地学前缘 ›› 2021, Vol. 28 ›› Issue (2): 19-34.DOI: 10.13745/j.esf.sf.2020.9.14
收稿日期:
2020-08-20
修回日期:
2020-08-31
出版日期:
2021-03-25
发布日期:
2021-04-03
通信作者:
崔鹏
作者简介:
白世彪(1974—),男,博士,教授,主要从事滑坡等山地灾害的相关研究。E-mail: shibiaobai@njnu.edu.cn
基金资助:
BAI Shibiao1,2(), CUI Peng2,*(
), GE Yonggang2, WANG Hao3
Received:
2020-08-20
Revised:
2020-08-31
Online:
2021-03-25
Published:
2021-04-03
Contact:
CUI Peng
摘要:
明确滑坡每次活动准确的年代对于揭示一个地区滑坡在时间上的活动规律,进而评价该地区的滑坡灾害风险至关重要。本文对宇宙成因核素(TCN)、光释光(OSL)和14C等古滑坡测年方法研究的现状和成果进行了总结,简要介绍了不同的古滑坡测年方法,重点阐释了滑坡体、次生沉积物、滑动面、滑坡塘、滑坡后壁、滑床以及滑坡伴生堰塞湖等不同的地貌部位和测年介质以及选择不同古滑坡测年方法的局限性与使用条件,并根据目前古滑坡测年存在的问题和难点,探讨了提高古滑坡定年精度的途径。
中图分类号:
白世彪, 崔鹏, 葛永刚, 王昊. 古滑坡测年方法与定年精度的提高途径[J]. 地学前缘, 2021, 28(2): 19-34.
BAI Shibiao, CUI Peng, GE Yonggang, WANG Hao. Geochronological analysis of fossil landslides and improvement of dating accuracy[J]. Earth Science Frontiers, 2021, 28(2): 19-34.
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
亚洲(喜马 拉雅山脉) | Yaral Pangbache TsergoRi | 10Be 10Be 10Be | 8.7±0.1 10.1±1.0 38.9±3.8 | 淡色花岗岩 淡色花岗岩 淡色花岗岩 | 砾石 砾石 砾石 | 0.97~0.98 0.98 0.92~0.96 | [55] | |||||
Rangatoli Dear | 10Be 10Be 26Al | 4.9±2.5 10.8±0.5 | 变质片岩、片麻 岩、石英岩 变质片岩、片麻 岩、石英岩 | 砾石 砾石 | 0.985~0.995 0.987~0.997 | [54] | ||||||
Milan | 10Be | 7.8±1.7 | 片岩 | 砾石 | 0.96~0.98 | [57] | ||||||
Darcha Patseo Kelang Serai Chilam | 10Be 10Be 10Be 10Be | 7.6±1.3 8.7±0.4 7.2±0.4 9.6±0.4 | 砂岩 千枚岩 砾岩和石英岩 火山岩 | 砾石 砾石 砾石 砾石 | 0.95~0.97 0.98~0.99 0.98~1 0.98 | [20] | ||||||
Satpara-Skardu GolGhone Katzarah DhakChauki Upper Henzul Baltit-Sumayar | 10Be 10Be 10Be 10Be 10Be 10Be | 3.6±0.1 3.6±0.1 6.8±0.1 5.5±0.1 7.2±0.2 3.8±0.2 | 花岗岩 花岗岩 花岗岩 石英脉 花岗闪长岩 花岗闪长岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | 1 1 1 1 1 1 | [56] | ||||||
Taheman Muztagh Bulunkou Yimake | 10Be 10Be 10Be 10Be | 6.8±0.2 14.3±0.8 2.0±0.1 7.1±0.6 | 片麻岩 片麻岩 片麻岩 片岩、石灰岩 | 砾石 砾石 砾石 砾石 | 1 1 0.952 4~0.967 8 1 | [22] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
亚洲(喜马 拉雅山脉) | Keylong Serai | 10Be | 7.51±0.1 | 石英脉 | 砾石 | [53] | ||||||
Yadong | 10Be 10Be 10Be 10Be 10Be 10Be | 14.2±1.3 13.3±1.3 13.1±1.3 13.9±1.3 13.1±1.2 12.0±1.1 | 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 | 砾石 砾石 砾石 砾石 砾石 卵石 | 0.974 1 0.974 1 0.974 1 0.992 7 0.991 9 0.991 9 | [58] | ||||||
亚洲 (天山) | Ukok | 10Be | 0.4±0.16 | 花岗岩 | 砾石 | 0.916~0.985 | [66] | |||||
Aksu | 10Be | 66±6.1 | 花岗岩 | 砾石 | 0.914~0.993 | |||||||
Alamyedin | 10Be | 12.8±1.4 | 花岗岩 | 砾石 | 0.933~0.496 | |||||||
Tianchi | 10Be | 13.6±1.4 | 安山岩、凝灰岩 | 砾石 | 0.98 | [65] | ||||||
亚洲 (中国香港) | Ap Lei Chau | 10Be、26Al | 11.0±1.3 | 凝灰岩 | 后壁、砾石 | 0.879~0.968 | [67] | |||||
Sunset Peak West | 10Be、26Al | 8.2±0.9 | 凝灰岩 | 后壁 | 0.851~0.987 | |||||||
Sham Wat | 10Be、26Al | 32.3±5.4 | 流纹岩 | 后壁、砾石 | 0.894~0.986 | |||||||
Tsing Yi | 10Be、26Al | 47.0±1.6 | 花岗岩 | 后壁、砾石 | 0.786~0.860 | |||||||
亚洲 (蒙古) | Jargalant | 10Be | 44.5±3.9 | 石英岩 | 后壁 | 0.995 | [62] | |||||
10Be | 193.5±17.5 | 石英岩 | 后壁 | 0.995 | ||||||||
亚洲 (中东) | Shehoret | 10Be | (3.6±0.8), (4.7±0.7) | 砂岩 | 后壁和砾石 | 0.51~1 | [49] | |||||
Kartal | 36Cl | (81±14), (58.8±8.8) | 石灰岩 | 后壁 | 0.99 | [50] | ||||||
Akdag | 36Cl | 1.3±0.1 | 石灰岩 | 砾石 | 0.990 4 | [51] | ||||||
36Cl | 1.0±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.1±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.962 7 | ||||||||
36Cl | 7.9±0.5 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 5.3±0.3 | 石灰岩 | 砾石 | 0.916 6 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.933 6 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.946 6 | ||||||||
36Cl | 2.9±0.2 | 石灰岩 | 砾石 | 0.950 0 | ||||||||
36Cl | 1.4±0.1 | 石灰岩 | 砾石 | 0.964 5 | ||||||||
36Cl | 1.6±0.1 | 石灰岩 | 砾石 | 0.971 7 | ||||||||
36Cl | 4.7±0.2 | 石灰岩 | 砾石 | 0.973 2 | ||||||||
36Cl | 9.3±0.5 | 石灰岩 | 砾石 | 0.966 5 | ||||||||
36Cl | 4.0±0.2 | 石灰岩 | 砾石 | 0.963 9 | ||||||||
36Cl | 7.1±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 9.3±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 6.9±0.3 | 石灰岩 | 砾石 | 0.946 7 | ||||||||
欧洲(阿尔 卑斯山) | Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 后壁、砾石 | 0.5~0.94 | [39] | |||||
Tapia Campos Rɩo Barrancas | 36Cl 36Cl 36Cl | 30.5±1.3 49±2.0 2.1±0.6 | 安山岩 石灰岩 安山岩 | 砾石 砾石 砾石 | 1 1 1 | [40] | ||||||
Marbrière Magagnosc Bar sur Loup Caire Baou des Noirs | 36Cl、10Be 36Cl 36Cl、10Be 36Cl 36Cl | 3.9±0.2 4.6±0.37 3.9±0.41 2.89±0.5 4.5±0.49 | 石灰岩、角岩 石灰岩 石灰岩、角岩 石灰岩 石灰岩 | 后壁 后壁 后壁 后壁 后壁 | 0.51 0.5 0.71~0.73 0.64 0.5~0.64 | [41] | ||||||
La Clapière | 10Be 10Be 10Be | 7.1±0.5 10.3±0.5 2.3±0.5 | 片麻岩 片麻岩 片麻岩 | 后壁 后壁 后壁 | 0~0.26 0~0.26 0~0.26 | [36] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(阿尔 卑斯山) | Le Pra | 10Be | 7.68±0.64 11.12±1.01 | 变质岩 | 后壁 | 0.99~1 | [42] | |||||
Durance | 10Be | 1.832±0.326 | 片麻岩、花岗岩 | 砾石 | 0.66~0.98 | [38] | ||||||
Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 砾石、后壁 | 0.5~0.94 | [40] | ||||||
Séchilienne | 10Be | 6~8 | 变质岩 | 后壁 | 0.433~9.99 | [34] | ||||||
Velikivrh | 36Cl | 0.506±0.016 | 石灰岩 | 砾石 | 0.865~0.998 | [43] | ||||||
Val Viola | 10Be | 7.43±0.46 | 变质岩 | 砾石 | 0.944 | [38] | ||||||
Flims | 36Cl、10Be | 8.9±0.7 | 石灰岩、石英脉 | 砾石 | 0.501~0.997 | [35] | ||||||
Rauris Valley | 10Be | 11.8±1.1 | 片岩、石英岩 | 后壁、砾石 | 0.96~0.98 | [44] | ||||||
Fernpass | 36Cl | 4.1±1.3 | 石灰岩 | 后壁 | 0.801~0.803 | [45] | ||||||
Oesch 1 | 36Cl | 2.19±0.19 | 石灰岩 | 砾石 | 0.952 | [46] | ||||||
Oesch 2 | 36Cl | 2.36±0.16 | 石灰岩 | 砾石 | 0.960 | |||||||
Oesch 3 | 36Cl | 2.54±0.17 | 石灰岩 | 砾石 | 0.957 | |||||||
Oesch 4 | 36Cl | 2.22±0.16 | 石灰岩 | 砾石 | 0.914 | |||||||
Oesch 5 | 36Cl | 2.31±0.16 | 石灰岩 | 砾石 | 0.920 | |||||||
Oesch 7 | 36Cl | 2.14±0.14 | 石灰岩 | 砾石 | 0.958 | |||||||
Oesch 3 | 36Cl | 2.6±0.18 | 石灰岩 | 砾石 | 0.929 | |||||||
欧洲(不列 颠群岛) | Mullaghmore | 36Cl | 17.67±1.52 | 玄武岩 | 砾石 | 0.47~0.98 | [28] | |||||
Benbradagh | 36Cl | (13.13±2.27), (9.22±1.73) | 玄武岩 | 砾石 | 0.983~0.99 | |||||||
Donalds Hill | 36Cl | 17.89±1.79 | 玄武岩 | 砾石 | 0.975~0.992 | |||||||
Mullach Coire a’Chuir | 10Be | 1.534±0.165 | 片岩 | 砾石 | 0.968~0.974 | [27] | ||||||
Hell’s Glen | 10Be | 3.67±0.397 | 片岩 | 砾石 | 0.950~0.957 | |||||||
Beinn an Lochain | 10Be | 11.037±0.563 | 片岩 | 砾石 | 0.971 | |||||||
Coire Gabhail | 10Be | 1.682±0.22 | 片岩 | 砾石 | 0.921 | |||||||
Carn Ban | 10Be | 4.638±0.464 | 凝灰岩 | 砾石 | 0.964~0.98 | |||||||
Druim nan Uadhag | 10Be | 9.798±1.25 | 石英-长石 | 砾石 | 0.958~0.969 | |||||||
Carn Etchachan | 10Be | 12.758±0.518 | 花岗岩 | 砾石 | 0.986~0.989 | |||||||
Coire Beanaidh | 10Be | 13.354±1.215 | 花岗岩 | 砾石 | 0.994 | |||||||
Lairig Ghru | 10Be | 16.234±1.469 | 花岗岩 | 砾石 | 0.984~0.989 | |||||||
Strath Nethy | 10Be | 16.933±0.598 | 花岗岩 | 砾石 | 0.976 | |||||||
Carn Ghluasaid | 10Be | 11.995±0.466 | 片岩 | 砾石 | 0.987~0.995 | |||||||
Coire nan Arr | 10Be | 11.658+0.473 | 砂岩 | 砾石 | 0.988~0.99 | |||||||
Meall Chean-dearg | 10Be | 11.543±0.373 | 石英岩 | 砾石 | 0.978 | |||||||
The Storr | 10Be | 6.089±0.488 | 玄武岩 | 砾石 | 0.980~0.981 | |||||||
Beinn Alligin | 10Be | 4.115±0.202 | 砂岩 | 砾石 | 0.972 | |||||||
Baosbheinn | 10Be | 14.017±0.491 | 砂岩 | 砾石 | 0.983~0.984 | |||||||
Carn nan Gillian | 10Be | 7.338±0.536 | 麻粒岩 | 砾石 | 0.966~0.977 | |||||||
欧洲(克里 米亚山脉) | Foros and Yalta | 36Cl | 19.7±1.1 | 石灰岩 | 后壁 | 0.67 | [29] | |||||
36Cl | 14.1±0.9 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 15.1±1.1 | 石灰岩 | 后壁 | 0.85 | ||||||||
36Cl | 2.4±0.3 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 0.5±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 6.4±0.4 | 石灰岩 | 后壁 | 0.73 | ||||||||
36Cl | 17.3±1.4 | 石灰岩 | 后壁 | 0.82 | ||||||||
36Cl | 8.2±0.7 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 4.5±0.4 | 石灰岩 | 后壁 | 0.75 | ||||||||
36Cl | 4.7±0.5 | 石灰岩 | 后壁 | 0.86 | ||||||||
36Cl | 1.8±0.2 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 1.4±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 7.6±0.7 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 9.3±1.2 | 石灰岩 | 后壁 | 0.59 | ||||||||
36Cl | 4.8±0.4 | 石灰岩 | 后壁 | 0.66 | ||||||||
36Cl | 5.2±0.7 | 石灰岩 | 后壁 | 0.56 | ||||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(马耳 他群岛) | Anchor Bay | 36Cl | 21.7±1.4 | 石灰岩 | 后壁 | [30] | ||||||
36Cl | 9.2±0.5 | 石灰岩 | 后壁 | |||||||||
36Cl | 7.4±0.4 | 石灰岩 | 后壁 | |||||||||
Il-Qarraba | 36Cl | 10.2±0.6 | 石灰岩 | 后壁 | ||||||||
36Cl | 15.3±1.0 | 石灰岩 | 后壁 | |||||||||
欧洲(西喀尔 巴阡山脉) | Luksinec | 10Be | 4.0±0.3 | 砂岩 | 后壁 | 0.492 9 | [47] | |||||
10Be | 4.2±0.4 | 砂岩 | 后壁 | 0.492 9 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.662 5 | ||||||||
10Be | 4.1±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 4.7±0.4 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 5.8±0.4 | 砂岩 | 后壁 | 0.544 9 | ||||||||
10Be | 6.5±0.4 | 砂岩 | 后壁 | 0.498 2 | ||||||||
10Be | 1.0±0.1 | 砂岩 | 后壁 | 0.760 4 | ||||||||
Malenovický kotel | 10Be | 3.9±0.4 | 砂岩 | 后壁 | 0.497 9 | |||||||
10Be | 2.4±0.3 | 砂岩 | 后壁 | 0.546 4 | ||||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.612 2 | ||||||||
10Be | 2.9±0.3 | 砂岩 | 后壁 | 0.690 6 | ||||||||
Malchor | 10Be | 6.0±0.5 | 砂岩 | 后壁 | 0.503 0 | |||||||
10Be | 9.7±1.2 | 砂岩 | 后壁 | 0.406 4 | ||||||||
10Be | 1.5±0.1 | 砂岩 | 后壁 | 0.622 7 | ||||||||
Kykulka | 10Be | 0.3±0.0 | 砂岩 | 后壁 | 0.670 9 | |||||||
10Be | 3.4±0.4 | 砂岩 | 后壁 | 0.602 7 | ||||||||
10Be | 3.3±0.3 | 砂岩 | 后壁 | 0.492 2 | ||||||||
Luksinec | 10Be | 1.4±0.1 | 砂岩 | 后壁 | 0.619 2 | |||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.662 9 | ||||||||
欧洲(伊比利亚 半岛北部) | Cristallere | 10Be | 1.106±0.540 | 热液石英 | 后壁 | 0.79~0.95 | [32] | |||||
欧洲(斯堪的 纳维亚) | Grøtlandsura | 10Be | 3.81±0.19 | 花岗岩 | 砾石 | 0.832~0.865 | [31] | |||||
Hølen | 10Be | 7.5±0.3 | 片岩 | 砾石 | 0.856~0.881 | |||||||
Russenes | 10Be | 4.29±0.28 | 片岩、花岗岩 | 砾石 | 0.775~0.847 | |||||||
欧洲(亚平宁山) | Lavini di Marco | 36Cl | (0.8±0.2), (1.5±0.2) | 石灰岩 | 砾石、后壁 | 0.543~0.984 | [48] | |||||
大洋洲(新西兰) | Lochnagar | 10Be | (6.3±0.3), (8.9±0.5) | 泥质片岩 | 砾石 | [68] | ||||||
北美洲 (博尔德山) | 3He | 26~33 | 火山岩 | 砾石 | 0.964~0.973 | [23] | ||||||
南美洲 (安第斯山脉) | Pangal Yes-MesonAlto Macul Potrerillos Salto del Soldado EsteroMaquis | 36Cl 10Be 36Cl 36Cl 36Cl 10Be | 7.7±0.3 4.6±0.6 80.4±2.6 23.8±0.9 9.8±0.7 112±14 | 火山岩 花岗闪长岩 火山岩 火山岩 火山岩 火山岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | | [25] | |||||
Las Conchas | 10Be | 13.55±0.9 | 石英岩、花岗岩 | 砾石 | [24] | |||||||
Tonco | 10Be | 15.0±2.0 | 石英岩、花岗岩 | 砾石 |
表1 全球不同地区利用TCN测定滑坡年代的研究统计
Table 1 Geochronology of landslides in different regions of the world by TCN dating
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
亚洲(喜马 拉雅山脉) | Yaral Pangbache TsergoRi | 10Be 10Be 10Be | 8.7±0.1 10.1±1.0 38.9±3.8 | 淡色花岗岩 淡色花岗岩 淡色花岗岩 | 砾石 砾石 砾石 | 0.97~0.98 0.98 0.92~0.96 | [55] | |||||
Rangatoli Dear | 10Be 10Be 26Al | 4.9±2.5 10.8±0.5 | 变质片岩、片麻 岩、石英岩 变质片岩、片麻 岩、石英岩 | 砾石 砾石 | 0.985~0.995 0.987~0.997 | [54] | ||||||
Milan | 10Be | 7.8±1.7 | 片岩 | 砾石 | 0.96~0.98 | [57] | ||||||
Darcha Patseo Kelang Serai Chilam | 10Be 10Be 10Be 10Be | 7.6±1.3 8.7±0.4 7.2±0.4 9.6±0.4 | 砂岩 千枚岩 砾岩和石英岩 火山岩 | 砾石 砾石 砾石 砾石 | 0.95~0.97 0.98~0.99 0.98~1 0.98 | [20] | ||||||
Satpara-Skardu GolGhone Katzarah DhakChauki Upper Henzul Baltit-Sumayar | 10Be 10Be 10Be 10Be 10Be 10Be | 3.6±0.1 3.6±0.1 6.8±0.1 5.5±0.1 7.2±0.2 3.8±0.2 | 花岗岩 花岗岩 花岗岩 石英脉 花岗闪长岩 花岗闪长岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | 1 1 1 1 1 1 | [56] | ||||||
Taheman Muztagh Bulunkou Yimake | 10Be 10Be 10Be 10Be | 6.8±0.2 14.3±0.8 2.0±0.1 7.1±0.6 | 片麻岩 片麻岩 片麻岩 片岩、石灰岩 | 砾石 砾石 砾石 砾石 | 1 1 0.952 4~0.967 8 1 | [22] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
亚洲(喜马 拉雅山脉) | Keylong Serai | 10Be | 7.51±0.1 | 石英脉 | 砾石 | [53] | ||||||
Yadong | 10Be 10Be 10Be 10Be 10Be 10Be | 14.2±1.3 13.3±1.3 13.1±1.3 13.9±1.3 13.1±1.2 12.0±1.1 | 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 变质沉积岩 | 砾石 砾石 砾石 砾石 砾石 卵石 | 0.974 1 0.974 1 0.974 1 0.992 7 0.991 9 0.991 9 | [58] | ||||||
亚洲 (天山) | Ukok | 10Be | 0.4±0.16 | 花岗岩 | 砾石 | 0.916~0.985 | [66] | |||||
Aksu | 10Be | 66±6.1 | 花岗岩 | 砾石 | 0.914~0.993 | |||||||
Alamyedin | 10Be | 12.8±1.4 | 花岗岩 | 砾石 | 0.933~0.496 | |||||||
Tianchi | 10Be | 13.6±1.4 | 安山岩、凝灰岩 | 砾石 | 0.98 | [65] | ||||||
亚洲 (中国香港) | Ap Lei Chau | 10Be、26Al | 11.0±1.3 | 凝灰岩 | 后壁、砾石 | 0.879~0.968 | [67] | |||||
Sunset Peak West | 10Be、26Al | 8.2±0.9 | 凝灰岩 | 后壁 | 0.851~0.987 | |||||||
Sham Wat | 10Be、26Al | 32.3±5.4 | 流纹岩 | 后壁、砾石 | 0.894~0.986 | |||||||
Tsing Yi | 10Be、26Al | 47.0±1.6 | 花岗岩 | 后壁、砾石 | 0.786~0.860 | |||||||
亚洲 (蒙古) | Jargalant | 10Be | 44.5±3.9 | 石英岩 | 后壁 | 0.995 | [62] | |||||
10Be | 193.5±17.5 | 石英岩 | 后壁 | 0.995 | ||||||||
亚洲 (中东) | Shehoret | 10Be | (3.6±0.8), (4.7±0.7) | 砂岩 | 后壁和砾石 | 0.51~1 | [49] | |||||
Kartal | 36Cl | (81±14), (58.8±8.8) | 石灰岩 | 后壁 | 0.99 | [50] | ||||||
Akdag | 36Cl | 1.3±0.1 | 石灰岩 | 砾石 | 0.990 4 | [51] | ||||||
36Cl | 1.0±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.1±0.1 | 石灰岩 | 砾石 | 0.990 4 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.962 7 | ||||||||
36Cl | 7.9±0.5 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.955 0 | ||||||||
36Cl | 5.3±0.3 | 石灰岩 | 砾石 | 0.916 6 | ||||||||
36Cl | 1.5±0.1 | 石灰岩 | 砾石 | 0.933 6 | ||||||||
36Cl | 8.7±0.4 | 石灰岩 | 砾石 | 0.946 6 | ||||||||
36Cl | 2.9±0.2 | 石灰岩 | 砾石 | 0.950 0 | ||||||||
36Cl | 1.4±0.1 | 石灰岩 | 砾石 | 0.964 5 | ||||||||
36Cl | 1.6±0.1 | 石灰岩 | 砾石 | 0.971 7 | ||||||||
36Cl | 4.7±0.2 | 石灰岩 | 砾石 | 0.973 2 | ||||||||
36Cl | 9.3±0.5 | 石灰岩 | 砾石 | 0.966 5 | ||||||||
36Cl | 4.0±0.2 | 石灰岩 | 砾石 | 0.963 9 | ||||||||
36Cl | 7.1±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 9.3±0.4 | 石灰岩 | 砾石 | 0.966 2 | ||||||||
36Cl | 6.9±0.3 | 石灰岩 | 砾石 | 0.946 7 | ||||||||
欧洲(阿尔 卑斯山) | Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 后壁、砾石 | 0.5~0.94 | [39] | |||||
Tapia Campos Rɩo Barrancas | 36Cl 36Cl 36Cl | 30.5±1.3 49±2.0 2.1±0.6 | 安山岩 石灰岩 安山岩 | 砾石 砾石 砾石 | 1 1 1 | [40] | ||||||
Marbrière Magagnosc Bar sur Loup Caire Baou des Noirs | 36Cl、10Be 36Cl 36Cl、10Be 36Cl 36Cl | 3.9±0.2 4.6±0.37 3.9±0.41 2.89±0.5 4.5±0.49 | 石灰岩、角岩 石灰岩 石灰岩、角岩 石灰岩 石灰岩 | 后壁 后壁 后壁 后壁 后壁 | 0.51 0.5 0.71~0.73 0.64 0.5~0.64 | [41] | ||||||
La Clapière | 10Be 10Be 10Be | 7.1±0.5 10.3±0.5 2.3±0.5 | 片麻岩 片麻岩 片麻岩 | 后壁 后壁 后壁 | 0~0.26 0~0.26 0~0.26 | [36] | ||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(阿尔 卑斯山) | Le Pra | 10Be | 7.68±0.64 11.12±1.01 | 变质岩 | 后壁 | 0.99~1 | [42] | |||||
Durance | 10Be | 1.832±0.326 | 片麻岩、花岗岩 | 砾石 | 0.66~0.98 | [38] | ||||||
Lauvitel | 10Be | 4.7±0.4 | 花岗岩 | 砾石、后壁 | 0.5~0.94 | [40] | ||||||
Séchilienne | 10Be | 6~8 | 变质岩 | 后壁 | 0.433~9.99 | [34] | ||||||
Velikivrh | 36Cl | 0.506±0.016 | 石灰岩 | 砾石 | 0.865~0.998 | [43] | ||||||
Val Viola | 10Be | 7.43±0.46 | 变质岩 | 砾石 | 0.944 | [38] | ||||||
Flims | 36Cl、10Be | 8.9±0.7 | 石灰岩、石英脉 | 砾石 | 0.501~0.997 | [35] | ||||||
Rauris Valley | 10Be | 11.8±1.1 | 片岩、石英岩 | 后壁、砾石 | 0.96~0.98 | [44] | ||||||
Fernpass | 36Cl | 4.1±1.3 | 石灰岩 | 后壁 | 0.801~0.803 | [45] | ||||||
Oesch 1 | 36Cl | 2.19±0.19 | 石灰岩 | 砾石 | 0.952 | [46] | ||||||
Oesch 2 | 36Cl | 2.36±0.16 | 石灰岩 | 砾石 | 0.960 | |||||||
Oesch 3 | 36Cl | 2.54±0.17 | 石灰岩 | 砾石 | 0.957 | |||||||
Oesch 4 | 36Cl | 2.22±0.16 | 石灰岩 | 砾石 | 0.914 | |||||||
Oesch 5 | 36Cl | 2.31±0.16 | 石灰岩 | 砾石 | 0.920 | |||||||
Oesch 7 | 36Cl | 2.14±0.14 | 石灰岩 | 砾石 | 0.958 | |||||||
Oesch 3 | 36Cl | 2.6±0.18 | 石灰岩 | 砾石 | 0.929 | |||||||
欧洲(不列 颠群岛) | Mullaghmore | 36Cl | 17.67±1.52 | 玄武岩 | 砾石 | 0.47~0.98 | [28] | |||||
Benbradagh | 36Cl | (13.13±2.27), (9.22±1.73) | 玄武岩 | 砾石 | 0.983~0.99 | |||||||
Donalds Hill | 36Cl | 17.89±1.79 | 玄武岩 | 砾石 | 0.975~0.992 | |||||||
Mullach Coire a’Chuir | 10Be | 1.534±0.165 | 片岩 | 砾石 | 0.968~0.974 | [27] | ||||||
Hell’s Glen | 10Be | 3.67±0.397 | 片岩 | 砾石 | 0.950~0.957 | |||||||
Beinn an Lochain | 10Be | 11.037±0.563 | 片岩 | 砾石 | 0.971 | |||||||
Coire Gabhail | 10Be | 1.682±0.22 | 片岩 | 砾石 | 0.921 | |||||||
Carn Ban | 10Be | 4.638±0.464 | 凝灰岩 | 砾石 | 0.964~0.98 | |||||||
Druim nan Uadhag | 10Be | 9.798±1.25 | 石英-长石 | 砾石 | 0.958~0.969 | |||||||
Carn Etchachan | 10Be | 12.758±0.518 | 花岗岩 | 砾石 | 0.986~0.989 | |||||||
Coire Beanaidh | 10Be | 13.354±1.215 | 花岗岩 | 砾石 | 0.994 | |||||||
Lairig Ghru | 10Be | 16.234±1.469 | 花岗岩 | 砾石 | 0.984~0.989 | |||||||
Strath Nethy | 10Be | 16.933±0.598 | 花岗岩 | 砾石 | 0.976 | |||||||
Carn Ghluasaid | 10Be | 11.995±0.466 | 片岩 | 砾石 | 0.987~0.995 | |||||||
Coire nan Arr | 10Be | 11.658+0.473 | 砂岩 | 砾石 | 0.988~0.99 | |||||||
Meall Chean-dearg | 10Be | 11.543±0.373 | 石英岩 | 砾石 | 0.978 | |||||||
The Storr | 10Be | 6.089±0.488 | 玄武岩 | 砾石 | 0.980~0.981 | |||||||
Beinn Alligin | 10Be | 4.115±0.202 | 砂岩 | 砾石 | 0.972 | |||||||
Baosbheinn | 10Be | 14.017±0.491 | 砂岩 | 砾石 | 0.983~0.984 | |||||||
Carn nan Gillian | 10Be | 7.338±0.536 | 麻粒岩 | 砾石 | 0.966~0.977 | |||||||
欧洲(克里 米亚山脉) | Foros and Yalta | 36Cl | 19.7±1.1 | 石灰岩 | 后壁 | 0.67 | [29] | |||||
36Cl | 14.1±0.9 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 15.1±1.1 | 石灰岩 | 后壁 | 0.85 | ||||||||
36Cl | 2.4±0.3 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 0.5±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 6.4±0.4 | 石灰岩 | 后壁 | 0.73 | ||||||||
36Cl | 17.3±1.4 | 石灰岩 | 后壁 | 0.82 | ||||||||
36Cl | 8.2±0.7 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 4.5±0.4 | 石灰岩 | 后壁 | 0.75 | ||||||||
36Cl | 4.7±0.5 | 石灰岩 | 后壁 | 0.86 | ||||||||
36Cl | 1.8±0.2 | 石灰岩 | 后壁 | 0.77 | ||||||||
36Cl | 1.4±0.2 | 石灰岩 | 后壁 | 0.55 | ||||||||
36Cl | 7.6±0.7 | 石灰岩 | 后壁 | 0.70 | ||||||||
36Cl | 9.3±1.2 | 石灰岩 | 后壁 | 0.59 | ||||||||
36Cl | 4.8±0.4 | 石灰岩 | 后壁 | 0.66 | ||||||||
36Cl | 5.2±0.7 | 石灰岩 | 后壁 | 0.56 | ||||||||
区域 | 滑坡名称 | 核素 | 平均年龄/ka | 岩性 | 采样部位 | 遮蔽因子系数 | 文献 | |||||
欧洲(马耳 他群岛) | Anchor Bay | 36Cl | 21.7±1.4 | 石灰岩 | 后壁 | [30] | ||||||
36Cl | 9.2±0.5 | 石灰岩 | 后壁 | |||||||||
36Cl | 7.4±0.4 | 石灰岩 | 后壁 | |||||||||
Il-Qarraba | 36Cl | 10.2±0.6 | 石灰岩 | 后壁 | ||||||||
36Cl | 15.3±1.0 | 石灰岩 | 后壁 | |||||||||
欧洲(西喀尔 巴阡山脉) | Luksinec | 10Be | 4.0±0.3 | 砂岩 | 后壁 | 0.492 9 | [47] | |||||
10Be | 4.2±0.4 | 砂岩 | 后壁 | 0.492 9 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.662 5 | ||||||||
10Be | 4.1±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 3.6±0.3 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 4.7±0.4 | 砂岩 | 后壁 | 0.499 6 | ||||||||
10Be | 5.8±0.4 | 砂岩 | 后壁 | 0.544 9 | ||||||||
10Be | 6.5±0.4 | 砂岩 | 后壁 | 0.498 2 | ||||||||
10Be | 1.0±0.1 | 砂岩 | 后壁 | 0.760 4 | ||||||||
Malenovický kotel | 10Be | 3.9±0.4 | 砂岩 | 后壁 | 0.497 9 | |||||||
10Be | 2.4±0.3 | 砂岩 | 后壁 | 0.546 4 | ||||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.612 2 | ||||||||
10Be | 2.9±0.3 | 砂岩 | 后壁 | 0.690 6 | ||||||||
Malchor | 10Be | 6.0±0.5 | 砂岩 | 后壁 | 0.503 0 | |||||||
10Be | 9.7±1.2 | 砂岩 | 后壁 | 0.406 4 | ||||||||
10Be | 1.5±0.1 | 砂岩 | 后壁 | 0.622 7 | ||||||||
Kykulka | 10Be | 0.3±0.0 | 砂岩 | 后壁 | 0.670 9 | |||||||
10Be | 3.4±0.4 | 砂岩 | 后壁 | 0.602 7 | ||||||||
10Be | 3.3±0.3 | 砂岩 | 后壁 | 0.492 2 | ||||||||
Luksinec | 10Be | 1.4±0.1 | 砂岩 | 后壁 | 0.619 2 | |||||||
10Be | 4.2±0.3 | 砂岩 | 后壁 | 0.662 9 | ||||||||
欧洲(伊比利亚 半岛北部) | Cristallere | 10Be | 1.106±0.540 | 热液石英 | 后壁 | 0.79~0.95 | [32] | |||||
欧洲(斯堪的 纳维亚) | Grøtlandsura | 10Be | 3.81±0.19 | 花岗岩 | 砾石 | 0.832~0.865 | [31] | |||||
Hølen | 10Be | 7.5±0.3 | 片岩 | 砾石 | 0.856~0.881 | |||||||
Russenes | 10Be | 4.29±0.28 | 片岩、花岗岩 | 砾石 | 0.775~0.847 | |||||||
欧洲(亚平宁山) | Lavini di Marco | 36Cl | (0.8±0.2), (1.5±0.2) | 石灰岩 | 砾石、后壁 | 0.543~0.984 | [48] | |||||
大洋洲(新西兰) | Lochnagar | 10Be | (6.3±0.3), (8.9±0.5) | 泥质片岩 | 砾石 | [68] | ||||||
北美洲 (博尔德山) | 3He | 26~33 | 火山岩 | 砾石 | 0.964~0.973 | [23] | ||||||
南美洲 (安第斯山脉) | Pangal Yes-MesonAlto Macul Potrerillos Salto del Soldado EsteroMaquis | 36Cl 10Be 36Cl 36Cl 36Cl 10Be | 7.7±0.3 4.6±0.6 80.4±2.6 23.8±0.9 9.8±0.7 112±14 | 火山岩 花岗闪长岩 火山岩 火山岩 火山岩 火山岩 | 砾石 砾石 砾石 砾石 砾石 砾石 | | [25] | |||||
Las Conchas | 10Be | 13.55±0.9 | 石英岩、花岗岩 | 砾石 | [24] | |||||||
Tonco | 10Be | 15.0±2.0 | 石英岩、花岗岩 | 砾石 |
图3 全球不同地区利用TCN测定的典型滑坡年龄大小的分布特征 蓝色线表示滑坡TCN年代数据的频率,红色线表示滑坡TCN年龄数据的累计频率,红色点和黑色线段分别表示单个TCN年龄大小和误差。
Fig.3 Distribution characteristics of TCN ages of typical landslides in different regions of the world
[1] |
崔鹏. 中国山地灾害研究进展与未来应关注的科学问题[J]. 地理科学进展, 2014,33(2):145-152.
DOI |
[2] |
WESTEN C J, ASCH T W J, ASCH T W J . Landslide hazard and risk zonation: why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment, 2006,65(2):167-184.
DOI URL |
[3] | 石菊松, 石玲, 吴树仁. 滑坡风险评估的难点和进展[J]. 地质论评, 2007,53(6):797-806. |
[4] | 许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010,56(6):860-874. |
[5] |
LOPEZ SAEZ J, CORONA C, STOFFEL M, et al. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps[J]. Geomorphology, 2012,138(1):189-202.
DOI URL |
[6] | 吴树仁, 石菊松, 王涛, 等. 滑坡风险评估理论与技术[M]. 北京: 科学出版社, 2012: 8-19. |
[7] | 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004,19(3):443-450. |
[8] | 洪婷, 白世彪, 王建. 树轮地貌学重建滑坡事件研究进展[J]. 地质论评, 2014,60(4):755-764. |
[9] |
LANG A, MOYA J, COROMINAS J, et al. Classic and new dating methods for assessing the temporal occurrence of mass movements[J]. Geomorphology, 1999,30(1/2):33-52.
DOI URL |
[10] |
BULL W B. Accurate surface exposure dating with lichens[J]. Quaternary Research, 2018,90:1-9.
DOI URL |
[11] | 杨银科, 彭建兵, 刘聪. 滑坡年代学研究方法应用进展[J]. 灾害学, 2015,30(2):133-137. |
[12] | PÁNEK T. Recent progress in landslide dating: a global overview[J]. Progress in Physical Geography, 2015,39(2):168-198. |
[13] |
HALLET B, PUTKONEN J. Surface dating of dynamic landforms: young boulders on aging moraines[J]. Science, 1994,265(5174):937-940.
DOI URL |
[14] |
LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991,104(2/3/4):424-439.
DOI URL |
[15] |
GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001,20(14):1475-1560.
DOI URL |
[16] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the Earth surface sciences[M]. Cambridge: Cambridge University Press, 2007. |
[17] | 李英奎, HARBOR J, 刘耕年, 等. 宇宙核素地学研究的应用现状与存在问题[J]. 水土保持研究, 2005,12(4):146-152. |
[18] | 刘彧, 王世杰, 刘秀明. 宇宙成因核素在地质年代学研究中的新进展[J]. 地球科学进展, 2012,27(4):386-397. |
[19] | 孔屏. 宇宙成因核素在地球科学中的应用[J]. 地学前缘, 2002,9(3):41-48. |
[20] |
DORTCH J M, OWEN L A, HANEBERG W C, et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India[J]. Quaternary Science Reviews, 2009,28(11/12):1037-1054.
DOI URL |
[21] | 袁兆德, 陈杰, 李文巧, 等. 帕米尔高原东部塔合曼大型滑坡体的10Be测年[J]. 第四纪研究, 2012,32(3):409-416. |
[22] |
YUAN Z D, CHEN J, OWEN L A, et al. Nature and timing of large landslides within an active orogen, eastern Pamir, China[J]. Geomorphology, 2013,182:49-65.
DOI URL |
[23] |
MARCHETTI D W, CERLING T E, DOHRENWEND J C, et al. Ages and significance of glacial and mass movement deposits on the west side of Boulder Mountain, Utah, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,252(3/4):503-513.
DOI URL |
[24] | HERMANNS R L, NIEDERMANN S, IVY-OCHS S, et al. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina): evidence from surface exposure dating and stratigraphic analyses[J]. Landslides, 2004,1(2):113-122. |
[25] |
ANTINAO J L, GOSSE J. Large rockslides in the Southern Central Andes of Chile (32-34.5°S): tectonic control and significance for Quaternary landscape evolution[J]. Geomorphology, 2009,104(3/4):117-133.
DOI URL |
[26] |
PENNA I M, HERMANNS R L, NIEDERMANN S, et al. Multiple slope failures associated with neotectonic activity in the Southern Central Andes (37°-37°30'S), Patagonia, Argentina[J]. Geological Society of America Bulletin, 2011,123(9/10):1880-1895.
DOI URL |
[27] |
BALLANTYNE C K, STONE J O. Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands[J]. Geomorphology, 2013,186:150-161.
DOI URL |
[28] |
SOUTHALL D W, WILSON P, DUNLOP P, et al. Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating[J]. Geomorphology, 2017,285:235-246.
DOI URL |
[29] |
PÁNEK T, LENART J, HRADECKÝ J, et al. Coastal cliffs, rock-slope failures and Late Quaternary transgressions of the Black Sea along southern Crimea[J]. Quaternary Science Reviews, 2018,181:76-92.
DOI URL |
[30] |
SOLDATI M, BARROWS T T, PRAMPOLINI M, et al. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea)[J]. Journal of Coastal Conservation, 2018,22:831-844.
DOI URL |
[31] |
FENTON C R, HERMANNS R L, BLIKRA L H, et al. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock avalanches at 69° N, Norway[J]. Quaternary Geochronology, 2011,6(5):437-452.
DOI URL |
[32] |
LEBOURG T, ZERATHE S, FABRE R, et al. A Late Holocene deep-seated landslide in the northern French Pyrenees[J]. Geomorphology, 2014,208:1-10.
DOI URL |
[33] |
LE ROUX O, SCHWARTZ S, GAMOND J F, et al. CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics[J]. Earth and Planetary Science Letters, 2009,280(1/2/3/4):236-245.
DOI URL |
[34] |
SCHWARTZ S, ZERATHE S, JONGMANS D, et al. Cosmic ray exposure dating on the large landslide of Séchilienne (Western Alps): a synjournal to constrain slope evolution[J]. Geomorphology, 2017,278:329-344.
DOI URL |
[35] |
IVY-OCHS S, POSCHINGER A V, SYNAL H A, et al. Surface exposure dating of the Flims landslide, Graubünden, Switzerland[J]. Geomorphology, 2009,103(1):104-112.
DOI URL |
[36] |
BIGOT-CORMIER F, BRAUCHER R, BOURLÈS D, et al. Chronological constraints on processes leading to large active landslides[J]. Earth and Planetary Science Letters, 2005,235(1/2):141-150.
DOI URL |
[37] |
COSSART E, BRAUCHER R, FORT M, et al. Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages[J]. Geomorphology, 2008,95(1/2):3-26.
DOI URL |
[38] |
HORMES A, IVY-OCHS S, KUBIK P W, et al. 10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps[J]. Quaternary International, 2008,190(1):136-145.
DOI URL |
[39] |
DELUNEL R, HANTZ D, BRAUCHER R, et al. Surface exposure dating and geophysical prospecting of the Holocene Lauvitel rock slide (French Alps)[J]. Landslides, 2010,7(4):393-400.
DOI URL |
[40] |
COSTA C H, GONZÁLEZ DÍAZ E F. Age constraints and paleoseismic implication of rock avalanches in the northern Patagonian Andes, Argentina[J]. Journal of South American Earth Sciences, 2007,24(1):48-57.
DOI URL |
[41] |
ZERATHE S, LEBOURG T, BRAUCHER R, et al. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by36Cl dating. Insight on an Alpine-scale landslide activity[J]. Quaternary Science Reviews, 2014,90:106-127.
DOI URL |
[42] |
SANCHEZ G, ROLLAND Y, CORSINI M, et al. Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps[J]. Geomorphology, 2010,117(1/2):1-13.
DOI URL |
[43] |
MERCHEL S, MRAK I, BRAUCHER R, et al. Surface exposure dating of the Veliki Vrh rock avalanche in Slovenia associated with the 1348 earthquake[J]. Quaternary Geochronology, 2014,22:33-42.
DOI URL |
[44] |
BICHLER M G, REINDL M, REITNER J M, et al. Landslide deposits as stratigraphical markers for a sequence-based glacial stratigraphy: a case study of a Younger Dryas system in the Eastern Alps[J]. Boreas, 2016,45(3):537-551.
DOI URL |
[45] |
PRAGER C, IVY-OCHS S, OSTERMANN M, et al. Geology and radiometric 14C-, 36Cl- and Th-/U-dating of the Fernpass rockslide (Tyrol, Austria)[J]. Geomorphology, 2009,103(1):93-103.
DOI URL |
[46] |
KOPFLI P, GRÄMIGER L M, MOORE J R, et al. The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago?[J]. Swiss Journal of Geosciences, 2018,111(1):205-219.
DOI URL |
[47] |
BREZNY M, PANEK T, LENART J, et al. Be-10 dating reveals pronounced Mid-to Late Holocene activity of deep-seated landslides in the highest part of the Czech Flysch Carpathians[J]. Quaternary Science Reviews, 2018,195:180-194.
DOI URL |
[48] |
MARTIN S, CAMPEDEL P, IVY-OCHS S, et al. Lavini Di Marco (Trentino, Italy): 36Cl exposure dating of a polyphase rock avalanche[J]. Quaternary Geochronology, 2014,19:106-116.
DOI URL |
[49] |
RINAT Y, MATMON A, ARNOLD M, et al. Holocene rockfalls in the southern Negev Desert, Israel and their relation to Dead Sea fault earthquakes[J]. Quaternary Research, 2014,81(2):260-273.
DOI URL |
[50] |
YILDIRIM C, SARIKAYA M A, ÇINER A. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone[J]. Tectonics, 2016,35(6):1446-1464.
DOI URL |
[51] |
BAYRAKDAR C, GORUM T, ÇILĞIN Z, et al. Chronology and geomorphological activity of the Akdag Rock Avalanche (SW Turkey)[J]. Frontiers in Earth Science, 2020,8:295.
DOI URL |
[52] |
HEWITT K. Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia[J]. Geomorphology, 2009,103(1):66-79.
DOI URL |
[53] |
MITCHELL W A, MCSAVENEY M J, ZONDERVAN A, et al. The Keylong Serai rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications[J]. Landslides, 2007,4(3):245-254.
DOI URL |
[54] |
BARNARD P L, OWEN L A, SHARMA M C, et al. Natural and human-induced landsliding in the Garhwal Himalaya of northern India[J]. Geomorphology, 2001,40(1/2):21-35.
DOI URL |
[55] |
BARNARD P L, OWEN L A, FINKEL R. Quaternary fans and terraces in the Khumbu Himal south of Mount Everest: their characteristics, age and formation[J]. Journal of the Geological Society, 2006,163(2):383-399.
DOI URL |
[56] |
HEWITT K, GOSSE J, CLAGUE J J. Rock avalanches and the pace of late Quaternary development of river valleys in the Karakoram Himalaya[J]. Geological Society of America Bulletin, 2011,123(9):1836-1850.
DOI URL |
[57] |
BARNARD P L, OWEN L A, FINKEL R C. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya[J]. Sedimentary Geology, 2004,165(3/4):199-221.
DOI URL |
[58] |
PENG X, CHEN Y X, LIU B B, et al. Timing and features of a late MIS 2 rock avalanche in the Eastern Himalayas, constrained by 10Be exposure dating[J]. Geomorphology, 2018,318:58-68.
DOI URL |
[59] |
ZENG Q L, YUAN G X, DAVIES T, et al. 10Be dating and seismic origin of Luanshibao rock avalanche in SE Tibetan Plateau and implications on Litang active fault[J]. Landslides, 2020,17(5):1091-1104.
DOI URL |
[60] | 崔豫. 川西理塘毛垭坝盆地乱石包高速远程滑坡的10Be暴露年代研究[D]. 南京:南京师范大学, 2019. |
[61] | 舒杰. 藏东南旺北村滑坡10Be和26Al暴露年代研究[D]. 南京: 南京师范大学, 2018. |
[62] |
OH J S, SEONG Y B, STROM A, et al. Bouldery deposits along the Kherlen fault, Central Khentey, Mongolia: implications for paleoseismology[J]. Natural Hazards, 2020,103:189-209.
DOI URL |
[63] | 舒杰, 白世彪, 崔豫, 等. 白龙江中游凤安山滑坡26Al 暴露年代研究[J]. 地质力学学报, 2017,23(6):914-922. |
[64] | 陈倩. 黄河上游戈龙布滑坡后壁宇生核素暴露年代研究[D]. 南京: 南京师范大学, 2017. |
[65] |
YI C, ZHU L, BAE SEONG Y, et al. A lateglacial rock avalanche event, Tianchi Lake, Tien Shan, Xinjiang[J]. Quaternary International, 2006,154/155:26-31.
DOI URL |
[66] |
SANHUEZA-PINO K, KORUP O, HETZEL R, et al. Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan[J]. Quaternary Research, 2011,76(3):295-304.
DOI URL |
[67] | SEWELL R J, BARROWS T T. Exposure dating (10Be, 26Al) of natural terrain landslides in Hong Kong, China[J]. Special Paper of the Geological Society of America, 2006,415:131-146. |
[68] | SWEENEY C, BRIDEAU M A, AUGUSTINUS P, et al. Lochnagar landslide-dam, Central Otago, New Zealand: geomechanics and timing of the event[C]. 19th NZGS Geotechnical Symposium. Queenstown, 2013. |
[69] |
赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013,32(5):683-693.
DOI |
[70] | 卢演俦. 沉积物的光释光(OSL)测年简介[J]. 地质地球化学, 1990,18(1):36-40. |
[71] | 张克旗, 吴中海, 吕同艳, 等. 光释光测年法: 综述及进展[J]. 地质通报, 2015,34(1):183-203. |
[72] |
WANG P, ZHANG B, QIU W, et al. Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, East Tibet[J]. Journal of Asian Earth Sciences, 2011,40:865-872.
DOI URL |
[73] |
MA J X, CHEN J, CUI Z J, et al. Sedimentary evidence of outburst deposits induced by the Diexi paleolandslide-dammed lake of the upper Minjiang River in China[J]. Quaternary International, 2018,464:460-481.
DOI URL |
[74] |
CHEN J, DAI F, LV T, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013,298:107-113.
DOI URL |
[75] |
WANG P F, CHEN J, DAI F C, et al. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: implications to Holocene tectonic perturbations[J]. Geomorphology, 2014,217:193-203.
DOI URL |
CHEN J, LI X, YANG Z F. Baota landslide in the Three Gorges area and its OSL dating[J]. Environmental Geology, 2008,54(2):417-425. | |
[77] | 杜建军, 黎敦朋, 马寅生, 等. 18.7万年前的高速远程古滑坡:来自陕西华县莲花寺滑坡体上覆黄土光释光(OSL)测年的证据[J]. 第四纪研究, 2013,33(5):1005-1015. |
[78] | 殷志强, 程国明, 胡贵寿, 等. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报, 2010,18(1):41-51. |
[79] | 周保, 彭建兵, 赖忠平, 等. 黄河上游特大型滑坡群发特性的年代学研究[J]. 第四纪研究, 2014,34(2):346-353. |
[80] |
GUO X, SUN Z, LAI Z, et al. Optical dating of landslide-dammed lake deposits in the upper Yellow River, Qinghai-Tibetan Plateau, China[J]. Quaternary International, 2016,392:233-238.
DOI URL |
[81] |
DONG G H, ZHANG F Y, MA M M, et al. Ancient landslide-dam events in the Jishi Gorge, upper Yellow River valley, China[J]. Quaternary Research, 2014,81(3):445-451.
DOI URL |
[82] |
ZHANG Y Z, HUANG C C, PANG J L, et al. OSL dating of the massive landslide-damming event in the Jishixia Gorge, on the upper Yellow River, NE Tibetan Plateau[J]. The Holocene, 2015,25(5):745-757.
DOI URL |
[83] | 赵瑞欣, 周保, 李滨. 黄河上游龙羊峡至积石峡段巨型滑坡OSL测年[J]. 地质通报, 2013,32(12):1943-1951. |
[84] | 殷志强, 程国明, 李小林, 等. 中更新世早中期以来黄河上游与三峡库区滑坡形成机理与气候变化关系研究[J]. 第四纪研究, 2010,30(1):37-45. |
[85] | 夏银珍, 刘维明, 赖忠平, 等. 大渡河石广东古滑坡堰塞湖沉积物光释光年代研究[J]. 地球环境学报, 2017,8(5):419-426. |
[86] | 杨丽娟, 李华亮, 易顺华. 陕西五曲湾滑坡发育特征和14C测龄[J]. 灾害学, 2010,25(3):49-52. |
[87] | 吴玮江, 叶伟林, 孟兴民, 等. 武都汉林沟流域古滑坡年龄的14C厘定[J]. 地球科学进展, 2011,26(12):1276-1281. |
[88] | 李昂, 侯圣山, 王立朝, 等. 临夏盆地巴谢河流域典型滑坡多期次活动年代学证据[J]. 中国地质灾害与防治学报, 2018,29(2):61-65. |
[89] | 蒋瑶, 吴中海, 刘艳辉, 等. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报, 2014,33(4):503-516. |
[90] |
NICOLUSSI K, SPÖETL C, THURNER A, et al. Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria)[J]. Geomorphology, 2015,243:87-91.
DOI URL |
[91] |
BERTOLINI G, CASAGLI N, ERMINI L, et al. Radiocarbon data on lateglacial and Holocene landslides in the northern Apennines[J]. Natural Hazards, 2004,31:645-662.
DOI URL |
[92] |
GEERTSEMA M, CLAGUE J J. 1000-year record of landslide dams at Halden Creek, northeastern British Columbia[J]. Landslides, 2006,3:217-227.
DOI URL |
[93] |
DUMAN T Y. The largest landslide dam in Turkey: Tortum landslide[J]. Engineering Geology, 2009,104(1/2):66-79.
DOI URL |
[94] |
PÁNEK T, HRADECKÝ J, ŠILHÁN K, et al. Time constraints for the evolution of a large slope collapse in Karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine[J]. Geomorphology, 2009,108(3/4):171-181.
DOI URL |
[95] | 彭红霞, 吴昆, 邓清禄, 等. 滑坡相关方解石MC-ICPMS 230Th/238U年代学初探:以三峡库区黄土坡滑坡为例[J]. 第四纪研究, 2018,38(3):695-704. |
[96] | 殷志强, 许强, 赵无忌, 等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制[J]. 第四纪研究, 2016,36(2):474-483. |
[97] |
HERMANNS R L, SCHELLENBERGER A. Quaternary tephrochronology helps define conditioning factors and triggering mechanisms of rock avalanches in NW Argentina[J]. Quaternary International, 2008,178(1):261-275.
DOI URL |
[98] |
HERMANNS R L, TRAUTH M H, NIEDERMANN S, et al. Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina[J]. Journal of Geology, 2000,108(1):35-52.
DOI URL |
[99] | MERCIER D, COSSART E, DECAULNE A, et al. The Höfðahólar rock avalanche (sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope[J]. The Holocene, 2013,23(3):431-445. |
[100] | ABBOTT P L. Natural disasters[M]. New York: McGraw-Hill, 2007. |
[101] | GILLESPIE A R, BIERMAN P R. Precision of terrestrial exposure ages and erosion rates estimated from analysis of cosmogenic isotopes produced in situ[J]. Journal of Geophysical Research: Solid Earth, 1995,1002(B12):24637-24650. |
[102] |
ZERATHE S, BRAUCHER R, LEBOURG T, et al. Dating chert (diagenetic silica) using in-situ produced 10Be: possible complications revealed through a comparison with 36Cl applied to coexisting limestone[J]. Quaternary Geochronology, 2013,17:81-93.
DOI URL |
[103] |
HILGER P, GOSSE J C, HERMANNS R L. How significant is inheritance when dating rockslide boulders with terrestrial cosmogenic nuclide dating? A case study of an historic event[J]. The Landslides, 2019,16(4):729-738.
DOI URL |
[104] | 徐孝彬, 王建, YIOU F, 等. 地貌学与第四纪研究的新手段:陆地宇生核素研究[J]. 地理科学, 2002,22(5):587-591. |
[105] |
DUNNE J, ELMORE D, MUZIKAR P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces[J]. Geomorphology, 1999,27(1/2):3-11.
DOI URL |
[106] | 计凤桔, 李建平, 刘明达. 滑带土TL测年初探[J]. 核技术, 1993,16(4):232-235. |
[107] | 崔之久. 混杂堆积与环境[M]. 石家庄: 河北科学技术出版社, 2013. |
[108] |
ZHENG Y E, ZHOU L P, ZHANG J F. Optical dating of the upper 22 m of cored sediments from Daihai Lake, northern China[J]. Quaternary Geochronology, 2010,5(2/3):228-232.
DOI URL |
[109] |
LUKAS S, PREUSSER F, ANSELMETTI F S, et al. Testing the potential of luminescence dating of high-alpine lake sediments[J]. Quaternary Geochronology, 2012,8:23-32.
DOI URL |
[110] |
THOMAS P J, MURRAY A S, SANDGREN P. Age limit and age underestimation using different OSL signals from lacustrine quartz and polymineral fine grains[J]. Quaternary Science Reviews, 2003,22(10/11/12/13):1139-1143.
DOI URL |
[111] |
LANG A, ZOLITSCHKA B. Optical dating of annually laminated lake sediments: a test case from Holzmaar/Germany[J]. Quaternary Science Reviews, 2001,20(5/6/7/8/9):737-742.
DOI URL |
[112] | PREUSSER F, DEGERING D, FUCHS M, et al. Luminescence dating: basics, methods and applications[J]. Eiszeitalter und Gegenwart Quaternary Science Journal, 2008,57:95-149. |
[113] |
LUKAS S, SPENCER J Q G, ROBINSON R A J, et al. Problems associated with luminescence dating of Late Quaternary glacial sediments in the NW Scottish Highlands[J]. Quaternary Geochronology, 2007,2(1/2/3/4):243-248.
DOI URL |
[114] |
PÁNEK T, SMOLKOVÁ V, HRADECKY J, et al. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia)[J]. Quaternary Research, 2013,80(1):33-46.
DOI URL |
[115] | DUFRESNE A, DAVIES T R, MCSAVENEY M J. Influence of runout-path material on emplacement of the Round Top rock avalanche, New Zealand[J]. Earth Surface Processes and Landforms, 2010,35(2):190-201. |
[116] | WAGNER G A. Age determination of young rocks and artifacts: physical and chemical clocks in Quaternary geology and archaeology[M]. Berlin: Springer, 1998. |
[117] |
TAJAGI H, ARITA K, DANHARA T, et al. Timing of the Tsergo Ri landslide, Langtang Himal, determined by fission-track dating of pseudotachylyte[J]. Journal of Asian Earth Sciences, 2007,29(2/3):466-472.
DOI URL |
[118] |
DEMURO M, FROESE D G, ARNOLD L J, et al. Single-grain OSL dating of glaciofluvial quartz constrains Reid glaciation in NW Canada to MIS 6[J]. Quaternary Research, 2012,77(2):305-316.
DOI URL |
[119] | OLLEY J M, CAITCHEON G G, ROBERTS R G. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence[J]. Radiation, 1999,30(2):207-217. |
[120] |
OLLEY J M, de DECKKER P, ROBERTS R G, et al. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon[J]. Sedimentary Geology, 2004,169(3/4):175-189.
DOI URL |
[121] |
DULLER G A T. Single-grain optical dating of Quaternary sediments: why aliquotsize matters in luminescence dating[J]. Boreas, 2008,37(4):589-612.
DOI URL |
[1] | 周予茜, 时毓, 黄椿文, 刘希军, 蓝媛春, 唐源远, 翁伯寅. 桂东南莲垌和古龙岩体加里东期I型花岗岩类的岩石成因及构造意义[J]. 地学前缘, 2024, 31(2): 224-248. |
[2] | 李海东, 田世洪, 刘斌, 胡鹏, 吴建勇, 陈正乐. 粤北地区琶江铀矿床沥青铀矿原位微区年代学和元素分析:对铀成矿作用的启示[J]. 地学前缘, 2024, 31(2): 270-283. |
[3] | 吴怀春, 李山, 王成善, 褚润健, 王璞珺, 高远, 万晓樵, 贺怀宇, 邓成龙, 杨光, 黄永建, 高有峰, 席党鹏, 王天天, 房强, 杨天水, 张世红. 松辽盆地白垩纪综合年代地层格架[J]. 地学前缘, 2024, 31(1): 431-445. |
[4] | 徐哈宁, 邓居智, 肖慧. 基于邻近域特征的堆积层滑坡多维地电信息成像监测技术研究[J]. 地学前缘, 2023, 30(6): 473-484. |
[5] | NEUPANE Bhupati, ZHAO Junmeng, LIU Chunru, PEI Shunping, MAHARJAN Bishal, DHAKAL Sanjev. 尼泊尔喜马拉雅山脉中央丘里亚冲断层的电子自旋共振测年[J]. 地学前缘, 2023, 30(4): 260-269. |
[6] | 骆念岗, 高莲凤, 张振国, 尹志刚, 崔建宇, 吴君飞, 邢杰, 丁恺, 高晨阳, 王月. 早白垩世华北克拉通东部岩石圈减薄过程和机制:来自辽宁本溪北大山岩体的证据[J]. 地学前缘, 2023, 30(3): 340-365. |
[7] | 孙永帅, 胡瑞林. 不同角度基覆面上土石混合体变形试验研究及对滑坡演化的启示[J]. 地学前缘, 2023, 30(3): 494-504. |
[8] | 赵晓燕, 杨竹森, 杨洋, 曹煜, 范建彪, 赵苗. 西藏雅拉香波早白垩世变质基性岩和斜长角闪岩的发现及其地质意义[J]. 地学前缘, 2023, 30(2): 163-182. |
[9] | 李王鹏, 李慧莉, 王毅, 刘少峰, 张仲培, 杨伟利, 蔡习尧, 钱涛, 李晓剑. 塔里木盆地西南缘叶城地区新元古代冰期事件[J]. 地学前缘, 2022, 29(3): 356-380. |
[10] | 朱小辉, 陈丹玲, 冯益民, 任云飞, 张欣. 祁连山地区花岗质岩浆作用及构造演化[J]. 地学前缘, 2022, 29(2): 241-260. |
[11] | 石康兴, 王长明, 杜斌, 陈奇, 祝佳萱, 饶世成, 段泓羽. 华北克拉通东南缘1.90~1.80 Ga陆-陆碰撞作用:来自胶北地体花岗-绿岩带的证据[J]. 地学前缘, 2021, 28(6): 295-317. |
[12] | 陈剑, 陈瑞琛, 崔之久. 高速远程滑坡的地貌学与沉积学研究进展[J]. 地学前缘, 2021, 28(4): 349-360. |
[13] | 殷志强, 魏刚, 秦小光, 李文娟, 赵无忌. 青藏高原东北缘黄河上游滑坡与堰塞湖研究进展[J]. 地学前缘, 2021, 28(2): 46-57. |
[14] | 范宣梅, 戴岚欣, 钟育瑾, 李婧娟, 王兰生. 岷江上游叠溪古滑坡坝-堰塞湖研究进展[J]. 地学前缘, 2021, 28(2): 71-84. |
[15] | 陈剑, 崔之久, 陈瑞琛, 郑欣欣. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2): 85-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||