J, YAN Q. Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms[J]. Journal of Climate, 2019, 32(19): 6551-6569.
DOI URL |
[46] |
CHENG J, MA Y Y, WU H B, et al. Migration of Afro-Asian monsoon fringe since last glacial maximum[J]. Frontiers in Earth Science, 2020, 8:322.
DOI URL |
[47] |
WANG Y J, CHENG H, EDWARDS R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China[J]. Science, 2001, 294(5550): 2345-2348.
DOI URL |
[48] |
CAI Y J, TAN L C, CHENG H, et al. The variation of summer monsoon precipitation in central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 21-31.
DOI URL |
[49] |
DONG J G, SHEN C C, KONG X G, et al. Rapid retreat of the East Asian summer monsoon in the middle Holocene and a millennial weak monsoon interval at 9 ka in northern China[J]. Journal of Asian Earth Sciences, 2018, 151: 31-39.
DOI URL |
[50] | 陈建徽, 饶志国, 刘建宝, 等. 全新世东亚夏季风最强盛期出现在何时?兼论中国南方石笋氧同位素的古气候意义[J]. 中国科学: 地球科学, 2016, 46(11): 1494-1504. |
[51] |
LU H, YI S, LIU Z, et al. Variation of East Asian monsoon precipitation during the past 21 kyr and potential CO2 forcing[J]. Geology, 2013, 41(9): 1023-1026.
DOI URL |
[52] |
LI Q, WU H B, YU Y Y, et al. Reconstructed moisture evolution of the deserts in northern China since the Last Glacial Maximum and its implications for the East Asian summer monsoon[J]. Global and Planetary Change, 2014, 121: 101-112.
DOI URL |
[53] | 孙炜毅, 刘健, 万凌峰, 等. 全新世北半球中纬度降水变化对不同外强迫响应的模拟研究[J]. 第四纪研究, 2020, 40(6): 1588-1596. |
[54] |
MAN W M, ZHOU T J, JUNGCLAUS J H. Simulation of the East Asian summer monsoon during the last Millennium with the MPI earth system model[J]. Journal of Climate, 2012, 25(22): 7852-7866.
DOI URL |
[55] |
SUN W Y, LIU J, WANG Z Y. Simulation of centennial-scale drought events over eastern China during the past 1500 years[J]. Journal of Meteorological Research, 2017, 31(1): 17-27.
DOI URL |
[56] |
SHI J, YAN Q, WANG H J. Timescale dependence of the relationship between the East Asian summer monsoon strength and precipitation over eastern China in the last millennium[J]. Climate of the Past, 2018, 14(4): 577-591.
DOI URL |
[57] |
CHENG H, FLEITMANN D, EDWARDS R L, et al. Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil[J]. Geology, 2009, 37(11): 1007-1010.
DOI URL |
[58] | TAN L C, LI Y Z, WANG X Q, et al. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090273. |
[59] |
NING L, LIU J, BRADLEY R S, et al. Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations[J]. Climate of the Past, 2019, 15(1): 41-52.
DOI URL |
[60] |
MORRILL C, ANDERSON D M, BAUER B A, et al. Proxy benchmarks for intercomparison of 8.2 ka simulations[J]. Climate of the Past, 2013, 9(1): 423-432.
DOI URL |
[61] |
MATERO I S O, GREGOIRE L J, IVANOVIC R F, et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse[J]. Earth and Planetary Science Letters, 2017, 473: 205-214.
DOI URL |
[62] |
MATERO I S O, GREGOIRE L J, IVANOVIC R F. Simulating the early Holocene demise of the Laurentide Ice Sheet with BISICLES (public trunk revision 3298)[J]. Geoscientific Model Development, 2020, 13(9): 4555-4577.
DOI URL |
[63] |
YAN M, LIU J. Physical processes of cooling and mega-drought during the 4.2 ka BP event: results from TraCE-21ka simulations[J]. Climate of the Past, 2019, 15(1): 265-277.
DOI URL |
[64] |
KLUS A, PRANGE M, VARMA V, et al. Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation[J]. Climate of the Past, 2018, 14(8): 1165-1178.
DOI URL |
[65] | IPCC. Contribution of working group I to the Fifth assessment report of the intergovernmental panel on climate change[C]// Climate change 2013: the physical science basis. Cambridge: Cambridge University Press, 2013. |
[66] |
KUTZBACH J E. Monsoon climate of the early Holocene: climate experiment with the earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516): 59-61.
DOI URL |
[67] |
TIAN Z P, LI T, JIANG D B. Strengthening and westward shift of the tropical pacific walker circulation during the mid-Holocene: PMIP simulation results[J]. Journal of Climate, 2018, 31(6): 2283-2298.
DOI URL |
[68] |
WANG N, JIANG D B, LANG X M. Mechanisms for spatially inhomogeneous changes in east Asian summer monsoon precipitation during the mid-Holocene[J]. Journal of Climate, 2020, 33(8): 2945-2965.
DOI URL |
[69] |
ZHANG X J, JIN L Y. Association of the northern hemisphere circumglobal teleconnection with the Asian summer monsoon during the Holocene in a transient simulation[J]. The Holocene, 2016, 26(2): 290-301.
DOI URL |
[70] |
WU C H, LEE S Y, CHIANG J C H. Relative influence of precession and obliquity in the early Holocene: topographic modulation of subtropical seasonality during the Asian summer monsoon[J]. Quaternary Science Reviews, 2018, 191: 238-255.
DOI URL |
[71] |
PELTIER W R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and grace[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 111-149.
DOI URL |
[72] |
PELTIER W R, ARGUS D F, DRUMMOND R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(1):450-487.
DOI URL |
[73] |
ZHU J, LIU Z Y, ZHANG X, et al. Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM3[J]. Geophysical Research Letters, 2014, 41(17): 6252-6258.
DOI URL |
[74] |
LIU Z, LU Z, WEN X, et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature, 2014, 515: 550-553.
DOI URL |
[75] |
YAN Q, OWEN L A, ZHANG Z S, et al. Deciphering the evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan orogen during the past 20 000 years[J]. Earth and Planetary Science Letters, 2020, 541: 116295.
DOI URL |
[76] |
YAN Q, ZHANG Z S. Dominating roles of ice sheets and insolation in variation of tropical cyclone genesis potential over the north Atlantic during the last 21 000 years[J]. Geophysical Research Letters, 2017, 44(20): 10624-10632.
DOI URL |
[77] |
ULLMAN D J, CARLSON A E, HOSTETLER S W, et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change[J]. Quaternary Science Reviews, 2016, 152: 49-59.
DOI URL |
[78] |
LIU J, WANG B, CANE M A, et al. Divergent global precipitation changes induced by natural versus anthropogenic forcing[J]. Nature, 2013, 493(7434): 656-659.
DOI URL |
[79] |
LJUNGQVIST F C, ZHANG Q, BRATTSTRÖM G, et al. Centennial-scale temperature change in last millennium simulations and proxy-based reconstructions[J]. Journal of Climate, 2019, 32(9): 2441-2482.
DOI URL |
[80] |
JIN C H, LIU J, WANG B, et al. Decadal variations of the East Asian summer monsoon forced by the 11-year insolation cycle[J]. Journal of Climate, 2019, 32(10): 2735-2745.
DOI URL |
[81] |
SHI H, WANG B, LIU J, et al. Decadal-multidecadal variations of Asian summer rainfall from the little ice age to the present[J]. Journal of Climate, 2019, 32(22): 7663-7674.
DOI URL |
[82] | MILLER G H, GEIRSDÓTTIR Á, ZHONG Y F, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters, 2012, 39(2): l02708. |
[83] | 葛全胜, 华中, 郑景云, 等. 过去2000年全球典型暖期的形成机制及其影响[J]. 科学通报, 2015, 60(18): 1728-1735. |
[84] |
VIEIRA L E A, SOLANKI S K, KRIVOVA N A, et al. Evolution of the solar irradiance during the Holocene[J]. Astronomy and Astrophysics, 2011, 531: A6.
DOI URL |
[85] | 张志平, 黄伟, 陈建徽, 等. 全新世东亚夏季风演化的多尺度周期变化及其可能机制探讨[J]. 第四纪研究, 2017, 37(3): 498-509. |
[86] |
MING G, ZHOU W J, CHENG P, et al. Lacustrine record from the eastern Tibetan Plateau associated with Asian summer monsoon changes over the past - 6 ka and its links with solar and ENSO activity[J]. Climate Dynamics, 2020, 55(5/6): 1075-1086.
DOI URL |
[87] |
ZHANG W C, YAN H, DODSON J, et al. The 9.2 ka event in Asian summer monsoon area: the strongest millennial scale collapse of the monsoon during the Holocene[J]. Climate Dynamics, 2018, 50(7/8): 2767-2782.
DOI URL |
[88] | JOOS F, SPAHNI R. Rates of change in natural and anthropogenic radiative forcing over the past 20 000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1425-1430. |
[89] |
SCHMITT J, SCHNEIDER R, ELSIG J, et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6082): 711-714.
DOI URL |
[90] |
D'AGOSTINO R, BADER J, BORDONI S, et al. Northern hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming[J]. Geophysical Research Letters, 2019, 46(3): 1591-1601.
DOI URL |
[91] |
JIN C H, WANG B, LIU J. Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models[J]. Journal of Climate, 2020, 33(21): 9307-9326.
DOI URL |
[92] |
CHENG J, WU H, LIU Z, et al. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene[J]. Nature Communications, 2021, 12: 1843.
DOI URL |
[93] |
SUN W Y, WANG B, ZHANG Q, et al. Northern hemisphere land monsoon precipitation increased by the Green Sahara during middle Holocene[J]. Geophysical Research Letters, 2019, 46(16): 9870-9879.
DOI URL |
[94] |
GRIFFITHS M L, JOHNSON K R, PAUSATA F, et al. End of Green Sahara amplified mid- to late Holocene megadroughts in mainland southeast Asia[J]. Nature Communications, 2020, 11: 4204.
DOI URL |
[95] |
SUN W Y, WANG B, ZHANG Q, et al. Middle east climate response to the Saharan vegetation collapse during the mid-Holocene[J]. Journal of Climate, 2021, 34(1): 229-242.
DOI URL |
[96] |
BRACONNOT P, ZHU D, MARTI O, et al. Strengths and challenges for transient mid- to late Holocene simulations with dynamical vegetation[J]. Climate of the Past, 2019, 15(3): 997-1024.
DOI URL |
[97] |
LIU Y, ZHANG M, LIU Z, et al. A possible role of dust in resolving the Holocene temperature conundrum[J]. Scientific Reports, 2018, 8: 4434.
DOI URL |
[98] |
PAUSATA F S R, MESSORI G, ZHANG Q. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period[J]. Earth and Planetary Science Letters, 2016, 434: 298-307.
DOI URL |
[99] |
THOMPSON A J, SKINNER C B, POULSEN C J, et al. Modulation of mid-Holocene African rainfall by dust aerosol direct and indirect effects[J]. Geophysical Research Letters, 2019, 46(7): 3917-3926.
DOI URL |
[100] |
GǍINUŞǍ-BOGDAN A, SWINGEDOUW D, YIOU P, et al. AMOC and summer sea ice as key drivers of the spread in mid-Holocene winter temperature patterns over Europe in PMIP3 models[J]. Global and Planetary Change, 2020, 184: 103055.
DOI URL |
[101] |
ZHU J, LIU Z Y, ZHANG J X, et al. AMOC response to global warming: dependence on the background climate and response timescale[J]. Climate Dynamics, 2015, 44(11/12): 3449-3468.
DOI URL |
[102] |
MA X, LIU W, BURLS N, et al. Evolving AMOC multidecadal variability under different CO2 forcings[J]. Climate Dynamics, 2021, 57(1/2): 593-610.
DOI URL |
[103] |
ZHANG X, PRANGE M. Stability of the Atlantic overturning circulation under intermediate (MIS3) and full glacial (LGM) conditions and its relationship with Dansgaard-Oeschger climate variability[J]. Quaternary Science Reviews, 2020, 242:106443.
DOI URL |
[104] |
YAN X Q, ZHANG R, KNUTSON T R. Underestimated AMOC variability and implications for AMV and predictability in CMIP models[J]. Geophysical Research Letters, 2018, 45(9): 4319-4328.
DOI URL |
[105] |
DING Y H. The variability of the Asian summer monsoon[J]. Journal of the Meteorological Society of Japan Ser II, 2007, 85B:21-54.
DOI URL |
[106] |
CONROY J L, OVERPECK J T, COLE J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos Lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11/12):1166-1180.
DOI URL |
[107] |
BROWN J R, BRIERLEY C M, AN S I, et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models[J]. Climate of the Past, 2020, 16(5): 1777-1805.
DOI URL |
[108] |
PAUSATA F S R, ZHANG Q, MUSCHITIELLO F, et al. Greening of the Sahara suppressed ENSO activity during the mid-Holocene[J]. Nature Communications, 2017, 8: 16020.
DOI URL |
[109] |
DU X J, HENDY I, HINNOV L, et al. High-resolution interannual precipitation reconstruction of Southern California: implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters, 2021, 554: 116670.
DOI URL |
[110] |
EMILE-GEAY J, COBB K, CARRÉ M, et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene[J]. Nature Geoscience, 2016, 9: 168-173.
DOI URL |
[111] |
LIU H Y, GU Y S, HUANG X Y, et al. A 13,000-year peatland palaeohydrological response to the ENSO-related Asian monsoon precipitation changes in the middle Yangtze Valley[J]. Quaternary Science Reviews, 2019, 212: 80-91.
DOI URL |
[112] |
SHAO X H, WANG T, WANG Y, et al. ENSO-Like Pacing of the Asian Summer Monsoon during the early Holocene[J]. Journal of Meteorological Research, 2020, 34(2): 325-335.
DOI URL |
[113] |
TIERNEY J E, PAUSATA F S R, DEMENOCAL P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling[J]. Nature Geoscience, 2016, 9: 46-50.
DOI URL |
[114] |
AN Z S, CLEMENS S C, SHEN J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043):719-723.
DOI URL |
[115] |
DING X D, ZHENG L W, ZHENG X F, et al. Holocene East Asian summer monsoon rainfall variability in Taiwan[J]. Frontiers in Earth Science, 2020, 8:234.
DOI URL |
[116] |
TIAN Z P, JIANG D B. Mid-Holocene ocean and vegetation feedbacks over East Asia[J]. Climate of the Past, 2013, 9(5): 2153-2171.
DOI URL |
[117] | TIAN Z P, JIANG D B. Mid-Holocene ocean feedback on global monsoon area and precipitation[J]. Atmospheric and Oceanic Science Letters, 2015, 8(1): 29-32. |
[118] |
BIASUTTI M, VOIGT A, BOOS W R, et al. Global energetics and local physics as drivers of past, present and future monsoons[J]. Nature Geoscience, 2018, 11: 392-400.
DOI URL |
[119] | 周天军, 吴波, 郭准, 等. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、机遇和挑战[J]. 大气科学, 2018, 42(4): 902-934. |
[1] | 夏敦胜, 杨军怀, 王树源, 刘鑫, 陈梓炫, 赵来, 牛潇毅, 金明, 高福元, 凌智永, 王飞, 李再军, 王鑫, 贾佳, 杨胜利. 雅鲁藏布江流域风成沉积空间格局、沉积模式及其环境效应[J]. 地学前缘, 2023, 30(4): 229-244. |
[2] | 燕青. 亚洲高山区全新世中期气候及其影响下的冰川模拟[J]. 地学前缘, 2022, 29(5): 372-381. |
[3] | 田芝平, 张冉, 姜大膀. 全新世中期中国气候和东亚季风:PMIP4模式结果[J]. 地学前缘, 2022, 29(5): 355-371. |
[4] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[5] | 吴家望, 姚胜男, Amalia FILIPPIDI, 刘志飞, Gert J. DE LANGE. 全新世东地中海的陆源碎屑输入及其水文气候变化:海盆尺度地球化学分析[J]. 地学前缘, 2022, 29(4): 156-167. |
[6] | 郭永强, 葛永刚, 陈晓清, 刘维明, 毛沛妮, 刘涛. 高山峡谷区古洪水事件重建研究进展[J]. 地学前缘, 2021, 28(2): 168-180. |
[7] | 丁大林,李广雪,徐继尚,丁咚,李倩,王丽艳,王昊寅,张洋. 全新世亚洲季风演变[J]. 地学前缘, 2017, 24(4): 114-123. |
[8] | 公王斌, 胡健民, 李振宏, 吴素娟, 刘洋, 阎纪元. 河套盆地西缘山前低台地沉积特征对“吉兰泰—河套”古湖消退过程及其控制因素的指示意义[J]. 地学前缘, 2013, 20(4): 190-198. |
[9] | 朱诚, 马春梅, 李兰, 孙智彬, 郑朝贵, 白九江, 朱光耀, 黄润. 长江三峡库区全新世环境考古研究进展[J]. 地学前缘, 2010, 17(3): 222-232. |
[10] | 陈军明 赵平 王成善 黄永建. 晚白垩世(80 Ma)东亚气候的数值模拟[J]. 地学前缘, 2009, 16(6): 226-239. |
[11] | 李世杰 Bernd Wünnemann 夏威岚 于守兵 沈德福 姜永见. 青藏高原兹格塘错沉积记录的全新世水位变化事件及其原因初步研究[J]. 地学前缘, 2009, 16(6): 162-167. |
[12] | 余克服 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6): 138-145. |
[13] | 史辰羲 莫多闻 毛龙江 刘辉. 京山屈家岭地区全新世中晚期环境变化及其对人类活动的影响[J]. 地学前缘, 2009, 16(6): 120-128. |
[14] | 陈发虎 陈建徽 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6): 23-32. |
[15] | 刘再华 孙海龙 张金流. 山西娘子关泉钙华记录的MIS12/11以来的气候和植被历史[J]. 地学前缘, 2009, 16(5): 99-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||