地学前缘 ›› 2020, Vol. 27 ›› Issue (1): 170-177.DOI: 10.13745/j.esf.2020.1.18
孔彦龙1,2,3(), 黄永辉1,2, 郑天元4, 陆仁超5, 潘晟1,2,3, 邵亥冰5, 庞忠和1,2,3
收稿日期:
2019-03-31
修回日期:
2019-12-30
出版日期:
2020-01-20
发布日期:
2020-01-20
作者简介:
孔彦龙(1987—),男,副研究员,主要从事示踪水文地质与热储工程研究。E-mail: ylkong@mail.iggcas.ac.cn
基金资助:
KONG Yanlong1,2,3(), HUANG Yonghui1,2, ZHENG Tianyuan4, LU Renchao5, PAN Sheng1,2,3, SHAO Haibing5, PANG Zhonghe1,2,3
Received:
2019-03-31
Revised:
2019-12-30
Online:
2020-01-20
Published:
2020-01-20
摘要:
地热能规模化利用的可持续开发,通常需要建立数学模型,以实现定量管理和预测。文章评述OpenGeoSys(OGS)数值模拟软件及其在地热资源开发利用过程中的应用算例。OGS是一款基于有限元的免费开源软件,它可处理与地热能开发相关的水流场-温度场-力学场-化学场等多场耦合过程。OGS已应用在国内外多个地热场地,文中着重介绍它在浅层地热能的流体温度变化预测、水热型地热能开发过程中的采灌井距优化、结垢机理和干热岩开发过程中的渗透性演化等方面的应用算例,为地热能的开发提供计算手段和参考。
中图分类号:
孔彦龙, 黄永辉, 郑天元, 陆仁超, 潘晟, 邵亥冰, 庞忠和. 地热能可持续开发利用的数值模拟软件OpenGeoSys:原理与应用[J]. 地学前缘, 2020, 27(1): 170-177.
KONG Yanlong, HUANG Yonghui, ZHENG Tianyuan, LU Renchao, PAN Sheng, SHAO Haibing, PANG Zhonghe. Principle and application of OpenGeoSys for geothermal energy sustainable utilization[J]. Earth Science Frontiers, 2020, 27(1): 170-177.
量符号 | 量名称及单位 | 量符号 | 量名称及单位 |
---|---|---|---|
| 外边界的外法线方向单位矢量 | Γn | Neumann边界条件 |
| 流体比热/(J·m-3·K-1) | qк | 源汇项 |
| 流体密度/(kg·m-3) | | 孔隙度 |
T | 流体温度/℃ | ρβ | β相的密度/(kg·m-3) |
K | 岩石导热系数/(W·m-1·K-1) | Sβ | β相的饱和度 |
q | 热源/(W·m-2) | | 组分к在β相中的质量分数 |
hβ | β相的热焓 | | 绝对渗透率张量 |
| 应力张量 | κrβ | β相的相对渗透率 |
| 重力加速度/(m·s-2) | μβ | β相的黏度/(Pa·s) |
| 主应力/Pa | Pβ | β相的压力/Pa |
Sl | 液相饱和度 | | 组分к在β相中扩散系数 |
Sɡ | 气相饱和度 | G°p,T | 定温压下系统吉布斯函数变化 |
pl | 液相压强/Pa | R | 理想气体常数 |
pɡ | 气相压强/Pa | | 定温压下的化学平衡常数 |
I | 单位矩阵 | | 活度 |
| 热膨胀系数 | | 逸度系数 |
Vn | 体积/m3 | Ci,Cj | 热容 |
Mк | 质量矩阵 | | 反应方程式中的化学计量数 |
| 达西流量 | | 逸度 |
表1 OGS多场耦合公式中的符号变量注释表
Table 1 Parameters in the coupling equations of OGS
量符号 | 量名称及单位 | 量符号 | 量名称及单位 |
---|---|---|---|
| 外边界的外法线方向单位矢量 | Γn | Neumann边界条件 |
| 流体比热/(J·m-3·K-1) | qк | 源汇项 |
| 流体密度/(kg·m-3) | | 孔隙度 |
T | 流体温度/℃ | ρβ | β相的密度/(kg·m-3) |
K | 岩石导热系数/(W·m-1·K-1) | Sβ | β相的饱和度 |
q | 热源/(W·m-2) | | 组分к在β相中的质量分数 |
hβ | β相的热焓 | | 绝对渗透率张量 |
| 应力张量 | κrβ | β相的相对渗透率 |
| 重力加速度/(m·s-2) | μβ | β相的黏度/(Pa·s) |
| 主应力/Pa | Pβ | β相的压力/Pa |
Sl | 液相饱和度 | | 组分к在β相中扩散系数 |
Sɡ | 气相饱和度 | G°p,T | 定温压下系统吉布斯函数变化 |
pl | 液相压强/Pa | R | 理想气体常数 |
pɡ | 气相压强/Pa | | 定温压下的化学平衡常数 |
I | 单位矩阵 | | 活度 |
| 热膨胀系数 | | 逸度系数 |
Vn | 体积/m3 | Ci,Cj | 热容 |
Mк | 质量矩阵 | | 反应方程式中的化学计量数 |
| 达西流量 | | 逸度 |
图5 OGS平台中热流固耦合模型的验证(据文献[11]) (a)—模型设置; (b)—压力的验证; (c)—位移的验证; (d)—温度的验证。
Fig.5 Verification of the thermo-hydro-mechanical process through point injection test. Adapted from [11].
图6 50年后不同采灌井距下的温度与压力变化(据文献[12])
Fig.6 Pressure and temperature change with distance between the production and re-injection wells after 50 years. Adapted from [12].
图9 OGS模拟深井换热系统长时间运行后的温度变化(据文献[14])
Fig.9 Change of inlet and outlet water temperatures in the deep borehole heat exchanger system after long time operation. Adapted from [14].
图11 流体压力和开裂长度随注水流量变化曲线(据文献[17])
Fig.11 Comparison between analytical and numerical solutions in terms of hydraulic pressure and crack length vs. injection fluid volume. Adapted from [17].
图13 裂隙渗透率随时间变化曲线(据文献[19,20])
Fig.13 Comparison between experimental and simulated results in terms of evolution of hydraulic aperture under varying hydrothermal conditions. Adapted from [19-20].
[1] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[2] |
KONG Y L, PANG Z H, SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2014, 2:19.
DOI URL |
[3] | 庞忠和. 地下水运动对地温场的影响: 研究进展综述[J]. 水文地质工程地质, 1987, 14(3):30-34. |
[4] |
KOLDITZ O, BAUER S, BILKE L, et al. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media[J]. Environmental Earth Sciences, 2012, 67(2):589-599.
DOI URL |
[5] | KOLDITZ O, GÖRKE U J, SHAO H, et al. Thermo-hydro-mechanical/chemical processes in porous media: lecture notes in computational science and engineering[M]. Heidelberg: Springer, 2012: 344. |
[6] | KOLDITZ O, SHAO H, WANG W Q, et al. Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking[M]. Heidelberg: Springer, 2016: 217. |
[7] |
BEIER R A, SMITH M D, SPITLER J D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis[J]. Geothermics, 2011, 40(1):79-85.
DOI URL |
[8] |
ZHENG T Y, SHAO H B, S. SCHELENZ S, et al. Efficiency and economic analysis of utilizing latent heat from groundwater freezing in the context of borehole heat exchanger coupled ground source heat pump systems[J]. Applied Thermal Engineering, 2016, 105:314-326.
DOI URL |
[9] |
EROL S, FRANCOIS B. Freeze damage of grouting materials for borehole heat exchanger: experimental and analytical evaluations[J]. Geomechanics for Energy and the Environment, 2016, 5:29-41.
DOI URL |
[10] |
ESEN H, INALLI M, ESEN Y. Temperature distributions in boreholes of a vertical ground-coupled heat pump system[J]. Renewable Energy, 2009, 34(12):2672-2679.
DOI URL |
[11] |
ZHENG T Y, MIAO X Y, NAUMOV G, et al. A thermo-hydro-mechanical finite element model with freezing and thawing processes in saturated soils for geotechnical engineering[J]. Environmental Geotechnics, 2019, 6:1-13.
DOI URL |
[12] |
KONG Y L, PANG Z H, SHAO H B, et al. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis[J]. Environmental Earth Sciences, 2017, 76(3):118.
DOI URL |
[13] | AKIN T, GUNEY A, KARGI H. Modeling of calcite scaling and estimation of gas breakout depth in a geothermal well by using PHREEQC [C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering. Stanford, California, 2015. |
[14] | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12):4741-4752. |
[15] | TESTER J W, ANDERSON B J, BATCHELOR A S. et al. The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[M]. Cambridge: Massachusetts Institute of Technology Press, 2006: 358. |
[16] | WATANABE N, WANG W, TARON J, et al. Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media[J]. International Journal for Numerical Methods in Engineering, 2012, 90(8):1010-1034. |
[17] | YOSHIOKA K, PARISIO F, NAUMOV D, et al. Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing[J]. International Journal on Geomathematics, 2019, 10(1):13. |
[18] |
BOND A, BRUSKY I, CHITTENDEN N, et al. Development of approaches for modelling coupled thermal-hydraulic-mechanical-chemical processes in single granite fracture experiments[J]. Environmental Earth Sciences, 2016, 75(19):1313.
DOI URL |
[19] |
LU R C, NAGEL T, SHAO H, et al. Modeling of dissolution-induced permeability evolution of a granite fracture under crustal conditions[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7):5609-5627.
DOI URL |
[20] |
YASUHARA H, KINOSHITA N, OHFUJI H, et al. Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model[J]. Applied Geochemistry, 2011, 26(12):2074-2088.
DOI URL |
[21] |
HUANG Y H, KOLDITZ O, SHAO H B. Extending the persistent primary variable algorithm to simulate non-isothermal two-phase two-component flow with phase change phenomena[J]. Geothermal Energy, 2015, 3(1):13.
DOI URL |
[22] |
HUANG Y H, SHAO H B, WIELAND E, et al. A new approach to coupled two-phase reactive transport simulation for long-term degradation of concrete[J]. Construction and Building Materials, 2018, 190:805-829.
DOI URL |
[23] |
NAGEL T, SHAO H, SINGH A K, et al. Non-equilibrium thermochemical heat storage in porous media: Part 1-Conceptual model[J]. Energy, 2013, 60:254-270.
DOI URL |
[24] |
MIAO X Y, KOLDITZ O, NAGEL T. Modelling thermal performance degradation of high and low-temperature solid thermal energy storage due to cracking processes using a phase-field approach[J]. Energy Conversion and Management, 2019, 180:977-989.
DOI URL |
[25] |
YAPPAROVA A, MIRON G D, KULIK D A, et al. An advanced reactive transport simulation scheme for hydrothermal systems modelling[J]. Geothermics, 2019, 78:138-153.
DOI URL |
[1] | 石鸿蕾, 王婉丽, 王贵玲, 邢林啸, 陆川, 赵佳怡, 刘禄, 宋嘉佳. 典型高温地热系统水热循环及锂同位素分馏过程模拟研究[J]. 地学前缘, 2024, 31(6): 104-119. |
[2] | 王婉丽, 段雅娟, 张薇, 朱喜, 马峰, 王贵玲. 基于管控单元的城市尺度浅层地热能开发控制因素及指引导则:以雄安新区起步区为例[J]. 地学前缘, 2024, 31(6): 158-172. |
[3] | 上官拴通, 田兰兰, 潘苗苗, 杨风良, 岳高凡, 苏野, 齐晓飞. 干热岩开发断层滑动及诱发地震风险研究:以唐山马头营干热岩场地为例[J]. 地学前缘, 2024, 31(6): 252-260. |
[4] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[5] | 侯玉松, 胡晓农, 吴吉春. 不同胶结度的多孔介质中溶质横向弥散的孔隙尺度模拟研究[J]. 地学前缘, 2024, 31(3): 59-67. |
[6] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[7] | 孙焕泉, 毛翔, 吴陈冰洁, 国殿斌, 王海涛, 孙少川, 张英, 罗璐. 地热资源勘探开发技术与发展方向[J]. 地学前缘, 2024, 31(1): 400-411. |
[8] | 李玉丹, 游瑜春, 曾大乾, 石志良, 顾少华, 张睿. 底水气藏水侵规律数值模拟研究:以元坝长兴组气藏为例[J]. 地学前缘, 2023, 30(6): 341-350. |
[9] | 张允, 康志江, 马郡伟, 郑欢, 吴大卫. 深层离散裂缝油藏多尺度流固耦合数值模拟方法[J]. 地学前缘, 2023, 30(6): 365-370. |
[10] | 孙哲, 张彬, 陈大伟, 李玉涛, 王汉勋. 花岗岩裂隙岩体油水两相渗流可视化试验及数值模拟研究[J]. 地学前缘, 2023, 30(3): 465-475. |
[11] | 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明, 张盛生, 雷敏, 付国强, 李振宇. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 2023, 30(1): 81-105. |
[12] | 邢会林, 王建超, 逄硕, 王瑞泽, 刘冬豫, 马子涵, 张愉玲, 谭玉阳. 俯冲带深海-岩石圈流体交换及其效应[J]. 地学前缘, 2022, 29(5): 246-254. |
[13] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[14] | 熊贵耀, 吴吉春, 杨蕴, 祝晓彬, 刘梦雯, 宋亚霖. 有机污染土壤-地下水系统中的微生物场及多场耦合研究[J]. 地学前缘, 2022, 29(3): 189-199. |
[15] | 沈晓芳, 万玉玉, 王利刚, 苏小四, 董维红. 基于多相流数值模拟的某石油污染场地地下水中VOCs自然衰减过程识别及能力评估[J]. 地学前缘, 2021, 28(5): 90-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||