地学前缘 ›› 2021, Vol. 28 ›› Issue (2): 412-425.DOI: 10.13745/j.esf.sf.2020.6.37
任江波(), 邓义楠, 赖佩欣, 何高文(
), 王汾连, 姚会强, 邓希光, 刘永刚
收稿日期:
2019-04-15
修回日期:
2019-09-18
出版日期:
2021-03-25
发布日期:
2021-04-03
通信作者:
何高文
作者简介:
任江波(1985—),男,硕士,高级工程师,主要从事地球化学和大洋矿产研究。E-mail: dourjb222@163.com
基金资助:
REN Jiangbo(), DENG Yinan, LAI Peixin, HE Gaowen(
), WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang
Received:
2019-04-15
Revised:
2019-09-18
Online:
2021-03-25
Published:
2021-04-03
Contact:
HE Gaowen
摘要:
东太结核主要为半埋藏和埋藏型,发育于以黏土和硅质组分为主的沉积环境。东太结核的锰相矿物主要有水羟锰矿和钡镁锰矿,具有较高的REY、Cu、Ni含量和Mn/Fe比值,显示遭受间隙水的影响,落入水成成因和成岩成因两个区间范围。西太结核主体暴露在海水中,周围沉积物主要由深海黏土组成。西太结核的锰相矿物几乎只有水羟锰矿,具有较高的REY、Co含量和低Mn/Fe比值,属于典型的水成成因型。两个区域的多金属结核的稀土北美页岩标准化模式均显示Ce正异常、Y负异常和无或弱Eu异常,与海水稀土特征构成良好的耦合关系,是多金属结核对海水稀土选择性富集的结果。西太结核相对东太结核具有更高的Ce含量和δCe,Co、Ti与Ce具有良好的正相关关系。研究认为海水中溶解氧并不一定是控制结核Ce正异常程度的关键因素,Co、Ti等元素及其相关组分能够引起Ce与其他稀土元素的强烈分馏,也可能是影响多金属结核Ce正异常程度的控制因素。研究区多金属结核和富钴结壳表层样的εNd范围为-6.6~-2.5,是全球最富放射性成因Nd的海洋铁锰壳层。结合稀土模式以及Eu异常特征,本研究认为多金属结核的稀土主要来自εNd相对较高的周围陆壳,可以通过河流或者大气沉降等方式输送到大洋,而研究区广泛分布的海山玄武岩释放的放射性成因Nd同位素对海水的影响微弱。
中图分类号:
任江波, 邓义楠, 赖佩欣, 何高文, 王汾连, 姚会强, 邓希光, 刘永刚. 太平洋调查区多金属结核的地球化学特征和成因[J]. 地学前缘, 2021, 28(2): 412-425.
REN Jiangbo, DENG Yinan, LAI Peixin, HE Gaowen, WANG Fenlian, YAO Huiqiang, DENG Xiguang, LIU Yonggang. Geochemical characteristics and genesis of the polymetallic nodules in the Pacific survey area[J]. Earth Science Frontiers, 2021, 28(2): 412-425.
图1 太平洋及研究区多金属结核和富钴结壳的站位位置(据文献[5, 8-9, 15-25])
Fig.1 Locations of survey stations for polymetallic nodules and Co-rich crusts in the two study areas and the greater Pacific Ocean. Adapted from [5, 8-9, 15-25].
图2 东、西太平洋多金属结核的岩矿学特征 a—东太结核照片;b—东太结核镜下结构和矿物组分;c—东太结核XRD分析结果;d—西太结核照片;e—西太结核镜下结构和矿物组分;f—西太结核XRD分析结果。
Fig.2 Petrology and mineralogy characteristics of the polymetallic nodules in the East and West Pacific Basins
样品 | 组分含量/% | ||||||
---|---|---|---|---|---|---|---|
δ-MnO2 | 钡镁锰矿 | 水钠锰矿 | 石英 | 斜长石 | 正长石 | 钙十字沸石 | |
东太结核均值 | 52.1 | 27.0 | 0.6 | 3.1 | 4.9 | 12.4 | |
WBC1404-2 | 49.3 | 27.2 | 2.7 | 2.9 | 17.9 | ||
WBC1419 | 41.2 | 35.6 | 1.1 | 3.5 | 16.4 | 2.3 | |
WBC1423 | 61.4 | 24.4 | 0.8 | 2.5 | 3.5 | 7.4 | |
PRZ1304-BC16 | 30.9 | 16.8 | 5.5 | 2.3 | 44.5 | ||
西太结核均值 | 59.0 | 8.3 | 9.4 | 6.5 | 1.1 | 12.0 | |
MABC09 | 81.2 | 5.8 | 8.9 | 4.1 | |||
MABC17 | 79.8 | 5.5 | 12.1 | 2.6 | |||
MABD01 | 38.5 | 33.2 | 7.3 | 8.7 | 12.3 | ||
NBMC01 | 45.3 | 15.5 | 14.8 | 20.9 | 3.5 |
表1 多金属结核XRD衍射结果
Table 1 XRD diffraction results for the polymetallic nodules
样品 | 组分含量/% | ||||||
---|---|---|---|---|---|---|---|
δ-MnO2 | 钡镁锰矿 | 水钠锰矿 | 石英 | 斜长石 | 正长石 | 钙十字沸石 | |
东太结核均值 | 52.1 | 27.0 | 0.6 | 3.1 | 4.9 | 12.4 | |
WBC1404-2 | 49.3 | 27.2 | 2.7 | 2.9 | 17.9 | ||
WBC1419 | 41.2 | 35.6 | 1.1 | 3.5 | 16.4 | 2.3 | |
WBC1423 | 61.4 | 24.4 | 0.8 | 2.5 | 3.5 | 7.4 | |
PRZ1304-BC16 | 30.9 | 16.8 | 5.5 | 2.3 | 44.5 | ||
西太结核均值 | 59.0 | 8.3 | 9.4 | 6.5 | 1.1 | 12.0 | |
MABC09 | 81.2 | 5.8 | 8.9 | 4.1 | |||
MABC17 | 79.8 | 5.5 | 12.1 | 2.6 | |||
MABD01 | 38.5 | 33.2 | 7.3 | 8.7 | 12.3 | ||
NBMC01 | 45.3 | 15.5 | 14.8 | 20.9 | 3.5 |
样品 | 参数值 类型 | wB/% | wB/10-6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | P2O5 | CaO | TiO2 | Mn | Fe | Co | Ni | Cu | Ce | ∑REY | δCe | Y/Ho | |||
东太 结核 | 最小值 | 3.30 | 12.68 | 0.30 | 2.08 | 0.49 | 16.78 | 4.41 | 0.16 | 0.32 | 0.20 | 217 | 587 | 0.96 | 14.1 | |
平均值 | 5.41 | 15.48 | 0.56 | 2.62 | 1.27 | 25.00 | 10.30 | 0.29 | 1.07 | 0.79 | 588 | 1 164 | 1.55 | 17.3 | ||
最大值 | 6.96 | 19.47 | 1.00 | 3.46 | 2.42 | 32.57 | 19.09 | 0.49 | 1.51 | 1.61 | 1 368 | 2 050 | 3.17 | 21.5 | ||
西太 结核 | 最小值 | 3.99 | 15.23 | 0.56 | 2.03 | 1.37 | 15.02 | 11.80 | 0.31 | 0.25 | 0.18 | 626 | 1 016 | 2.28 | 16.6 | |
平均值 | 6.23 | 18.48 | 0.71 | 2.60 | 2.13 | 18.01 | 17.01 | 0.45 | 0.42 | 0.26 | 1 140 | 1 751 | 2.88 | 18.6 | ||
最大值 | 9.41 | 29.02 | 1.50 | 3.52 | 2.67 | 23.2 | 21.05 | 0.55 | 0.79 | 0.59 | 1 556 | 2 393 | 3.44 | 20.9 | ||
西太 结壳 | 最小值 | 0.73 | 1.94 | 0.96 | 3.10 | 1.28 | 17.22 | 9.41 | 0.23 | 0.22 | 0.05 | 829 | 1 583 | 1.31 | 18.4 | |
平均值 | 1.92 | 7.87 | 5.85 | 11.06 | 1.62 | 23.11 | 12.89 | 0.47 | 0.46 | 0.12 | 1 297 | 2 392 | 2.37 | 29.4 | ||
最大值 | 4.81 | 15.27 | 14.34 | 23.92 | 2.2 | 27.72 | 16.95 | 0.72 | 0.64 | 0.30 | 2 001 | 3 141 | 3.21 | 52.6 |
表2 多金属结核和富钴结壳主要化学元素特征对比
Table 2 Comparison of the main geochemical characteristics of the polymetallic nodules and Co-rich crust
样品 | 参数值 类型 | wB/% | wB/10-6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | P2O5 | CaO | TiO2 | Mn | Fe | Co | Ni | Cu | Ce | ∑REY | δCe | Y/Ho | |||
东太 结核 | 最小值 | 3.30 | 12.68 | 0.30 | 2.08 | 0.49 | 16.78 | 4.41 | 0.16 | 0.32 | 0.20 | 217 | 587 | 0.96 | 14.1 | |
平均值 | 5.41 | 15.48 | 0.56 | 2.62 | 1.27 | 25.00 | 10.30 | 0.29 | 1.07 | 0.79 | 588 | 1 164 | 1.55 | 17.3 | ||
最大值 | 6.96 | 19.47 | 1.00 | 3.46 | 2.42 | 32.57 | 19.09 | 0.49 | 1.51 | 1.61 | 1 368 | 2 050 | 3.17 | 21.5 | ||
西太 结核 | 最小值 | 3.99 | 15.23 | 0.56 | 2.03 | 1.37 | 15.02 | 11.80 | 0.31 | 0.25 | 0.18 | 626 | 1 016 | 2.28 | 16.6 | |
平均值 | 6.23 | 18.48 | 0.71 | 2.60 | 2.13 | 18.01 | 17.01 | 0.45 | 0.42 | 0.26 | 1 140 | 1 751 | 2.88 | 18.6 | ||
最大值 | 9.41 | 29.02 | 1.50 | 3.52 | 2.67 | 23.2 | 21.05 | 0.55 | 0.79 | 0.59 | 1 556 | 2 393 | 3.44 | 20.9 | ||
西太 结壳 | 最小值 | 0.73 | 1.94 | 0.96 | 3.10 | 1.28 | 17.22 | 9.41 | 0.23 | 0.22 | 0.05 | 829 | 1 583 | 1.31 | 18.4 | |
平均值 | 1.92 | 7.87 | 5.85 | 11.06 | 1.62 | 23.11 | 12.89 | 0.47 | 0.46 | 0.12 | 1 297 | 2 392 | 2.37 | 29.4 | ||
最大值 | 4.81 | 15.27 | 14.34 | 23.92 | 2.2 | 27.72 | 16.95 | 0.72 | 0.64 | 0.30 | 2 001 | 3 141 | 3.21 | 52.6 |
图3 多金属结核Mn、Fe、Mn/Fe及其他元素间的相关关系(西太结壳数据来自[28],后文图表数据来源同图1)
Fig.3 Correlation among Mn, Fe, Mn/Fe and other elements in the polymetallic nodules (West Pacific crust data adapted from [28])
图6 东太结核(a)和西太结核(b)稀土元素北美页岩标准化图(北美页岩数据据文献[30],洋中脊玄武岩和C1型球粒陨石数据据[31],上陆壳数据据文献[32],海水数据据文献[33])
Fig.6 NASC-normalized REY patterns for the polymetallic nodules in the East (a) and West (b) Pacific Basins. Adapted from [30-33].
图7 多金属结核的稀土特征成因判别图(据文献[4]修改)
Fig.7 Discrimination diagrams for the characteristics and genesis of rare earth elements in the polymetallic nodules. Modified after [4].
[1] |
HEIN J R, SCHWAB W C, DAVIS A. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands[J]. Marine Geology, 1988,78(3/4):255-283.
DOI URL |
[2] |
HALBACH P, HEBISCH U, SCHERHAG C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific-Ocean and their genetic-control[J]. Chemical Geology, 1981,34(1/2):3-17.
DOI URL |
[3] |
CHEN J C, OWEN R M. The hydrothermal component in ferromanganese nodules from the Southeast Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1989,53(6):1299-1305.
DOI URL |
[4] |
BAU M, SCHMIDT K, KOSCHINSKY A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014,381:1-9.
DOI URL |
[5] | 韩杰, 武光海, 叶瑛, 等. 铁锰结壳中底层洋流活动的地球化学研究[J]. 矿床地质, 2006,25(5):620-628. |
[6] | 薛婷, 孙晓明, 张美, 等. 西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICP-MS测定[J]. 岩石学报, 2008,24(10):2423-2432. |
[7] |
KUHN T, BAU M, BLUM N, et al. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge[J]. Earth and Planetary Science Letters, 1998,163(1):207-220.
DOI URL |
[8] | 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群富钴结壳铈富集的控制因素[J]. 中国稀土学报, 2010,28(4):489-494. |
[9] | 陈天宇, 凌洪飞, 胡镕. 中北太平洋深海Nd同位素的分布与传输途径[J]. 科学通报, 2011,56(19):1546-1553. |
[10] |
HORIKAWA K, MARTIN E E, ASAHARA Y, et al. Limits on conservative behavior of Nd isotopes in seawater assessed from analysis of fish teeth from Pacific core tops[J]. Earth and Planetary Science Letters, 2011,310(1/2):119-130.
DOI URL |
[11] | 张富元, 章伟艳, 朱克超, 等. 太平洋海山钴结壳资源量估算[J]. 地球科学: 中国地质大学学报, 2011,36(1):1-11. |
[12] | 石学法, 任向文, 刘季花. 太平洋海山成矿系统与成矿作用过程[J]. 地学前缘, 2009,16(6):55-65. |
[13] |
KOPPERS A A P, STAUDIGEL H. Asynchronous bends in Pacific seamount trails: a case for extensional volcanism?[J]. Science, 2005,307(5711):904-907.
DOI URL |
[14] | KOPPERS A A P, STAUDIGEL H, PRINGLE M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism?[J]. Geochemistry, Geophysics, Geosystems, 2003,4(10):1-49. |
[15] | MÜLLER R D, SDROLIAS M, GAINA C, et al. Age, spreading rates, and spreading asymmetry of the world’s ocean crust[J]. Geochemistry, Geophysics, Geosystems, 2008,9(4):1-42. |
[16] |
HEIN J R, CONRAD T, FRANK M, et al. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific[J]. Geochemistry, Geophysics, Geosystems, 2012,13(10):1-23.
DOI URL |
[17] |
TAKAHASHI Y, MANCEAU A, GEOFFROY N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides[J]. Geochimica et Cosmochimica Acta, 2007,71(4):984-1008.
DOI URL |
[18] | 符亚洲, 彭建堂, 屈文俊, 等. 中太平洋富钴结壳剖面的锇同位素组成[J]. 科学通报, 2005,50(15):1654-1659. |
[19] | 胡镕, 陈天宇, 凌洪飞. 晚新生代北太平洋西部深水洋流演化: 来自铁锰结壳Nd同位素的证据[J]. 科学通报, 2012,57(28/29):2755-2764. |
[20] | 刘季花, 石学法, 黄永样, 等. 东太平洋铁锰结核的Sr-Nd同位素体系及其对成矿环境的指示意义[J]. 海洋地质与第四纪地质, 2003,23(1):41-48. |
[21] | 武光海, 周怀阳, 张海生, 等. 海山铁锰结壳中反映环境氧化程度的新指标[J]. 中国科学: D辑, 2007,36(12):1098-1110. |
[22] |
APLIN A, MICHARD A, ALBAREDE F. 143Nd/144Nd in Pacific ferromanganese encrustations and nodules[J]. Earth and Planetary Science Letters, 1986,81(1):7-14.
DOI URL |
[23] |
LING H F, BURTON K W, ONIONS R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts[J]. Earth and Planetary Science Letters, 1997,146(1/2):1-12.
DOI URL |
[24] |
ALBAREDE F, SIMONETTI A, VERVOORT J D, et al. A Hf-Nd isotopic correlation in ferromanganese nodules[J]. Geophysical Research Letters, 1998,25(20):3895-3898.
DOI URL |
[25] |
GOLDSTEIN S L, ONIONS R K. Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits[J]. Nature, 1981,292(5821):324-327.
DOI URL |
[26] | 马维林, 杨克红, 包更生, 等. 中太平洋海山富钴结壳成矿的空间分布规律研究[J]. 海洋学报, 2014,36(7):77-89. |
[27] | 王海峰, 刘永刚, 朱克超. 中太平洋海盆多金属结核分布及其与CC区中国多金属结核开辟区多金属结核特征对比[J]. 海洋地质与第四纪地质, 2015,35(2):73-79. |
[28] | 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016,41(10):1745-1757. |
[29] | 潘家华, 刘淑琴, 罗照华, 等. 太平洋海山磷酸盐的产状、特征及成因意义[J]. 矿床地质, 2007,26(2):195-199. |
[30] |
GROMET L P, DYMER R F, HASKIN L A, et al. The “North American shale composition”: its complication, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984,48:2469-2482.
DOI URL |
[31] |
SUN S S, MCDONOUGH W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989,42(1):313-345.
DOI URL |
[32] | RUDNICK R L, GAO S. Composition of the continental crust[M]. Oxford: Elsevier-Pergamon, 2003: 1-64. |
[33] | 任江波, 邓希光, 邓义楠, 等. 中国富钴结壳合同区海水的稀土特征及其意义[J]. 地球科学, 2018,44(10):3529. |
[34] |
DUBININ A V, RIMSKAYA-KORSAKOVA M. Geochemistry of rare earth elements in bottom sediments of the Brazil Basin, Atlantic Ocean[J]. Lithology and Mineral Resources, 2011,46(1):1-16.
DOI URL |
[35] |
POPPE L J, COMMEAU R F, COMMEAU J A, et al. Ferromanganese micronodules from the surficial sediments of Georges Bank[J]. Journal of Marine Research, 1984,42(2):463-472.
DOI URL |
[36] | 任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征及机制[J]. 地学前缘, 2015,22(2):200-211. |
[37] |
BAU M, KOSCHINSKY A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009,43(1):37-47.
DOI URL |
[38] |
JIANG X J, LIN X H, YAO D, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China: Earth Sciences, 2011,54(2):197-203.
DOI URL |
[39] |
KOSCHINSKY A, HEIN J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation[J]. Marine Geology, 2003,198(3/4):331-351.
DOI URL |
[40] | 白志民, 王英滨, 姜波, 等. 太平洋富钴结壳中稀土元素的赋存状态[J]. 地学前缘, 2004,11(2):387-392. |
[41] |
ADDY S K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic[J]. Geochimica et Cosmochimica Acta, 1979,43(7):1105-1115.
DOI URL |
[42] |
PIPER D Z. Rare earth elements in ferromanganese nodules and other marine phases[J]. Geochimica et Cosmochimica Acta, 1974,38(7):1007-1022.
DOI URL |
[43] |
HALBACH P, SEGL M, PUTEANUS D, et al. Co-fluxes and growth-rates in ferromanganese deposits from Central Pacific Seamount Areas[J]. Nature, 1983,304(5928):716-719.
DOI URL |
[44] |
MANHEIM F T, LANEBOSTWICK C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea-floor[J]. Nature, 1988,335(6185):59-62.
DOI URL |
[45] |
PUTEANUS D, HALBACH P. Correlation of Co concentration and growth-rate: a method for age-determination of ferromanganese crusts[J]. Chemical Geology, 1988,69(1/2):73-85.
DOI URL |
[46] |
MOFFETT J W. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay[J]. Geochimica et Cosmochimica Acta, 1994,58(2):695-703.
DOI URL |
[47] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999,63(3/4):363-372.
DOI URL |
[48] |
DENG Y, REN J, GUO Q, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific[J]. Scientific Reports, 2017,7(1):16539.
DOI URL |
[49] |
ZHANG J, NOZAKI Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996,60(23):4631-4644.
DOI URL |
[50] | 任江波, 何高文, 姚会强, 等. 磷酸盐化对富钴结壳稀土元素的影响[J]. 海洋地质与第四纪地质, 2017,37(2):33-43. |
[51] | 任江波, 何高文, 朱克超, 等. 富稀土磷酸盐及其在深海成矿作用中的贡献[J]. 地质学报, 2017,91(6):1312-1325. |
[52] | 岑况, 陈媛. 大陆地壳中元素地球化学分异指数排序模式[J]. 地学前缘, 2011,18(1):52-62. |
[53] |
ALBAREDE F, GOLDSTEIN S L. World map of Nd isotopes in sea-floor ferromanganese Deposits[J]. Geology, 1992,20(8):761-763.
DOI URL |
[54] |
ZIMMERMANN B, PORCELLI D, FRANK M, et al. The hafnium isotope composition of Pacific Ocean water[J]. Geochimca et Cosmochimica Acta, 2009,73(1):91-101.
DOI URL |
[55] |
RAY J S, MAHONEY J J, DUNCAN R A, et al. Chronology and geochemistry of lavas from the Nazca Ridge and Easter Seamount Chain: an ~30 Myr hotspot record[J]. Journal of Petrology, 2012,53(7):1417-1448.
DOI URL |
[56] |
TEJADA M L G, GELDMACHER J, HAUFF F, et al. Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: implications for a connection between the Shatsky and Hess Rises[J]. Geochimica et Cosmochimica Acta, 2016,185:302-327.
DOI URL |
[57] | 任江波, 王嘹亮, 鄢全树, 等. 南海玳瑁海山玄武质火山角砾岩的地球化学特征及其意义[J]. 地球科学: 中国地质大学学报, 2013,38(增刊1):10-20. |
[58] | 王中良, 刘丛强, 徐志方, 等. 河流稀土元素地球化学研究进展[J]. 地球科学进展, 2000,15(5):553-558. |
[59] |
BANNER J L. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004,65(3/4):141-194.
DOI URL |
[60] | 赵葵东, 蒋少涌, 郑新源, 等. 海洋Nd同位素演化及古洋流循环示踪研究[J]. 地学前缘, 2009,16(5):160-171. |
[1] | 董姝, 刘海燕, 张一帆, 王振, 郭华明, 孙占学, 周仲魁. 相山铀矿尾矿区植物—根际土壤稀土元素和铀、钍生物富集特征[J]. 地学前缘, 2024, 31(6): 474-489. |
[2] | 刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧. 机器学习:海底矿产资源智能勘探的新途径[J]. 地学前缘, 2024, 31(3): 520-529. |
[3] | 王振, 郭华明, 刘海燕, 邢世平. 贵德盆地高氟地下水稀土元素特征及其指示意义[J]. 地学前缘, 2023, 30(3): 505-514. |
[4] | 罗欢, 邵德勇, 孟康, 张瑜, 宋辉, 闫建萍, 张同伟. 鄂西宜昌地区寒武系页岩过剩钡成因及其对有机质富集的指示[J]. 地学前缘, 2023, 30(3): 66-82. |
[5] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[6] | 梁晓亮, 谭伟, 马灵涯, 朱建喜, 何宏平. 离子吸附型稀土矿床形成的矿物表/界面反应机制[J]. 地学前缘, 2022, 29(1): 29-41. |
[7] | 易泽邦, 付伟, 赵芹, 许成, 陆济璞. 花岗岩风化壳中稀土纳米微粒的提取、表征及赋存状态研究[J]. 地学前缘, 2022, 29(1): 42-53. |
[8] | 姚会强, 刘永刚, 张伙带, 梁东红, 任江波, 于淼, 邓希光, 何高文. 维嘉平顶海山富钴铁锰结壳空间分布特征:基于“蛟龙号”载人潜水器近海底观测资料的分析[J]. 地学前缘, 2021, 28(6): 331-342. |
[9] | 王旭影, 姜在兴. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析[J]. 地学前缘, 2021, 28(2): 376-390. |
[10] | 洪瑾,甘成势,刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54. |
[11] | 柳青青,迟清华,王学求,周建,刘汉粮,刘东盛,高艳芳,翟大兴. 中国东部大陆尺度地球化学走廊带碳酸盐岩稀土元素分布特征与影响因素[J]. 地学前缘, 2018, 25(4): 99-115. |
[12] | 于扬,李德先,王登红,黄凡,刘秀丽,田兆雪,邓茂春. 溶解态稀土元素在离子吸附型稀土矿区周边地表水中的分布特征及影响因素[J]. 地学前缘, 2017, 24(5): 172-181. |
[13] | 任宏,欧阳荷根. 内蒙古拜仁达坝银多金属矿床二氧化碳不混溶成矿作用研究[J]. 地学前缘, 2017, 24(2): 151-158. |
[14] | 任向文,I.PULYAEVA,吕华华,石学法,曹德凯. 麦哲伦海山群MK海山富钴结壳钙质超微化石生物地层学研究[J]. 地学前缘, 2017, 24(1): 276-296. |
[15] | 崔晓南,黄文辉,敖卫华,周鸿璞,梁飞. 渭北煤田下峪口矿二叠纪煤中稀土元素地球化学研究[J]. 地学前缘, 2016, 23(3): 90-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||