地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 353-372.DOI: 10.13745/j.esf.sf.2020.3.26
任志1,2(), 周涛发1,3,*(
), 袁峰1,3, 张怀东4
收稿日期:
2019-12-01
修回日期:
2019-12-28
出版日期:
2020-03-25
发布日期:
2020-03-25
通信作者:
周涛发
作者简介:
任 志(1989—),男,博士,讲师,矿物学、岩石学、矿床学专业。E-mail: renzhi@outlook.com
基金资助:
REN Zhi1,2(), ZHOU Taofa1,3,*(
), YUAN Feng1,3, ZHANG Huaidong4
Received:
2019-12-01
Revised:
2019-12-28
Online:
2020-03-25
Published:
2020-03-25
Contact:
ZHOU Taofa
摘要:
东秦岭—大别钼成矿带斑岩钼矿床的成矿地球动力学、地球化学背景和成岩成矿机制等备受研究学者的重视,但仍有许多成矿学问题需要加强研究,特别是超大型钼矿床成矿系统的组成特征、形成与演化等还需要加以系统总结。本文以翟裕生院士的成矿系统理论为指导,选取具有代表性的沙坪沟斑岩钼矿床作为研究对象,在总结前人研究成果和作者前期工作的基础上,归纳沙坪沟钼矿床地质特征,分析成矿系统的构成,通过综合对比研究,提取系统成矿特色。沙坪沟钼矿床形成于陆内伸展环境,是中国东部中生代大规模岩浆-成矿事件的产物,其含矿斑岩起源于古老下地壳+大别杂岩+岩石圈地幔,钼主要源自古老下地壳+大别杂岩,岩浆演化与热液活动持续了约24 Ma,形成了一个直径约为3 km左右的球状巨型斑岩钼成矿系统。成矿流体经历了由早期的高温、中盐度、较高氧逸度、低碱度、低pH值、低密度,中期的中高温-中温、低盐度与高盐度共存、低密度与高密度共存、低氧逸度、富CO2,向晚期的低温、低盐度、贫CO2、较高氧逸度、较高碱度、较高pH值、较高密度进行演化的过程,含Cl络合物由于温度、氧逸度下降和流体沸腾产生的相分离导致Mo的沉淀,形成了巨量钼金属的聚集。与国内外主要的斑岩钼成矿系统相比,沙坪沟钼矿床的成矿系统具有单矿体、巨系统、先天富、长孕育、多来源、高演化、多期次、超富集等鲜明的成矿特色。应用成矿系统理论,不断深入研究这一世界级超大型高品位斑岩型钼矿床的成矿作用和成矿过程,对于全面揭示斑岩型钼矿床的成因以及同类矿床的找寻都具有十分重要的意义。
中图分类号:
任志, 周涛发, 袁峰, 张怀东. 安徽大别山地区沙坪沟超大型斑岩钼矿床成矿系统特征[J]. 地学前缘, 2020, 27(2): 353-372.
REN Zhi, ZHOU Taofa, YUAN Feng, ZHANG Huaidong. Characteristics of the metallogenic system of the Shapinggou super-large porphyry molybdenum deposit in the Dabie orogenic belt, Anhui Province[J]. Earth Science Frontiers, 2020, 27(2): 353-372.
图1 大别造山带地质与钼、金、铅锌矿床分布简图(据文献[37]修改) CAOB—中亚造山带;COB—中央造山带。
Fig.1 Map of geology and distribution of Mo, Au and Pb-Zn deposits in the Dabie orogenic belt. Modified from [37].
图3 沙坪沟钼矿床纵Ⅱ线蚀变带分布图(据文献[47,48]修改)
Fig.3 Distribution map of alteration zones along Longitudinal line 2 of the Shapinggou Mo deposit. Modified from [47,48].
图4 沙坪沟钼矿床矿石手标本与显微照片 A—辉钼矿粗脉被石英细脉和辉钼矿网脉穿切错断;B—辉钼矿脉被石英-硬石膏脉错断,石英-硬石膏脉被石英-黄铁矿±辉钼矿脉穿切;C—辉钼矿粗脉被石英细脉穿切错断;D—石英脉中叶片状辉钼矿;E—网状石英—辉钼矿脉;F—石英-辉钼矿脉,辉钼矿主要分布在脉边缘;G—叶片状辉钼矿显微照片;H—细小鳞片状辉钼矿集合体显微照片;I—石英-黄铁矿-辉钼矿脉显微照片;J—长叶片状辉钼矿显微照片;K—鳞片状辉钼矿集合体显微照片;L—石英-辉钼矿脉显微照片。
Fig.4 Ore hand samples and photomicrographs of the Shapinggou Mo deposit
图5 沙坪沟矿田岩浆岩成因及地球动力学背景模式图(据文献[12]修改) (a),(c)—136~125 Ma,依泽纳吉板块近N向俯冲,太平洋板块SW向俯冲,大别山地区进入伸展背景,岩石圈拆沉且减薄,软流圈上涌,造成热场改变,岩石圈地幔+大别杂岩+扬子古老下地壳的混合源区不均一部分熔融,形成沙坪沟矿田第一期长英质和镁铁质岩浆岩;(b),(d)—125 Ma之后,太平洋板块转至NW向俯冲,在110~117 Ma期间,伸展程度增强,岩石圈进一步减薄,源区部分熔融程度增加,岩浆房中古老下地壳和大别杂岩组分增加,形成了沙坪沟矿田第二期的岩浆岩。
Fig.5 Genesis and geodynamic setting patterns of magmatic rocks in the Shapinggou ore field. Modified from [12].
岩体名称及岩性 | 测定对象及方法 | 岩体年龄/Ma | 资料来源 |
---|---|---|---|
洪家大山中粒二长花岗岩 | 黑云母40Ar-39Ar | 136.80±1.60 | [ |
洪家大山花岗斑岩 | LA-ICP MS锆石U-Pb | 136.10±2.20 | [ |
中粗粒似斑状二长花岗岩 | LA-ICP MS锆石U-Pb | 133.60±1.80 | [ |
二长花岗岩 | LA-ICP MS锆石U-Pb | 133.00±1.20 | [ |
仓房中粒二长花岗岩 | LA-ICP MS锆石U-Pb | 136.50±1.10 | [ |
中粒二长花岗岩 | LA-ICP MS锆石U-Pb | 128.90±2.50 | [ |
洪家大山石英斑岩 | LA-ICP MS锆石U-Pb | 137.80±1.90 | [ |
中粗粒二长花岗岩 | LA-ICP MS锆石U-Pb | 127.00±1.00 | [ |
洪家大山细粒二长花岗岩 | 黑云母40Ar-39Ar | 130.40±1.20 | [ |
辉石岩 | LA-ICP MS锆石U-Pb | 135.40±1.60 | [ |
角闪石岩 | LA-ICP MS锆石U-Pb | 132.52±0.95 | [ |
含斜长辉石岩 | LA-ICP MS锆石U-Pb | 130.70±0.69 | [ |
斜长角闪石岩 | LA-ICP MS锆石U-Pb | 133.70±1.70 | [ |
闪长岩 | LA-ICP MS锆石U-Pb | 127.40±1.70 | [ |
含斜长辉石岩 | LA-ICP MS锆石U-Pb | 128.50±1.50 | [ |
洪家大山细晶闪长岩脉 | 角闪石40Ar-39Ar | 125.40±1.00 | [ |
似斑状二长闪长岩 | LA-ICP MS锆石U-Pb | 127.70±2.90 | [ |
闪长岩 | LA-ICP MS锆石U-Pb | 129.16±2.70 | [ |
花岗闪长岩 | LA-ICP MS锆石U-Pb | 129.20±1.60 | [ |
花岗闪长岩 | LA-ICP MS锆石U-Pb | 128.70±1.60 | [ |
洪家大山花岗闪长岩 | LA-ICP MS锆石U-Pb | (127.40±1.50)~(127.90±1.40) | [ |
沙坪沟花岗闪长岩 | LA-ICP MS锆石U-Pb | 125.40±0.87 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 122.51±0.81 | [ |
中粒石英正长岩 | LA-ICP MS锆石U-Pb | 121.50±1.30 | [ |
正长斑岩 | LA-ICP MS锆石U-Pb | 120.70±1.10 | [ |
石英正长斑岩 | LA-ICP MS锆石U-Pb | 116.10±2.20 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | (113.70±1.40)~(116.30±1.30) | [ |
石英正长(斑)岩 | LA-ICP MS锆石U-Pb | 115.90±1.30 | [ |
黑云母正长岩 | LA-ICP MS锆石U-Pb | 115.60±1.80 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 111.70±1.90 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 117.20±0.81 | [ |
石英正长斑岩 | LA-ICP MS锆石U-Pb | (113.25±0.41)~(114.54±0.39) | [ |
盖井隐爆角砾岩 | LA-ICP MS锆石U-Pb | (113.80±1.60)~(131.70±3.20) | [ |
爆破角砾岩(基质) | LA-ICP MS锆石U-Pb | 112.90±1.20 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (110.00±1.30)~(112.60 ±1.90) | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | 109.30±1.60 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (115.60±1.80)~(116.30±2.10) | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | 111.50±1.50 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (112.30±0.69)~(113.00±0.74) | [ |
闪长玢岩 | LA-ICP MS锆石U-Pb | 111.89±0.31 | [ |
表1 沙坪沟矿田岩浆岩成岩年代
Table 1 Magmatic ages of magmatic rocks in the Shapinggou ore field
岩体名称及岩性 | 测定对象及方法 | 岩体年龄/Ma | 资料来源 |
---|---|---|---|
洪家大山中粒二长花岗岩 | 黑云母40Ar-39Ar | 136.80±1.60 | [ |
洪家大山花岗斑岩 | LA-ICP MS锆石U-Pb | 136.10±2.20 | [ |
中粗粒似斑状二长花岗岩 | LA-ICP MS锆石U-Pb | 133.60±1.80 | [ |
二长花岗岩 | LA-ICP MS锆石U-Pb | 133.00±1.20 | [ |
仓房中粒二长花岗岩 | LA-ICP MS锆石U-Pb | 136.50±1.10 | [ |
中粒二长花岗岩 | LA-ICP MS锆石U-Pb | 128.90±2.50 | [ |
洪家大山石英斑岩 | LA-ICP MS锆石U-Pb | 137.80±1.90 | [ |
中粗粒二长花岗岩 | LA-ICP MS锆石U-Pb | 127.00±1.00 | [ |
洪家大山细粒二长花岗岩 | 黑云母40Ar-39Ar | 130.40±1.20 | [ |
辉石岩 | LA-ICP MS锆石U-Pb | 135.40±1.60 | [ |
角闪石岩 | LA-ICP MS锆石U-Pb | 132.52±0.95 | [ |
含斜长辉石岩 | LA-ICP MS锆石U-Pb | 130.70±0.69 | [ |
斜长角闪石岩 | LA-ICP MS锆石U-Pb | 133.70±1.70 | [ |
闪长岩 | LA-ICP MS锆石U-Pb | 127.40±1.70 | [ |
含斜长辉石岩 | LA-ICP MS锆石U-Pb | 128.50±1.50 | [ |
洪家大山细晶闪长岩脉 | 角闪石40Ar-39Ar | 125.40±1.00 | [ |
似斑状二长闪长岩 | LA-ICP MS锆石U-Pb | 127.70±2.90 | [ |
闪长岩 | LA-ICP MS锆石U-Pb | 129.16±2.70 | [ |
花岗闪长岩 | LA-ICP MS锆石U-Pb | 129.20±1.60 | [ |
花岗闪长岩 | LA-ICP MS锆石U-Pb | 128.70±1.60 | [ |
洪家大山花岗闪长岩 | LA-ICP MS锆石U-Pb | (127.40±1.50)~(127.90±1.40) | [ |
沙坪沟花岗闪长岩 | LA-ICP MS锆石U-Pb | 125.40±0.87 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 122.51±0.81 | [ |
中粒石英正长岩 | LA-ICP MS锆石U-Pb | 121.50±1.30 | [ |
正长斑岩 | LA-ICP MS锆石U-Pb | 120.70±1.10 | [ |
石英正长斑岩 | LA-ICP MS锆石U-Pb | 116.10±2.20 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | (113.70±1.40)~(116.30±1.30) | [ |
石英正长(斑)岩 | LA-ICP MS锆石U-Pb | 115.90±1.30 | [ |
黑云母正长岩 | LA-ICP MS锆石U-Pb | 115.60±1.80 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 111.70±1.90 | [ |
石英正长岩 | LA-ICP MS锆石U-Pb | 117.20±0.81 | [ |
石英正长斑岩 | LA-ICP MS锆石U-Pb | (113.25±0.41)~(114.54±0.39) | [ |
盖井隐爆角砾岩 | LA-ICP MS锆石U-Pb | (113.80±1.60)~(131.70±3.20) | [ |
爆破角砾岩(基质) | LA-ICP MS锆石U-Pb | 112.90±1.20 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (110.00±1.30)~(112.60 ±1.90) | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | 109.30±1.60 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (115.60±1.80)~(116.30±2.10) | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | 111.50±1.50 | [ |
花岗斑岩 | LA-ICP MS锆石U-Pb | (112.30±0.69)~(113.00±0.74) | [ |
闪长玢岩 | LA-ICP MS锆石U-Pb | 111.89±0.31 | [ |
矿床类型 | 矿石品位 | 与成矿相关岩浆岩 | 矿体位置 | 同成因基性岩 | 产出位置 | 构造背景 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climax型钼矿床 | 常>0.15% | 高钾钙碱性、准铝质-过铝质A型花岗岩(SiO2含量>75%) | 斑岩体内及其与围岩接触带中 | 普遍 | 裂谷或弧后盆地 | 弧后伸展或裂谷 | |||||||
Endako型钼矿床 | <0.15% | 高度演化I型石英二长岩(准铝质;通常SiO2含量<70%) | 斑岩体内及其与围岩接触带中 | 无 | 陆缘弧 | 大陆边缘挤压 | |||||||
沙坪沟钼矿床 | 平均0.14% | 高钾钙碱性、准铝质-弱过铝质A型花岗岩(SiO2含量约77%) | 斑岩体内及其与围岩接触带中 | 有 | 陆陆碰撞带 | 板内伸展 | |||||||
矿床类型 | 岩浆源区 | w(Rb)/10-6 | w(Nb)/10-6 | w(Sr)/10-6 | w(TiO2) | K2O/Na2O | 参考文献 | ||||||
Climax型钼 矿床 | 大陆地壳±岩石圈地幔 | 200~800 | 25~200 | <12 | <0.2% | >1 | [ | ||||||
Endako型钼 矿床 | 洋壳、弧地壳、富集地幔 | 100~350 | < 20 | >100 | 常>0.2% | <1 | [ | ||||||
沙坪沟钼矿床 | 大陆地壳+岩石圈地幔 | 301~483 | 69~163 | 16~64 | 约0.1% | >1 | [ |
表2 不同类型斑岩钼矿床成矿岩浆岩特征对比(据文献[12]修改)
Table 2 Geological and geochemical features of ore-related porphyries in different types of porphyry Mo deposits. Modified after [12].
矿床类型 | 矿石品位 | 与成矿相关岩浆岩 | 矿体位置 | 同成因基性岩 | 产出位置 | 构造背景 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climax型钼矿床 | 常>0.15% | 高钾钙碱性、准铝质-过铝质A型花岗岩(SiO2含量>75%) | 斑岩体内及其与围岩接触带中 | 普遍 | 裂谷或弧后盆地 | 弧后伸展或裂谷 | |||||||
Endako型钼矿床 | <0.15% | 高度演化I型石英二长岩(准铝质;通常SiO2含量<70%) | 斑岩体内及其与围岩接触带中 | 无 | 陆缘弧 | 大陆边缘挤压 | |||||||
沙坪沟钼矿床 | 平均0.14% | 高钾钙碱性、准铝质-弱过铝质A型花岗岩(SiO2含量约77%) | 斑岩体内及其与围岩接触带中 | 有 | 陆陆碰撞带 | 板内伸展 | |||||||
矿床类型 | 岩浆源区 | w(Rb)/10-6 | w(Nb)/10-6 | w(Sr)/10-6 | w(TiO2) | K2O/Na2O | 参考文献 | ||||||
Climax型钼 矿床 | 大陆地壳±岩石圈地幔 | 200~800 | 25~200 | <12 | <0.2% | >1 | [ | ||||||
Endako型钼 矿床 | 洋壳、弧地壳、富集地幔 | 100~350 | < 20 | >100 | 常>0.2% | <1 | [ | ||||||
沙坪沟钼矿床 | 大陆地壳+岩石圈地幔 | 301~483 | 69~163 | 16~64 | 约0.1% | >1 | [ |
矿床 | 成矿区带 | 构造背景 | 成矿 时代/Ma | 金属量与 平均品位 | 成矿岩体 | 赋矿围岩 | 围岩蚀变 | 与钼矿化有 关的蚀变 | 源区特征及 Mo来源 | 矿化类型 | 矿石矿物 | 角砾岩 | 含氟 矿物 | 参考文献 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
沙坪沟 | 大别山 | 下地壳拆沉后的板内伸展环境 | (113.90±1.70)~ (111.10±1.20) | 2.46 Mt@ 0.140% | 花岗 斑岩 | 正长岩、二长花岗岩等 | 石英内核、钾硅酸盐化、硅化、绢英岩化、青磐岩化、泥化等 | 硅化,次为钾硅酸盐化和绢英岩化 | 古老下地壳+大别杂岩+岩石圈地幔;古老地壳(含大别杂岩) | 网脉状、脉状、细脉浸染状矿石;以石英-辉钼矿脉为主,少量石英-辉钼矿-黄铁矿脉、石英-绢云母-辉钼矿脉、辉钼矿±石英脉等 | 辉钼矿、黄铁矿,少量方铅矿、闪锌矿、磁铁矿、赤铁矿等 | 发育 | 萤石 | [ | |||||||||||||
金堆城 | 东秦岭 | 由挤压向伸展转换的环境 | 138.40±0.50 | 0.98 Mt@ 0.099% | 花岗 斑岩 | 熊耳群火山岩,高山河组石英岩、板岩 | 钾硅酸盐化、硅化、绢云母—黄铁矿化和青磐岩化 | 绢英岩化和硅化,次为钾硅酸盐化 | 古老下地壳;同岩浆源 | 以脉状、网脉状辉钼矿矿化及纹层状石英-辉钼矿脉为主,少量微细辉钼矿脉状矿化 | 辉钼矿、黄铁矿,少量黄铜矿、磁铁矿、闪锌矿、方铅矿 | 无 | 萤石 | [ | |||||||||||||
沙让 | 冈底斯 | 大陆碰撞挤压环境 | 51.00±1.00 | 0.06 Mt@ 0.061% | 花岗 斑岩 | 沉积变质杂岩 | 钾硅酸盐化、绢英岩化、硅化、黏土化和青磐岩化 | 绢英岩化,次为钾硅酸盐化 | 古老地壳;同岩浆源 | 以脉状、网脉状辉钼矿矿化及纹层状石英-辉钼矿脉为主,少量浸染状 | 辉钼矿、黄铁矿,少量黄铜矿、磁铁矿、闪锌矿、白钨矿 | 发育 | 无或微量 | [ | |||||||||||||
岔路口 | 大兴 安岭 | 蒙古—鄂霍茨克洋闭合碰撞后挤压向伸展转换 | 145.70±1.50 | 1.78 Mt@ 0.087% | 细晶斑岩、花岗斑岩 | 细晶斑岩、花岗斑岩、早奥陶世变火山岩 | 石英内核、硅化、钾化、绢云母化、萤石化和磁铁矿化 | 硅化和 钾化 | 新生下地壳;富集岩石圈地幔 | 网脉状、细脉浸染状、脉状 | 辉钼矿、黄铁矿、方铅矿、闪锌矿、磁铁矿,少量黄铜矿 | 发育 | 萤石 | [ | |||||||||||||
曹四夭 | 华北板块北缘 | 蒙古—鄂霍茨克洋闭合碰撞后挤压向伸展转换 | 149~146 | 1.75 Mt@ 0.078% | 正长花 岗斑岩 | 石榴斜长浅粒岩和黑云石榴斜长片麻岩 | 硅化、钾化、绢英岩化、青磐岩化、萤石化、方柱石化、碳酸盐化、泥化 | 硅化和绢云母化 | 下地壳;同岩浆源 | 细脉浸染状和浸染状 | 辉钼矿和黄铁矿, 其次为磁铁矿、黄铜矿、磁黄铁矿, 另有少量黑钨矿 | 无 | 萤石 | [ | |||||||||||||
鹿鸣 | 吉黑 | 太平洋板块俯冲体制下挤压向伸展转换的过程中 | 183~178 | 0.89 Mt@ 0.084% | 二长花岗岩、花岗斑岩 | 二长花岗岩、花岗斑岩 | 硅化、钾化、黄铁矿化、青磐岩化、云英岩化 | 硅化和 钾化 | 新生下地壳;同岩浆源 | 主要为浸染状,次为网脉状 | 辉钼矿、黄铁矿,少量黄铜矿 | 发育 | 无或微量 | [ | |||||||||||||
矿床 | 成矿区带 | 构造背景 | 成矿 时代/Ma | 金属量与 平均品位 | 成矿岩体 | 赋矿围岩 | 围岩蚀变 | 与钼矿化有 关的蚀变 | 源区特征及 Mo来源 | 矿化类型 | 矿石矿物 | 角砾岩 | 含氟 矿物 | 参考文献 | |||||||||||||
Climax | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 33~24 | 2.58 Mt@ 0.240% | 细晶斑 岩、花 岗斑岩 | 前寒武纪的Idaho Springs 组的片岩和片麻岩 | 钾化、绢英岩化、上下泥化、青磐岩化、脉状硅化、弥散状硅化、磁铁矿和黄玉化、云英岩化和石榴石化 | 钾长石化,次为绢英岩化 | 古老地壳;同岩浆源 | 脉状、细脉状和角砾状 | 辉钼矿、黄铁矿、黑钨矿、锡石、菱锰矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿,少量黄铜矿、钨锰矿 | 无 | 萤石、 黄玉 | [ | |||||||||||||
Urad- Henderson | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 28 | 1.24 Mt@ 0.171% | 多期次岩钟状流纹斑岩、细晶斑岩、花岗斑岩 | 前寒武纪花岗岩和片麻岩 | 黏土化、绢云母-石英-黄铁矿化、石英-黄玉化、硅化、钾化、云英岩、萤石化和黄玉化 | 钾长石化、绢英岩化和黄玉化 | 古老地壳;同岩浆源 | 脉状、细脉状和角砾状 | 辉钼矿、黄铁矿、黑钨矿、菱锰矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿,少量黄铜矿、锡石 | 发育 | 萤石、黄玉 | [ | |||||||||||||
Questa | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 25~24 | 0.44 Mt@ 0.144% | 流纹斑 岩、细晶 斑岩、花 岗斑岩 | 第三纪安山岩、流纹岩、凝灰岩和前寒武纪花岗岩及片麻岩 | 钾硅酸盐化、黑云母-绢云母化、石英-绢云母-黄铁矿-高岭石化、青磐岩化,萤石和黄玉化 | 绢英岩化、钾长石化 | 主要为热液角砾岩型矿化,常与石膏/硬石膏以及绿柱石共生,少量网脉状矿化 | 辉钼矿,少量黄铁矿、方铅矿、黄铜矿、白钨矿 | 发育 | 萤石 | [ | ||||||||||||||
Endako | 中加拿大科迪勒拉成矿带 | Kula和 arallon板块向北美板块俯冲挤压背景 | 144 | 0.23 Mt@ 0.082% | 石英二 长岩 | 石英二长岩 | 钾长石化、石英-绢云母-黄铁矿化、高岭土化、碳酸盐化和少量表生蚀变 | 钾长石化、绢英岩化和高岭土化 | 俯冲板片;同岩浆源 | 网脉状和纹层状辉钼矿矿化,少量裂隙面矿化和浸染状矿化 | 辉钼矿、黄铁矿、磁铁矿,少量黄铜矿、斑铜矿、辉铋矿、白钨矿、镜铁矿、方铅矿 | 无 | 无或 微量 | [ | |||||||||||||
Malala | 北Sulawesi 岩浆带 | 俯冲后的晚碰撞到后碰撞环境 | 4.25~4.12 | 1 Mt@ 0.140% | 正长- 二长花 岗斑岩 | 花岗岩、花岗闪长岩 | 钾化、强硅化、绢云母-绿泥石-碳酸盐化和碳酸盐-粘土化 | 绢英岩化,次为钾化 | 网脉状石英-辉钼矿、脉状含辉钼矿矿矿化,少量纹层状石英-辉钼矿矿化 | 辉钼矿、黄铁矿,少量黄铜矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿 | 无 | 无或微量 | [ |
表3 沙坪沟与其他斑岩钼矿床特征对比表
Table 3 Comparison of characteristics between the Shapinggou and other porphyry Mo deposits
矿床 | 成矿区带 | 构造背景 | 成矿 时代/Ma | 金属量与 平均品位 | 成矿岩体 | 赋矿围岩 | 围岩蚀变 | 与钼矿化有 关的蚀变 | 源区特征及 Mo来源 | 矿化类型 | 矿石矿物 | 角砾岩 | 含氟 矿物 | 参考文献 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
沙坪沟 | 大别山 | 下地壳拆沉后的板内伸展环境 | (113.90±1.70)~ (111.10±1.20) | 2.46 Mt@ 0.140% | 花岗 斑岩 | 正长岩、二长花岗岩等 | 石英内核、钾硅酸盐化、硅化、绢英岩化、青磐岩化、泥化等 | 硅化,次为钾硅酸盐化和绢英岩化 | 古老下地壳+大别杂岩+岩石圈地幔;古老地壳(含大别杂岩) | 网脉状、脉状、细脉浸染状矿石;以石英-辉钼矿脉为主,少量石英-辉钼矿-黄铁矿脉、石英-绢云母-辉钼矿脉、辉钼矿±石英脉等 | 辉钼矿、黄铁矿,少量方铅矿、闪锌矿、磁铁矿、赤铁矿等 | 发育 | 萤石 | [ | |||||||||||||
金堆城 | 东秦岭 | 由挤压向伸展转换的环境 | 138.40±0.50 | 0.98 Mt@ 0.099% | 花岗 斑岩 | 熊耳群火山岩,高山河组石英岩、板岩 | 钾硅酸盐化、硅化、绢云母—黄铁矿化和青磐岩化 | 绢英岩化和硅化,次为钾硅酸盐化 | 古老下地壳;同岩浆源 | 以脉状、网脉状辉钼矿矿化及纹层状石英-辉钼矿脉为主,少量微细辉钼矿脉状矿化 | 辉钼矿、黄铁矿,少量黄铜矿、磁铁矿、闪锌矿、方铅矿 | 无 | 萤石 | [ | |||||||||||||
沙让 | 冈底斯 | 大陆碰撞挤压环境 | 51.00±1.00 | 0.06 Mt@ 0.061% | 花岗 斑岩 | 沉积变质杂岩 | 钾硅酸盐化、绢英岩化、硅化、黏土化和青磐岩化 | 绢英岩化,次为钾硅酸盐化 | 古老地壳;同岩浆源 | 以脉状、网脉状辉钼矿矿化及纹层状石英-辉钼矿脉为主,少量浸染状 | 辉钼矿、黄铁矿,少量黄铜矿、磁铁矿、闪锌矿、白钨矿 | 发育 | 无或微量 | [ | |||||||||||||
岔路口 | 大兴 安岭 | 蒙古—鄂霍茨克洋闭合碰撞后挤压向伸展转换 | 145.70±1.50 | 1.78 Mt@ 0.087% | 细晶斑岩、花岗斑岩 | 细晶斑岩、花岗斑岩、早奥陶世变火山岩 | 石英内核、硅化、钾化、绢云母化、萤石化和磁铁矿化 | 硅化和 钾化 | 新生下地壳;富集岩石圈地幔 | 网脉状、细脉浸染状、脉状 | 辉钼矿、黄铁矿、方铅矿、闪锌矿、磁铁矿,少量黄铜矿 | 发育 | 萤石 | [ | |||||||||||||
曹四夭 | 华北板块北缘 | 蒙古—鄂霍茨克洋闭合碰撞后挤压向伸展转换 | 149~146 | 1.75 Mt@ 0.078% | 正长花 岗斑岩 | 石榴斜长浅粒岩和黑云石榴斜长片麻岩 | 硅化、钾化、绢英岩化、青磐岩化、萤石化、方柱石化、碳酸盐化、泥化 | 硅化和绢云母化 | 下地壳;同岩浆源 | 细脉浸染状和浸染状 | 辉钼矿和黄铁矿, 其次为磁铁矿、黄铜矿、磁黄铁矿, 另有少量黑钨矿 | 无 | 萤石 | [ | |||||||||||||
鹿鸣 | 吉黑 | 太平洋板块俯冲体制下挤压向伸展转换的过程中 | 183~178 | 0.89 Mt@ 0.084% | 二长花岗岩、花岗斑岩 | 二长花岗岩、花岗斑岩 | 硅化、钾化、黄铁矿化、青磐岩化、云英岩化 | 硅化和 钾化 | 新生下地壳;同岩浆源 | 主要为浸染状,次为网脉状 | 辉钼矿、黄铁矿,少量黄铜矿 | 发育 | 无或微量 | [ | |||||||||||||
矿床 | 成矿区带 | 构造背景 | 成矿 时代/Ma | 金属量与 平均品位 | 成矿岩体 | 赋矿围岩 | 围岩蚀变 | 与钼矿化有 关的蚀变 | 源区特征及 Mo来源 | 矿化类型 | 矿石矿物 | 角砾岩 | 含氟 矿物 | 参考文献 | |||||||||||||
Climax | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 33~24 | 2.58 Mt@ 0.240% | 细晶斑 岩、花 岗斑岩 | 前寒武纪的Idaho Springs 组的片岩和片麻岩 | 钾化、绢英岩化、上下泥化、青磐岩化、脉状硅化、弥散状硅化、磁铁矿和黄玉化、云英岩化和石榴石化 | 钾长石化,次为绢英岩化 | 古老地壳;同岩浆源 | 脉状、细脉状和角砾状 | 辉钼矿、黄铁矿、黑钨矿、锡石、菱锰矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿,少量黄铜矿、钨锰矿 | 无 | 萤石、 黄玉 | [ | |||||||||||||
Urad- Henderson | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 28 | 1.24 Mt@ 0.171% | 多期次岩钟状流纹斑岩、细晶斑岩、花岗斑岩 | 前寒武纪花岗岩和片麻岩 | 黏土化、绢云母-石英-黄铁矿化、石英-黄玉化、硅化、钾化、云英岩、萤石化和黄玉化 | 钾长石化、绢英岩化和黄玉化 | 古老地壳;同岩浆源 | 脉状、细脉状和角砾状 | 辉钼矿、黄铁矿、黑钨矿、菱锰矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿,少量黄铜矿、锡石 | 发育 | 萤石、黄玉 | [ | |||||||||||||
Questa | 科罗拉多成矿带 | Rio Grande 裂谷系统的板内伸展环境 | 25~24 | 0.44 Mt@ 0.144% | 流纹斑 岩、细晶 斑岩、花 岗斑岩 | 第三纪安山岩、流纹岩、凝灰岩和前寒武纪花岗岩及片麻岩 | 钾硅酸盐化、黑云母-绢云母化、石英-绢云母-黄铁矿-高岭石化、青磐岩化,萤石和黄玉化 | 绢英岩化、钾长石化 | 主要为热液角砾岩型矿化,常与石膏/硬石膏以及绿柱石共生,少量网脉状矿化 | 辉钼矿,少量黄铁矿、方铅矿、黄铜矿、白钨矿 | 发育 | 萤石 | [ | ||||||||||||||
Endako | 中加拿大科迪勒拉成矿带 | Kula和 arallon板块向北美板块俯冲挤压背景 | 144 | 0.23 Mt@ 0.082% | 石英二 长岩 | 石英二长岩 | 钾长石化、石英-绢云母-黄铁矿化、高岭土化、碳酸盐化和少量表生蚀变 | 钾长石化、绢英岩化和高岭土化 | 俯冲板片;同岩浆源 | 网脉状和纹层状辉钼矿矿化,少量裂隙面矿化和浸染状矿化 | 辉钼矿、黄铁矿、磁铁矿,少量黄铜矿、斑铜矿、辉铋矿、白钨矿、镜铁矿、方铅矿 | 无 | 无或 微量 | [ | |||||||||||||
Malala | 北Sulawesi 岩浆带 | 俯冲后的晚碰撞到后碰撞环境 | 4.25~4.12 | 1 Mt@ 0.140% | 正长- 二长花 岗斑岩 | 花岗岩、花岗闪长岩 | 钾化、强硅化、绢云母-绿泥石-碳酸盐化和碳酸盐-粘土化 | 绢英岩化,次为钾化 | 网脉状石英-辉钼矿、脉状含辉钼矿矿矿化,少量纹层状石英-辉钼矿矿化 | 辉钼矿、黄铁矿,少量黄铜矿、闪锌矿、磁黄铁矿、方铅矿、磁铁矿 | 无 | 无或微量 | [ |
[1] | KIRKHAM R, SINCLAIR W. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits[C]// TAYLOR R P, STRONG D F. Recent advances in the geology of granite-related mineral deposits. Vancouver: Canadian Institute of Mining, Metallurgy and Petroleum, 1988, 39: 50-71. |
[2] | SEEDORFF E, DILLES J H, PROFFETT J M, et al. Porphyry deposits: characteristics and origin of hypogene features[J]. Economic Geology, 2005, 100: 251-298. |
[3] | SINCLAIR W D. Porphyry deposits[C]// GOODFELLOW W D. Mineral deposits of Canada: a synconfproc of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. St. John’s: Geological Association of Canada, Mineral Deposits Division, 2007: 223-243. |
[4] | 黄凡, 王登红, 陈毓川. 中国东部中生代典型钼矿研究[M]. 北京: 地质出版社, 2013: 1-272. |
[5] | 张怀东, 王波华, 郝越进, 等. 安徽沙坪沟斑岩型钼矿床地质特征及综合找矿信息[J]. 矿床地质, 2012, 31(1): 41-51. |
[6] | 陈衍景, 李超, 张静, 等. 秦岭钼矿带斑岩体锶氧同位素特征与岩石成因机制和类型[J]. 中国科学:D辑, 2000, 30(增刊1): 64-72. |
[7] | 杜安道, 何红蓼, 殷宁万, 等. 辉钼矿的铼-锇同位素地质年龄测定方法研究[J]. 地质学报, 1994, 68(4): 339-347. |
[8] | 黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. |
[9] | 李诺, 陈衍景, 张辉, 等. 东秦岭斑岩钼矿带的地质特征和成矿构造背景[J]. 地学前缘, 2007, 14(5): 186-198. |
[10] | 李永峰, 毛景文, 胡华斌, 等. 东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J]. 矿床地质, 2005, 24(3): 292-304. |
[11] |
MAO J W, XIE G Q, BIERLEIN F, et al. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt[J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4607-4626.
DOI URL |
[12] |
REN Z, ZHOU T F, HOLLINGS P, et al. Magmatism in the Shapinggou district of the Dabie orogen, China: implications for the formation of porphyry Mo deposits in a collisional orogenic belt[J]. Lithos, 2018, 308/309: 346-363.
DOI URL |
[13] | 毛景文, 叶会寿, 王瑞廷, 等. 东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价[J]. 地质通报, 2009, 28(1): 72-79. |
[14] | 张正伟, 朱炳泉, 常向阳, 等. 东秦岭钼矿带成岩成矿背景及时空统一性[J]. 高校地质学报, 2001, 7(3): 307-315. |
[15] | 朱赖民, 张国伟, 郭波, 等. 东秦岭金堆城大型斑岩钼矿床LA-ICP-MS锆石U-Pb定年及成矿动力学背景[J]. 地质学报, 2008, 82(2): 204-220. |
[16] | 朱赖民, 张国伟, 李犇, 等. 秦岭造山带重大地质事件、矿床类型和成矿大陆动力学背景[J]. 矿物岩石地球化学通报, 2008, 27(4): 384-390. |
[17] |
CHEN Y J, WANG P, LI N, et al. The collision-type porphyry Mo deposits in Dabie Shan, China[J]. Ore Geology Reviews, 2017, 81: 405-430.
DOI URL |
[18] | 翟裕生. 论成矿系统[J]. 地学前缘, 1999, 6(1): 13-27. |
[19] | 翟裕生. 成矿系统研究与找矿[J]. 地质调查与研究, 2003, 26(3): 129-135. |
[20] | 翟裕生. 地球系统科学与成矿学研究[J]. 地学前缘, 2004, 11(1): 1-10. |
[21] | 徐树桐, 江来利, 刘贻灿, 等. 大别山区(安徽部分)的构造格局和演化过程[J]. 地质学报, 1992, 66(1): 1-14. |
[22] | 董树文, 孙先如, 张勇, 等. 大别山碰撞造山带基本结构[J]. 科学通报, 1993, 38(6): 542-545. |
[23] |
LI S G, XIAO Y L, LIOU D L, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109(1/2/3/4): 89-111.
DOI URL |
[24] |
LI S G, JAGOUTZ E, CHEN Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 1077-1093.
DOI URL |
[25] |
HACKER B R, RATSCHBACHER L, WEBB L, et al. What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks[J]. Geology, 1995, 23(8): 743-746.
DOI URL |
[26] |
HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary Science Letters, 1998, 161(1/2/3/4): 215-230.
DOI URL |
[27] |
AMES L, TILTON G R, ZHOU G Z. Timing of collision of the Sino-Korean and Yangtse Cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21(4): 339-342.
DOI URL |
[28] | 王清晨, 丛柏林. 大别山超高压变质带的大地构造框架[J]. 岩石学报, 1998, 11(4): 76-87. |
[29] |
ERNST W G, LIOU J G. Contrasting plate-tectonic styles of the Qingling-Dabie-Sulu and Franciscan metamorphic belts[J]. Geology, 1995, 23(4): 353.
DOI URL |
[30] | 张国伟, 张本仁, 袁学诚, 等. 秦岭造山带与大陆动力学[M]. 北京: 科学出版社, 2001. |
[31] |
JIANG Y H, JIN G D, LIAO S Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling Orogen, central China: implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117(1/2/3/4): 183-197.
DOI URL |
[32] | 张国伟, 董云鹏, 赖绍聪, 等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学:D辑, 2003, 33(12): 1121-1135. |
[33] |
ZHENG Y F, FU B, LI Y L, et al. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane[J]. Earth and Planetary Science Letters, 1998, 155(1): 113-129.
DOI URL |
[34] |
ZHENG Y F, FU B, GONG B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62(1/2): 105-161.
DOI URL |
[35] |
ZHENG Y F, WU Y B, ZHAO Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005, 240(2): 378-400.
DOI URL |
[36] | 王勇生, 江来利, 朱光, 等. 大别造山带现今构造格局的形成: 来自石英C轴组构的证据[J]. 岩石学报, 2009, 25(1): 219-231. |
[37] |
WANG P, CHEN Y J, FU B, et al. Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China: a case study of porphyry systems in continental collision orogens[J]. International Journal of Earth Sciences, 2014, 103(3): 777-797.
DOI URL |
[38] | 胡受奚, 林潜龙, 陈泽铭. 华北与华南古板块拼合带地质和成矿[M]. 南京: 南京大学出版社, 1988. |
[39] |
LIU X C, JAHN B M, DONG S W, et al. High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism[J]. Lithos, 2008, 105(3/4): 301-318.
DOI URL |
[40] |
ZHENG Y F, ZHAO Z F, WU Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1/2): 135-158.
DOI URL |
[41] |
LIU F L, LIOU J G. Zircon as the best mineral for P-T-time history of UHP metamorphism: a review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks[J]. Journal of Asian Earth Sciences, 2011, 40(1): 1-39.
DOI URL |
[42] |
MAO J W, PIRAJNO F, XIANG J F, et al. Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt: characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43(1): 264-293.
DOI URL |
[43] | 任志, 周涛发, 袁峰, 等. 安徽沙坪沟钼矿区中酸性侵入岩期次研究: 年代学及岩石化学约束[J]. 岩石学报, 2014, 30(4): 1097-1116. |
[44] | WANG G G, NI P, YU W, et al. Petrogenesis of early cretaceous post-collisional granitoids at Shapinggou, Dabie Orogen: implications for crustal architecture and porphyry Mo mineralization[J]. Lithos, 2014, 184/185/186/187: 393-415. |
[45] | 安徽省地质矿产勘查局313地质队. 安徽省金寨县沙坪沟钼矿详查地质报告[R]. 六安: 安徽省地质矿产勘查局313地质队, 2011. |
[46] | 陆三明, 阮林森, 赵丽丽, 等. 安徽金寨县沙坪沟钼铅锌矿田两期成岩成矿作用[J]. 地质学报, 2016, 90(6): 1167-1181. |
[47] | 任志, 周涛发, 张达玉, 等. 大别山地区沙坪沟斑岩型钼矿床蚀变及矿化特征研究[J]. 岩石学报, 2015, 31(9): 2707-2723. |
[48] | 任志. 大别造山带沙坪沟超大型斑岩钼矿床成矿系统研究[D]. 合肥: 合肥工业大学, 2018. |
[49] | 翟裕生, 邓军, 李晓波, 等. 区域成矿学[M]. 北京: 地质出版社, 1999. |
[50] | 张本仁. 秦巴区域地球化学文集[M]. 武汉: 中国地质大学出版社, 1990. |
[51] | 杨泽强. 河南省商城县汤家坪钼矿成矿模式研究[D]. 北京: 中国地质大学(北京), 2007. |
[52] |
LIU D Y, JIAN P, KRÖNER A, et al. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China[J]. Earth and Planetary Science Letters, 2006, 250(3/4): 650-666.
DOI URL |
[53] |
QIN J F, LAI S C, GRAPES R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China)[J]. Lithos, 2009, 112(3/4): 259-276.
DOI URL |
[54] |
SUN W D, LI S G, CHEN Y D, et al. Timing of synorogenic granitoids in the South Qinling, central China: constraints on the evolution of the Qinling-Dabie orogenic belt[J]. The Journal of Geology, 2002, 110(4): 457-468.
DOI URL |
[55] | 王晓霞, 卢欣祥. 北秦岭沙河湾环斑结构花岗岩的矿物学特征及其岩石学意义[J]. 矿物学报, 2003, 23(1): 57-62. |
[56] |
ZHANG Z Q, ZHANG G W, TANG S H, et al. Age of the Shahewan rapakivi granite in the Qinling Orogen, China, and its constraints on the end time of the main orogenic stage of this orogen[J]. Chinese Science Bulletin, 1999, 44(21): 2001-2004.
DOI URL |
[57] | 周滨, 汪方跃, 孙勇, 等. 秦岭沙河湾造山带型环斑花岗岩地球化学及构造属性讨论[J]. 岩石学报, 2008, 24(6): 1261-1272. |
[58] | ZHENG Y F, MAO J W, CHEN Y J, et al. Hydrothermal ore deposits in collisional orogens[J]. Chinese Science Bulletin, 2019, 64(3): 205-212. |
[59] | 毛景文, 谢桂青, 李晓峰, 等. 大陆动力学演化与成矿研究:历史与现状: 兼论华南地区在地质历史演化期间大陆增生与成矿作用[J]. 矿床地质, 2005, 24(3): 193-205. |
[60] | 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665-1678. |
[61] | 卢欣祥, 于在平, 冯有利, 等. 东秦岭深源浅成型花岗岩的成矿作用及地质构造背景[J]. 矿床地质, 2002, 21(2): 168-178. |
[62] |
GOLDFARB R J, HART C, DAVIS G, et al. East Asian gold: deciphering the anomaly of Phanerozoic gold in Precambrian cratons[J]. Economic Geology, 2007, 102(3): 341-345.
DOI URL |
[63] |
MARUYAMA S, ISOZAKI Y, KIMURA G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic synjournal from 750 Ma to the present[J]. The Island Arc, 1997, 6(1): 121-142.
DOI URL |
[64] |
SUN W D, DING X, HU Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.
DOI URL |
[65] | 李明立. 河南省大别山地区中生代中酸性小岩体特征及钼多金属成矿系统[D]. 北京: 中国地质大学(北京), 2009. |
[66] | 徐晓春, 楼金伟, 陆三明, 等. 安徽金寨银山钼-铅-锌多金属矿床Re-Os和有关岩浆岩40Ar-39Ar年龄测定[J]. 矿床地质, 2009, 28(5): 621-632. |
[67] | 张红, 孙卫东, 杨晓勇, 等. 大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究[J]. 地质学报, 2011, 85(12): 2039-2059. |
[68] | 孟祥金, 徐文艺, 吕庆田, 等. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J]. 地质学报, 2012, 86(3): 486-494. |
[69] | 陈红瑾, 陈衍景, 张静, 等. 安徽省金寨县沙坪沟钼矿含矿岩体锆石U-Pb年龄和Hf同位素特征及其地质意义[J]. 岩石学报, 2013, 29(1): 131-145. |
[70] | 刘啟能. 安徽金寨沙坪沟斑岩钼矿床及其与岩浆岩的关系[D]. 合肥:合肥工业大学, 2013. |
[71] | 王萍. 安徽金寨沙坪沟钼矿区岩浆岩特征及成因[D]. 合肥:合肥工业大学, 2013. |
[72] | 于文. 沙坪沟超大型斑岩钼矿的矿床成因和构造背景[D]. 南京: 南京大学, 2012. |
[73] | 刘晓强, 闫峻, 王爱国. 北淮阳沙坪沟钼矿床成矿斑岩体特征与成因[J]. 矿床地质, 2017, 36(4): 837-865. |
[74] | 黄凡, 王登红, 陆三明, 等. 安徽省金寨县沙坪沟钼矿辉钼矿Re-Os年龄: 兼论东秦岭-大别山中生代钼成矿作用期次划分[J]. 矿床地质, 2011, 30(6): 1039-1057. |
[75] | ARRIBAS A. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid[C]// Mineralogical Association of Canada Short Course Series. 1995, 23: 419-454. |
[76] | MAKSAEV V, MUNIZAGA F, MCWILLIAMS M, et al. New chronology for El Teniente, Chilean Andes, from U/Pb, 40Ar/39Ar, Re/Os and fission-track dating: implications for the evolution of a supergiant porphyry Cu-Mo deposit[C]// SILLITOE R H, PERELLÓ J, VIDAL C E. Andean metallogeny: new discoveries, concepts and updates. Littleton: Society of Economic Geologists, Special Publication, 2004, 11: 15-54. |
[77] |
HARRIS A C, DUNLAP W J, REINERS P W, et al. Multi-million years thermal history of a porphyry copper deposit: application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina[J]. Mineralium Deposita, 2008, 43(3): 295-314.
DOI URL |
[78] |
BALLARD J R, PALIN J M, WILLIAMS I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP[J]. Geology, 2001, 29(5): 383-386.
DOI URL |
[79] | WHITE W H, BOOKSTORM A A, KAMILLI R J, et al. Character and origin of Climax-type molybdenum deposit[J]. Economic Geology, 1981, 75: 270-316. |
[80] |
DILLES J H. Petrology of the Yerington batholith, Nevada: evidence for evolution of porphyry copper ore fluids[J]. Economic Geology, 1987, 82(7): 1750-1789.
DOI URL |
[81] | CLINE J S, BODNAR R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B5): 8113-8126. |
[82] |
ULRICH T, GÜNTHER D, HEINRICH C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399(6737): 676-679.
DOI URL |
[83] |
AUDÉTAT A, PETTKE T, HEINRICH C A, et al. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J]. Economic Geology, 2008, 103(5): 877-908.
DOI URL |
[84] |
CATHLES L M, ERENDI A H J, BARRIE T. How long can a hydrothermal system be sustained by a single intrusive event?[J]. Economic Geology, 1997, 92(7/8): 766-771.
DOI URL |
[85] |
MICHEL J, BAUMGARTNER L, PUTLITZ B, et al. Incremental growth of the Patagonian Torres del Paine laccolith over 90 K.Y.[J]. Geology, 2008, 36(6): 459-462.
DOI URL |
[86] | ROHRLACH B D, LOUCKS R R. Multi-million-year cyclic ramp-up of volatiles in a lower crustal magma reservoir trapped below the Tampakan copper-gold deposit by Mio-Pliocene crustal compression in the southern Philippines[C]//PORTER T M. Super porphyry copper and gold deposits:a global perspective. Adelaide: PGC Publishing, 2005: 369-408. |
[87] |
ANNEN C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 409-416.
DOI URL |
[88] |
MUSTARD R, ULRICH T, KAMENETSKY V S, et al. Gold and metal enrichment in natural granitic melts during fractional crystallization[J]. Geology, 2006, 34(2): 85-88.
DOI URL |
[89] | 陆三明. 北淮阳构造带东段银山铅锌矿床形成的构造背景[D]. 合肥: 合肥工业大学, 2003. |
[90] |
NI P, WANG G G, YU W, et al. Evidence of fluid inclusions for two stages of fluid boiling in the formation of the giant Shapinggou porphyry Mo deposit, Dabie Orogen, Central China[J]. Ore Geology Reviews, 2015, 65: 1078-1094.
DOI URL |
[91] | STEIN H J, CROCK J. Late Cretaceous-Tertiary magmatism in the Colorado mineral belt: rare Earth element and Samarium-Neodymium isotopic studies[M]. Geological Society of America Memoir, 1990, 174: 195-223. |
[92] | CARTEN R B, WHITE W H, STEIN H J. High-grade granite-related molybdenum systems classification and origin. mineral deposit modeling[J]. Geological Association of Canada Special Paper, 1993, 40: 521-554. |
[93] |
CHEN Y J, LI C, ZHANG J, et al. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J]. Science in China: Series D, 2000, 43(Suppl 1): 82-94.
DOI URL |
[94] | 周珂. 豫西鱼池岭斑岩型钼矿床的地质地球化学特征与成因研究[D]. 北京: 中国地质大学(北京), 2008. |
[95] | 黄典豪, 吴澄宇, 聂凤军. 陕西金堆城斑岩钼矿床地质特征及成因探讨[J]. 矿床地质, 1987, 6(3): 22-34. |
[96] |
GUSTAFSON L B, HUNT J P. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology, 1975, 70(5): 857-912.
DOI URL |
[97] |
HEMLEY J J, HUNT J P. Hydrothermal ore-forming processes in the light of studies in rock-buffered system: II. Some general geologic applications[J]. Economic Geology, 1992, 87(1): 23-43.
DOI URL |
[98] |
INAN E E, EINAUDI M T. Nukundamite (Cu3.38Fe0.62S4)-bearing copper ore in the Bingham porphyry deposit, Utah: result of upflow through quartzite[J]. Economic Geology, 2002, 97(3): 499-515.
DOI URL |
[99] |
HARRIS A C, GOLDING S D, WHITE N C. Bajo de la Alumbrera copper-gold deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids[J]. Economic Geology, 2005, 100(5): 863-886.
DOI URL |
[100] |
GRUEN G, HEINRICH C A, SCHROEDER K. The Bingham Canyon porphyry Cu-Mo-Au deposit: II. Vein geometry and ore shell formation by pressure-driven rock extension[J]. Economic Geology, 2010, 105(1): 69-90.
DOI URL |
[101] |
LANDTWING M R, FURRER C, REDMOND P B, et al. The Bingham Canyon porphyry Cu-Mo-Au deposit: III. Zoned copper-gold ore deposition by magmatic vapor expansion[J]. Economic Geology, 2010, 105(1): 91-118.
DOI URL |
[102] | 叶会寿, 毛景文, 李永峰, 等. 豫西南泥湖矿田钼钨及铅锌银矿床地质特征及其成矿机理探讨[J]. 现代地质, 2006, 20(1): 165-174. |
[103] |
REN Z, ZHOU T F, HOLLINGS P, et al. Trace element geochemistry of molybdenite from the Shapinggou super-large porphyry Mo deposit, China[J]. Ore Geology Reviews, 2018, 95: 1049-1065.
DOI URL |
[104] | 何俊, 徐晓春, 谢巧勤, 等. 安徽金寨沙坪沟斑岩钼矿区成岩成矿过程中的减压机制: 来自假β相石英的证据[J]. 中国科学: 地球科学, 2016, 46(4): 544-554. |
[105] | 吴堑虹. 大别造山带后造山隆升过程研究[D]. 广州: 中国科学院广州地球化学研究所, 2003. |
[106] | 杨欣, 李双应. 定量恢复大别造山带侏罗—白垩纪的隆升和剥蚀[J]. 地质科学, 2011, 46(2): 308-321. |
[107] |
WESTRA G, KEITH S B. Classification and genesis of stockwork molybdenum deposits[J]. Economic Geology, 1981, 76(4): 844-873.
DOI URL |
[108] |
MUTSCHLER F E, WRIGHT E G, LUDINGTON S, et al. Granite molybdenite systems[J]. Economic Geology, 1981, 76(4): 874-897.
DOI URL |
[109] |
WALLACE S R, MACKENZIE W B, BLAIR R G, et al. Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado[J]. Economic Geology, 1978, 73(3): 325-368.
DOI URL |
[110] |
MI M, CHEN Y J, YANG Y F, et al. Geochronology and geochemistry of the giant Qian’echong Mo deposit, Dabie Shan, eastern China: implications for ore genesis and tectonic setting[J]. Gondwana Research, 2015, 27(3): 1217-1235.
DOI URL |
[111] |
SILLITOE R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology, 1972, 67(2): 184-197.
DOI URL |
[112] |
COOKE D R, HOLLINGS P, WALSHE J L. Giant porphyry deposits: characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
DOI URL |
[113] | HOU Z Q, MA H W, ZAW K, et al. The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145. |
[114] |
HOU Z Q, ZHENG Y C, YANG Z M, et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita, 2013, 48(2): 173-192.
DOI URL |
[115] | LUDINGTON S, PLUMLEE G S. Climax-type porphyry molybdenum deposits[R]. Reston, Virginia: US Geological Survey, 2009: 1-16. |
[116] | 秦克章, 李光明, 赵俊兴, 等. 西藏首例独立钼矿: 冈底斯沙让大型斑岩钼矿的发现及其意义[J]. 中国地质, 2008, 35(6): 1101-1112. |
[117] | 唐菊兴, 多吉, 刘鸿飞, 等. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 2012, 33(4): 393-410. |
[118] | 李真真. 大兴安岭北段岔路口巨型斑岩钼矿高氟高氧化岩浆-流体演化与成矿作用[D]. 北京: 中国科学院大学, 2014. |
[119] | 范海洋, 李铁刚, 武文恒, 等. 内蒙古兴和县曹四夭超大型斑岩钼铅锌金成矿系统年代学及其地质意义[J]. 矿床地质, 2018, 37(2): 355-370. |
[120] | 孙庆龙, 孙景贵, 赵克强, 等. 黑龙江鹿鸣斑岩型钼矿床Re-Os同位素定年及其地质意义[J]. 世界地质, 2014, 33(2): 418-425. |
[121] | WALLACE S R, MUNCASTER N K, JONSON D C, et al. Multiple intrusion and mineralization at Climax, Colorado[C]// RIDGE J D. Ore deposits of the United States, 1933—1967 (Graton-Sales volume). New York: American Institute Mining Metallurgy and Petroleum Engineers, Rocky Mountain Fund Series, 1968, 1: 605-640. |
[122] | SEEDORFF E, EINAUDI M T. Henderson porphyry molybdenum system, Colorado: I.sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style[J]. Economic Geology, 2004, 99(1): 3-37. |
[123] | SEEDORFF E, EINAUDI M T. Henderson porphyry molybdenum system, Colorado: II.decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids[J]. Economic Geology, 2004, 99(1): 39-72. |
[124] |
ROSS P S, JÉBRAK M, WALKER B M. Discharge of hydrothermal fluids from a magma chamber and concomitant formation of a stratified breccia zone at the Questa porphyry molybdenum deposit, New Mexico[J]. Economic Geology, 2002, 97(8): 1679-1699.
DOI URL |
[125] |
KLEMM L M, PETTKE T, HEINRICH C A. Fluid and source magma evolution of the Quests porphyry Mo deposit, New Mexico, USA[J]. Mineralium Deposita, 2008, 43(5): 533-552.
DOI URL |
[126] | DRUMMOND A D, KIMURA E T. Hydrothermal alteration at the Endako: a comparison to experimental studies[J]. Canadian Mining Metallurgical Bulletin, 1969, 62: 709-714. |
[127] |
SELBY D, NESBITT B E, MUEHLENBACHS K, et al. Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia[J]. Economic Geology, 2000, 95(1): 183-202.
DOI URL |
[128] |
VAN LEEUWEN T M, TAYLOR R, COOTE A, et al. Porphyry molybdenum mineralization in a continental collision setting at Malala, Northwest Sulawesi, Indonesia[J]. Journal of Geochemical Exploration, 1994, 50(1/2/3): 279-315.
DOI URL |
[1] | 翟裕生. 试论矿床成因的基本模型[J]. 地学前缘, 20140101, 21(1): 1-8. |
[2] | 柏铖璘, 谢桂青, 赵俊康, 李伟, 朱乔乔. 试论中亚造山带东部多宝山矿田斑岩铜-浅成低温金系统成矿特征与矿床模型[J]. 地学前缘, 2024, 31(3): 170-198. |
[3] | 韩润生, 赵冻. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 2022, 29(5): 420-437. |
[4] | 秦克章, 赵俊兴, 范宏瑞, 唐冬梅, 李光明, 余可龙, 曹明坚, 苏本勋. 试论主要类型矿床的形成深度与最大延深垂幅[J]. 地学前缘, 2021, 28(3): 271-294. |
[5] | 奚小环. 大数据科学从信息化、模式化到智能化:现代地球化学应用研究的新范式[J]. 地学前缘, 2021, 28(1): 308-317. |
[6] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
[7] | 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 再论三江特提斯复合成矿系统[J]. 地学前缘, 2020, 27(2): 106-136. |
[8] | 谢玉玲, 崔凯, 夏加明, 王莹, 曲云伟, 于超, 单小瑀. 中国东部燕山期斑岩钼-热液型铅锌(银)成矿系统的成矿物质来源[J]. 地学前缘, 2020, 27(2): 182-196. |
[9] | 姚书振, 宫勇军, 胡新露, 周宗桂, 沈传波, 皮道会, 熊索菲, 谭满堂. 中上扬子地块周缘主要金属成矿系统及成矿谱系[J]. 地学前缘, 2020, 27(2): 218-231. |
[10] | 吕庆田, 孟贵祥, 严加永, 张昆, 龚雪婧, 高凤霞. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 2020, 27(2): 232-253. |
[11] | 顾雪祥, 章永梅, 葛战林, 陈伟志, 徐劲驰, 黄岗, 陶威. 新疆东准噶尔卡拉麦里造山型金成矿系统与区域构造演化[J]. 地学前缘, 2020, 27(2): 254-275. |
[12] | 侯晓阳,苏尚国,杨跃跃. 河北武安玉石洼铁矿中磁铁矿特征及其对铁矿床成因指示意义 [J]. 地学前缘, 2019, 26(6): 244-256. |
[13] | 蒋俊毅,苏尚国,王菁姣. 俄罗斯塔尔纳赫岩浆铜镍硫化物矿床中流体参与成矿的矿物学证据 [J]. 地学前缘, 2019, 26(6): 228-243. |
[14] | 贺昕宇,王长明,袁继明,刘军,刘海鹏. 熊耳山—外方山矿集区中生代Au-Mo成矿系统[J]. 地学前缘, 2019, 26(5): 33-52. |
[15] | 孙君一,于文佳,唐泽勋,李重,罗照华. 川西拉拉Fe-Cu矿区含矿镁铁质层状岩席的首次发现及其成岩成矿意义[J]. 地学前缘, 2019, 26(1): 313-325. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||