地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 89-130.DOI: 10.13745/j.esf.sf.2025.8.61

• 大地构造新见 • 上一篇    下一篇

深部物质探测及其成矿预测:方法、应用与展望

王涛1,2,*(), 侯增谦3,*(), 黄河1, 杨立强4, 郑远川4, 孙剑1, 鲍学伟5, 侯通4, 范润龙2, 许博4, 张建军1, 朱小三2, 尹继元1, 苏玉平6   

  1. 1.深地探测与矿产勘查全国重点实验室, 中国地质科学院地质研究所, 北京 100037
    2.北京离子探针中心, 中国地质科学院地质研究所, 北京 100037
    3.深地探测与矿产勘查全国重点实验室, 中国地质科学院, 北京 100037
    4.中国地质大学(北京) 地球科学与资源学院, 北京 100083
    5.浙江大学 地球科学学院, 浙江 杭州 310058
    6.中国地质大学(武汉) 地球科学学院, 湖北 武汉 430074
  • 收稿日期:2025-05-07 修回日期:2025-08-25 出版日期:2025-11-25 发布日期:2025-11-12
  • 通信作者: 王涛,侯增谦
  • 基金资助:
    国家重点基础研究发展计划项目(2019YFA0708600);国家自然科学基金重大计划集成项目(92162322);中国地质调查局项目(DD20250208807);中国地质调查局项目(DD20230229);中国地质调查局项目(DD20190685);中国地质调查局项目(DD20243516);国际地学计划项目IGCP 662和深时数字地球(DDE)大科学计划和基本科研业务项目(J2404)

Deep earth material exploration and mineralization prediction: Methods, applications, and future prospects

WANG Tao1,2,*(), HOU Zengqian3,*(), HUANG He1, YANG Liqiang4, ZHENG Yuanchuan4, SUN Jian1, BAO Xuewei5, HOU Tong4, FAN Runlong2, XU Bo4, ZHANG Jianjun1, ZHU Xiaosan2, YIN Jiyuan1, SU Yuping6   

  1. 1. State Key Laboratory of Deep Earth and Mineral Exploration, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
    2. Beijing SHRIMP Center,Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
    3. State Key Laboratory of Deep Earth and Mineral Exploration, Chinese Academy of Geological Sciences, Beijing 100037, China
    4. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
    5. School of Earth Sciences, Zhejiang University, Hangzhou 310058, China
    6. School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2025-05-07 Revised:2025-08-25 Online:2025-11-25 Published:2025-11-12
  • Contact: WANG Tao, HOU Zengqian

摘要:

深部物质探测是地球深部探测的软肋,主要是由于欠缺有效且可靠的技术方法,制约了对地球深部物质组成、演变及其动力学的认识。本文总结了近年在深部物质架构探测的理论与方法体系及其应用方面的进展。该方法体系主要包括:(1)岩浆岩岩石学、矿物学研究,获取深部组成的物质类型等信息;(2)包体(如捕虏体)研究,直接探测深部物质类型;(3)元素地球化学示踪与填图,了解岩浆成因与源区物质成分特征;(4)放射性成因同位素(如Nd、Hf同位素体系)示踪与填图,确定深部物质时间(新、老)属性;(5)稳定同位素(如O、Mg、Ca等)示踪与填图,了解深部物质来源与循环;(6)捕获/继承锆石示踪与填图,获得深部物质时间和物质属性;(7)地球物理探测,获得深部物质地球物理参数并推测深部岩石类型和物质组成;(8)实验模拟,提供多元同位素和元素地球化学联合示踪的依据,为深部物质探测与地球物理探测结果的对标提供理论支撑;(9)多学科数据集成、综合分析方法。这些方法的有机结合,在厘定造山带与克拉通边界、探测典型构造单元三维架构到四维演变、揭示覆盖区及大型盆地的基底属性、阐明深部物质成矿制约等方面取得了新进展。本文还指出了目前在同位素填图与应用方面存在的和值得注意的问题,展望了未来发展方向和前景。

关键词: 岩浆岩, 岩石探针, 同位素填图, 深地探测, 岩石圈物质架构, 成矿制约

Abstract:

Deep material exploration remains a major challenge in deep Earth science, primarily due to the scarcity of effective and reliable methods. This limitation constrains our understanding of the material composition, evolution, and geodynamics of the Earth’s interior. This paper synthesizes recent progress in theoretical frameworks, methodologies, and applications for deciphering deep lithospheric architecture. The methodological system mainly encompasses: (1) petrogenetic and mineralogical studies of magmatic rocks to identify lithotypes of deep-sourcess; (2) xenolith (including xenocryst) studies to directly constrain the composition of the deep lithosphere; (3) elemental geochemical tracing and mapping to link magmatic petrogenesis with deep-source characteristics; (4) radiogenic isotope systems (e.g., Nd, Hf) to determine temporal attributes (juvenile vs. ancient) of deep materials; (5) stable isotopes (e.g., O, Mg, Ca) to trace deep-to-shallow cycling processes that influence the composition of deep materials; (6) xenocrystic/inherited zircon analysis to resolve the temporal and compositional evolution of deep materials; (7) geophysical investigations to derive physical parameters and infer rock types/compositions of the deep lithosphere; (8) petrological experiments and modeling to bridge compositions constrained by geochemical signatures (isotopes/elements) with physical properties detected through geophysical methods; (9) multidisciplinary data integration and synthesis. Applying these approaches has yielded significant breakthroughs, including delineation of orogen-craton boundaries, reconstruction of 3D/4D architectures of representative tectonic units, characterization of basement attributes beneath sedimentary basins, and elucidation of lithospheric controls on regional metallogenesis. Finally, challenges in isotopic mapping are discussed, along with critical research priorities and perspectives on future directions that could lead to transformative discoveries in deep Earth exploration.

Key words: magmatic rock, rock probe, isotopic mapping, deep Earth exploration, lithospheric architecture, mineralization constraints

中图分类号: