地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 405-421.DOI: 10.13745/j.esf.sf.2025.3.72
王业明(), 雷万杉*(
), 张海东, 王腾, 赵博, 田洪浩
收稿日期:
2025-03-21
修回日期:
2025-03-30
出版日期:
2025-07-25
发布日期:
2025-08-04
通信作者:
*雷万杉(1982—),男,副教授,硕士生导师,主要从事地球信息科学、矿田构造与找矿勘探和低温热年代学领域的研究工作。E-mail: 作者简介:
王业明(1999—),男,硕士研究生,主要从事矿物学、岩石学、矿床学方面研究。E-mail: 2022127023@chd.edu.cn
基金资助:
WANG Yeming(), LEI Wanshan*(
), ZHANG Haidong, WANG Teng, ZHAO Bo, TIAN Honghao
Received:
2025-03-21
Revised:
2025-03-30
Online:
2025-07-25
Published:
2025-08-04
摘要:
胶东半岛面积不足1万km2,却已探明黄金资源储量6 000余t,巨量金成矿特征引发国内外学者的广泛关注和研究。大量测年数据显示胶东金成矿时代集中在(120±5) Ma,然而随着更多的不同金成矿年龄数据相继报道,引发了关于多期成矿的讨论,但这些讨论缺乏与金成矿相对应的地质体的佐证。本研究在英格庄金矿床中发现了可能与金成矿相关的含团块状、树枝状石英的钠长花岗岩和与石英-硫化物脉共生的闪长玢岩。岩体岩相学分析、高精度金银硫含量测试和年代学研究显示,钠长花岗岩具有富硫((17~2 134)×10-6)、金(平均5.2×10-9)和挥发分的特征,指示高分异花岗质岩浆演化晚期可出溶富硅、硫和金的溶体,形成含金石英硫化物脉。钠长花岗岩中岩浆榍石U-Pb年龄为(144.5±1.8) Ma,与石英硫化物脉近同时形成的闪长玢岩锆石U-Pb年龄为(147.1±0.58) Ma,说明胶东可能存在147~144 Ma与碱性岩有关金成矿/矿化作用。
中图分类号:
王业明, 雷万杉, 张海东, 王腾, 赵博, 田洪浩. 胶东半岛英格庄金矿床钠长花岗岩与闪长玢岩的岩相学、年代学研究:对存在多期金矿化事件的启示[J]. 地学前缘, 2025, 32(4): 405-421.
WANG Yeming, LEI Wanshan, ZHANG Haidong, WANG Teng, ZHAO Bo, TIAN Honghao. Petrographic and geochronological studies of albite granite and diorite porphyry in the Yinggezhuang gold deposit, Jiaodong Peninsula: Implications for multi-stage gold mineralization events[J]. Earth Science Frontiers, 2025, 32(4): 405-421.
图1 胶东半岛和牟平—乳山成矿带地质图 a—华北克拉通地质简图及金矿床分布(据文献[10]补充修改);b—胶东地区地质简图及金成矿带与金矿床分布图(据文献[10]补充修改);c—牟平—乳山成矿带地质矿床分布图(据文献[42]补充修改)。
Fig.1 Geological map of the Jiaodong Peninsula and Mouping-Rushan metallogenic belt
岩体 | 岩体岩性 | 测定方法 | 年龄/Ma | 资料来源 |
---|---|---|---|---|
晚侏罗世花岗岩体 | 鹊山石英二长岩 | 锆石LA-ICP-MS U-Pb | 154.0 | 文献[ |
鹊山二长花岗岩 | 锆石LA-ICP-MS U-Pb | 156.3 | 文献[ | |
昆嵛山二长花岗岩 | 锆石LA-ICP-MS U-Pb | 157.57 | 文献[ | |
垛固山花岗闪长岩 | 锆石SHRIMP U-Pb | 161 | 文献[ | |
瓦善二长花岗岩 | 锆石LA-ICP-MS U-Pb | 155.8 | 文献[ | |
瓦善二长花岗岩 | 锆石SHRIMP U-Pb | 146~138 | 文献[ | |
五爪山含榴二长花岗岩 | 锆石SHRIMP U-Pb | 142 | 文献[ | |
早白垩世花岗岩体 | 三佛山正长花岗岩 | 锆石SHRIMP U-Pb | 113 | 文献[ |
三佛山正长花岗岩 | 单颗粒锆石同位素稀释法 | 112 | 文献[ | |
三佛山正长花岗岩 | 锆石SHRIMP U-Pb | 111 | 文献[ | |
三佛山二长花岗岩 | 锆石SHRIMP U-Pb | 118 | 文献[ | |
三佛山花岗岩 | 锆石LA-ICP-MS U-Pb | 119.6~114.2 | 文献[ | |
早白垩世中基性脉岩 | 煌斑岩脉 | 锆石LA-ICP-MS U-Pb | 113.8 | 文献[ |
碱性煌斑岩脉 | 锆石LA-ICP-MS U-Pb | 118.2 | 文献[ | |
辉绿岩脉 | 锆石LA-ICP-MS U-Pb | 117.5 | 文献[ | |
闪长玢岩 | 锆石LA-ICP-MS U-Pb | 123.8 | 文献[ | |
闪长玢岩 | 锆石LA-ICP-MS U-Pb | 117.6 | 文献[ |
表1 牟乳金成矿带岩浆岩年龄一览表
Table 1 List of magmatic rock ages in the Mou-Ru gold metallogenic belt
岩体 | 岩体岩性 | 测定方法 | 年龄/Ma | 资料来源 |
---|---|---|---|---|
晚侏罗世花岗岩体 | 鹊山石英二长岩 | 锆石LA-ICP-MS U-Pb | 154.0 | 文献[ |
鹊山二长花岗岩 | 锆石LA-ICP-MS U-Pb | 156.3 | 文献[ | |
昆嵛山二长花岗岩 | 锆石LA-ICP-MS U-Pb | 157.57 | 文献[ | |
垛固山花岗闪长岩 | 锆石SHRIMP U-Pb | 161 | 文献[ | |
瓦善二长花岗岩 | 锆石LA-ICP-MS U-Pb | 155.8 | 文献[ | |
瓦善二长花岗岩 | 锆石SHRIMP U-Pb | 146~138 | 文献[ | |
五爪山含榴二长花岗岩 | 锆石SHRIMP U-Pb | 142 | 文献[ | |
早白垩世花岗岩体 | 三佛山正长花岗岩 | 锆石SHRIMP U-Pb | 113 | 文献[ |
三佛山正长花岗岩 | 单颗粒锆石同位素稀释法 | 112 | 文献[ | |
三佛山正长花岗岩 | 锆石SHRIMP U-Pb | 111 | 文献[ | |
三佛山二长花岗岩 | 锆石SHRIMP U-Pb | 118 | 文献[ | |
三佛山花岗岩 | 锆石LA-ICP-MS U-Pb | 119.6~114.2 | 文献[ | |
早白垩世中基性脉岩 | 煌斑岩脉 | 锆石LA-ICP-MS U-Pb | 113.8 | 文献[ |
碱性煌斑岩脉 | 锆石LA-ICP-MS U-Pb | 118.2 | 文献[ | |
辉绿岩脉 | 锆石LA-ICP-MS U-Pb | 117.5 | 文献[ | |
闪长玢岩 | 锆石LA-ICP-MS U-Pb | 123.8 | 文献[ | |
闪长玢岩 | 锆石LA-ICP-MS U-Pb | 117.6 | 文献[ |
图2 英格庄金矿床矿区地质图(a)及A-A'、B-B'勘探线剖面图(b,c)(据文献[60]修改)
Fig.2 Geological map of the Yingezhuang gold deposit mining area (a) and exploration line profiles of A-A' and B-B' (b,c). Modified after [60].
图3 英格庄金矿床闪长玢岩、钠长花岗岩岩相学特征 a—与石英硫化物脉共生的闪长玢岩手标本特征,接触界面白色波状冷凝边;b—石英硫化物脉和闪长玢岩正交镜下特征,接触界面自形巨粒石英生长;c—石英硫化物脉和闪长玢岩反射光照片;d—钠长花岗岩产出特征;e—钠长花岗岩富含团块状、树枝状石英;f—石英带、钠长花岗岩镜下特征;g—钠长岩带正交镜下矿物组成;h—钠长花岗岩反射光照片,表面多孔洞,黄铜矿发育;i—钠长花岗岩硫化物反射光下特征;j—黄铁矿反射光下特征;k—碲银矿与黄铁矿共生;l—碲银矿与黄铁矿、方铅矿共生。Sul—硫化物;Pl—斜长石;Ab—钠长石;Qtz—石英;Cal—方解石;Bt—黑云母;Ap—磷灰石;Aln—褐帘石;Py—黄铁矿;Ccp—黄铜矿;Gn—方铅矿;Hes—碲银矿。
Fig.3 Petrographic characteristics of dioritic porphyrite and albite granite in the Yingezhuang gold deposit
图4 英格庄金矿床钠长花岗岩榍石矿物组成镜下特征及背散射(BSE)照片 a—榍石样品的手标本特征;b—它形大颗粒榍石与石英、钠长石、钛闪石和黄铁矿共生;c—自形榍石与方解石、钛闪石共生;d—榍石与钛闪石、方解石、黄铁矿密切共生;e—自形榍石BSE图像,成分均匀,与石英、钠长石共生;f—半自形-自形榍石与石英、钠长石、斜长石共生,BSE图像成分均匀。Ttn—榍石;Ab—钠长石;Qtz—石英;Kfs—钾长石;Pl—斜长石;Cal—方解石;Di—透辉石;Krs—钛闪石;Py—黄铁矿。
Fig.4 Microscopic characteristics and backscattered electron (BSE) images of the titanite mineral composition in albite granite from the Yingezhuang gold deposit
样品编号 | Au含量/10-9 | 标准差/10-9 | Ag含量/10-9 | 硫平均含量/10-6 | 标准差/10-6 |
---|---|---|---|---|---|
23RS-1-1 | 11.89 | 0.16 | 109.20 | 2 134 | 410 |
23RS-4-1 | 10.93 | 0.33 | 61.81 | 246 | 27.67 |
23RS-5-1 | 1.69 | 0.03 | 8.27 | 31.78 | 1.05 |
23RS-6-2 | 0.19 | 0.01 | 7.86 | 17.03 | 3.49 |
23RS-7-1 | 1.41 | 0.06 | 9.47 | 55.42 | 7.38 |
表2 英格庄金矿床钠长岩全岩金、银含量测试结果表
Table 2 Results of whole-rock gold and silver contents in albite from the Yingezhuang gold deposit
样品编号 | Au含量/10-9 | 标准差/10-9 | Ag含量/10-9 | 硫平均含量/10-6 | 标准差/10-6 |
---|---|---|---|---|---|
23RS-1-1 | 11.89 | 0.16 | 109.20 | 2 134 | 410 |
23RS-4-1 | 10.93 | 0.33 | 61.81 | 246 | 27.67 |
23RS-5-1 | 1.69 | 0.03 | 8.27 | 31.78 | 1.05 |
23RS-6-2 | 0.19 | 0.01 | 7.86 | 17.03 | 3.49 |
23RS-7-1 | 1.41 | 0.06 | 9.47 | 55.42 | 7.38 |
测点号 | 元素含量/10-6 | 同位素比值及误差 | 207Pb校正年龄及误差/Ma | f206 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/206Pb | 1σ | 238U/206Pb | 1σ | 207Pb/235U | 1σ | ||||
RS-7-1-01 | 9.11 | 107 | 273 | 0.129 5 | 0.001 9 | 38.26 | 0.38 | 149.7 | 1.5 | 0.101 | ||
RS-7-1-02 | 11.65 | 74.8 | 420 | 0.105 2 | 0.001 7 | 41.54 | 0.37 | 142.6 | 1.3 | 0.071 | ||
RS-7-1-03 | 10.43 | 87.4 | 340 | 0.119 6 | 0.002 | 39.67 | 0.37 | 146.4 | 1.4 | 0.089 | ||
RS-7-1-04 | 10.64 | 112 | 361 | 0.109 5 | 0.002 | 40.64 | 0.37 | 144.9 | 1.4 | 0.076 | ||
RS-7-1-05 | 10.00 | 105 | 321 | 0.114 5 | 0.001 9 | 39.36 | 0.38 | 148.6 | 1.5 | 0.082 | ||
RS-7-1-06 | 7.53 | 72.1 | 206 | 0.152 6 | 0.002 9 | 36.77 | 0.42 | 150.8 | 1.8 | 0.130 | ||
RS-7-1-07 | 10.58 | 85 | 297 | 0.150 5 | 0.006 6 | 37.13 | 0.75 | 149.7 | 3.3 | 0.127 | ||
RS-7-1-08 | 12.58 | 166 | 414 | 0.105 | 0.002 | 40.12 | 0.46 | 147.6 | 1.7 | 0.070 | ||
RS-7-1-09 | 11.54 | 152 | 359 | 0.112 7 | 0.003 1 | 38.48 | 0.48 | 152.4 | 2 | 0.080 | ||
RS-7-1-10 | 11.24 | 76.6 | 387 | 0.112 4 | 0.002 1 | 40.75 | 0.41 | 144.0 | 1.5 | 0.080 | ||
RS-7-1-11 | 9.42 | 124 | 269 | 0.129 1 | 0.002 1 | 38.46 | 0.42 | 149.0 | 1.7 | 0.101 | ||
RS-7-1-12 | 8.60 | 70 | 229 | 0.157 1 | 0.003 1 | 36.73 | 0.43 | 149.9 | 1.9 | 0.136 | ||
RS-7-1-13 | 9.28 | 76.2 | 250 | 0.150 1 | 0.003 8 | 36.58 | 0.45 | 152.1 | 2 | 0.127 | ||
RS-7-1-14 | 9.10 | 82.3 | 265 | 0.130 5 | 0.002 4 | 38.09 | 0.42 | 150.1 | 1.7 | 0.102 | ||
RS-7-1-15 | 9.74 | 88.6 | 287 | 0.124 9 | 0.002 | 38.55 | 0.38 | 149.5 | 1.5 | 0.095 | ||
RS-7-1-16 | 8.98 | 86.3 | 231 | 0.159 9 | 0.002 5 | 36.37 | 0.44 | 150.8 | 1.9 | 0.139 | ||
RS-7-1-17 | 7.85 | 71.4 | 213 | 0.146 3 | 0.002 7 | 37.3 | 0.41 | 150.0 | 1.7 | 0.122 | ||
RS-7-1-18 | 6.13 | 70.7 | 141 | 0.178 4 | 0.004 | 34.82 | 0.44 | 153.3 | 2.1 | 0.162 | ||
RS-7-1-19 | 8.68 | 91 | 178 | 0.208 5 | 0.004 9 | 32.64 | 0.48 | 156.1 | 2.6 | 0.200 | ||
RS-7-1-20 | 5.86 | 80.3 | 124 | 0.193 2 | 0.004 3 | 33.86 | 0.5 | 154.1 | 2.4 | 0.181 | ||
RS-7-1-21 | 5.62 | 73.4 | 119 | 0.190 4 | 0.003 9 | 33.79 | 0.36 | 155.1 | 1.9 | 0.177 | ||
RS-7-1-22 | 7.68 | 65.2 | 98.9 | 0.322 7 | 0.008 5 | 26.3 | 0.38 | 159.0 | 3.4 | 0.343 | ||
RS-7-1-23 | 8.10 | 59.9 | 97.3 | 0.337 3 | 0.006 9 | 24.65 | 0.31 | 164.9 | 3 | 0.361 | ||
RS-7-1-24 | 6.13 | 69.3 | 110 | 0.234 2 | 0.004 7 | 30.41 | 0.55 | 160.8 | 3.2 | 0.232 | ||
RS-7-1-25 | 6.45 | 82.4 | 147 | 0.175 3 | 0.003 7 | 34.95 | 0.4 | 153.4 | 1.9 | 0.158 | ||
RS-7-1-26 | 6.33 | 73.9 | 144 | 0.173 6 | 0.004 2 | 34.82 | 0.53 | 154.4 | 2.5 | 0.156 | ||
RS-7-1-27 | 8.88 | 71.2 | 199 | 0.188 3 | 0.005 6 | 34.72 | 0.55 | 151.5 | 2.7 | 0.175 | ||
RS-7-1-28 | 9.66 | 105 | 287 | 0.117 8 | 0.002 9 | 39.12 | 0.49 | 148.8 | 1.9 | 0.086 | ||
RS-7-1-29 | 8.07 | 78.9 | 234 | 0.125 | 0.002 6 | 37.79 | 0.59 | 152.5 | 2.4 | 0.095 | ||
RS-7-1-30 | 9.76 | 105 | 277 | 0.123 5 | 0.002 1 | 37.78 | 0.43 | 152.9 | 1.8 | 0.093 |
表3 英格庄金矿床榍石LA-ICP-MS U-Pb同位素数据
Table 3 LA-ICP-MS U-Pb isotope data for titanite from the Yingezhuang gold deposit
测点号 | 元素含量/10-6 | 同位素比值及误差 | 207Pb校正年龄及误差/Ma | f206 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | Th | U | 207Pb/206Pb | 1σ | 238U/206Pb | 1σ | 207Pb/235U | 1σ | ||||
RS-7-1-01 | 9.11 | 107 | 273 | 0.129 5 | 0.001 9 | 38.26 | 0.38 | 149.7 | 1.5 | 0.101 | ||
RS-7-1-02 | 11.65 | 74.8 | 420 | 0.105 2 | 0.001 7 | 41.54 | 0.37 | 142.6 | 1.3 | 0.071 | ||
RS-7-1-03 | 10.43 | 87.4 | 340 | 0.119 6 | 0.002 | 39.67 | 0.37 | 146.4 | 1.4 | 0.089 | ||
RS-7-1-04 | 10.64 | 112 | 361 | 0.109 5 | 0.002 | 40.64 | 0.37 | 144.9 | 1.4 | 0.076 | ||
RS-7-1-05 | 10.00 | 105 | 321 | 0.114 5 | 0.001 9 | 39.36 | 0.38 | 148.6 | 1.5 | 0.082 | ||
RS-7-1-06 | 7.53 | 72.1 | 206 | 0.152 6 | 0.002 9 | 36.77 | 0.42 | 150.8 | 1.8 | 0.130 | ||
RS-7-1-07 | 10.58 | 85 | 297 | 0.150 5 | 0.006 6 | 37.13 | 0.75 | 149.7 | 3.3 | 0.127 | ||
RS-7-1-08 | 12.58 | 166 | 414 | 0.105 | 0.002 | 40.12 | 0.46 | 147.6 | 1.7 | 0.070 | ||
RS-7-1-09 | 11.54 | 152 | 359 | 0.112 7 | 0.003 1 | 38.48 | 0.48 | 152.4 | 2 | 0.080 | ||
RS-7-1-10 | 11.24 | 76.6 | 387 | 0.112 4 | 0.002 1 | 40.75 | 0.41 | 144.0 | 1.5 | 0.080 | ||
RS-7-1-11 | 9.42 | 124 | 269 | 0.129 1 | 0.002 1 | 38.46 | 0.42 | 149.0 | 1.7 | 0.101 | ||
RS-7-1-12 | 8.60 | 70 | 229 | 0.157 1 | 0.003 1 | 36.73 | 0.43 | 149.9 | 1.9 | 0.136 | ||
RS-7-1-13 | 9.28 | 76.2 | 250 | 0.150 1 | 0.003 8 | 36.58 | 0.45 | 152.1 | 2 | 0.127 | ||
RS-7-1-14 | 9.10 | 82.3 | 265 | 0.130 5 | 0.002 4 | 38.09 | 0.42 | 150.1 | 1.7 | 0.102 | ||
RS-7-1-15 | 9.74 | 88.6 | 287 | 0.124 9 | 0.002 | 38.55 | 0.38 | 149.5 | 1.5 | 0.095 | ||
RS-7-1-16 | 8.98 | 86.3 | 231 | 0.159 9 | 0.002 5 | 36.37 | 0.44 | 150.8 | 1.9 | 0.139 | ||
RS-7-1-17 | 7.85 | 71.4 | 213 | 0.146 3 | 0.002 7 | 37.3 | 0.41 | 150.0 | 1.7 | 0.122 | ||
RS-7-1-18 | 6.13 | 70.7 | 141 | 0.178 4 | 0.004 | 34.82 | 0.44 | 153.3 | 2.1 | 0.162 | ||
RS-7-1-19 | 8.68 | 91 | 178 | 0.208 5 | 0.004 9 | 32.64 | 0.48 | 156.1 | 2.6 | 0.200 | ||
RS-7-1-20 | 5.86 | 80.3 | 124 | 0.193 2 | 0.004 3 | 33.86 | 0.5 | 154.1 | 2.4 | 0.181 | ||
RS-7-1-21 | 5.62 | 73.4 | 119 | 0.190 4 | 0.003 9 | 33.79 | 0.36 | 155.1 | 1.9 | 0.177 | ||
RS-7-1-22 | 7.68 | 65.2 | 98.9 | 0.322 7 | 0.008 5 | 26.3 | 0.38 | 159.0 | 3.4 | 0.343 | ||
RS-7-1-23 | 8.10 | 59.9 | 97.3 | 0.337 3 | 0.006 9 | 24.65 | 0.31 | 164.9 | 3 | 0.361 | ||
RS-7-1-24 | 6.13 | 69.3 | 110 | 0.234 2 | 0.004 7 | 30.41 | 0.55 | 160.8 | 3.2 | 0.232 | ||
RS-7-1-25 | 6.45 | 82.4 | 147 | 0.175 3 | 0.003 7 | 34.95 | 0.4 | 153.4 | 1.9 | 0.158 | ||
RS-7-1-26 | 6.33 | 73.9 | 144 | 0.173 6 | 0.004 2 | 34.82 | 0.53 | 154.4 | 2.5 | 0.156 | ||
RS-7-1-27 | 8.88 | 71.2 | 199 | 0.188 3 | 0.005 6 | 34.72 | 0.55 | 151.5 | 2.7 | 0.175 | ||
RS-7-1-28 | 9.66 | 105 | 287 | 0.117 8 | 0.002 9 | 39.12 | 0.49 | 148.8 | 1.9 | 0.086 | ||
RS-7-1-29 | 8.07 | 78.9 | 234 | 0.125 | 0.002 6 | 37.79 | 0.59 | 152.5 | 2.4 | 0.095 | ||
RS-7-1-30 | 9.76 | 105 | 277 | 0.123 5 | 0.002 1 | 37.78 | 0.43 | 152.9 | 1.8 | 0.093 |
图7 焦家金矿床ZK01深钻及金青顶金矿床中与金成矿有关的钠长花岗岩特征 a-c—焦家ZK01深钻含金岩心样中的钠长花岗岩手标本和镜下特征;d-f—金青顶金矿床矿体中的钠长花岗岩手标本特征、TIMA矿物组成和显微镜下特征。Ab—钠长石;Qtz—石英。
Fig.7 Characteristics of albite granite associated with gold mineralization in the deep drill Hole ZK01 of the Jiaojia gold deposit and the Jinqingding gold deposit
[1] | 宋明春, 宋英昕, 李杰, 等. 胶东型金矿热隆-伸展成矿系统[J]. 岩石学报, 2023, 39(5): 1241-1260. |
[2] | DENG J, YANG L Q, LI R H, et al. Regional structural control on the distribution of world-class gold deposits: an overview from the Giant Jiaodong Gold Province, China[J]. Geological Journal, 2019, 54(1): 378-391. |
[3] | 杨立强, 邓军, 宋明春, 等. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析[J]. 大地构造与成矿学, 2019, 43(3): 431-446. |
[4] | GOLDFARB R J, PITCAIRN I. Orogenic gold: is a genetic association with magmatism realistic?[J]. Mineralium Deposita, 2023, 58(1): 5-35. |
[5] | 杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. |
[6] | 邓军, 王庆飞, 张良, 等. 胶东型金矿成因模型[J]. 中国科学: 地球科学, 2023, 53(10): 2323-2347. |
[7] | 杨立强, 邓军, 张良, 等. 胶东型金矿[J]. 岩石学报, 2024, 40(6): 1691-1711. |
[8] | SHEN J F, LI S R, SANTOSH M, et al. He-Ar isotope geochemistry of iron and gold deposits reveals heterogeneous lithospheric destruction in the North China Craton[J]. Journal of Asian Earth Sciences, 2013, 78: 237-247. |
[9] | HU F F, FAN H R, ZHAI M G, et al. Fluid evolution in the Rushan lode gold deposit of Jiaodong Peninsula, eastern China[J]. Journal of Geochemical Exploration, 2006, 89(1/2/3): 161-164. |
[10] | DENG J, QIU K F, WANG Q F, et al. In situ dating of hydrothermal monazite and implications for the geodynamic controls on ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. |
[11] | WANG X, WANG Z C, CHENG H, et al. Gold endowment of the metasomatized lithospheric mantle for giant gold deposits: insights from lamprophyre dykes[J]. Geochimica et Cosmochimica Acta, 2022, 316: 21-40. |
[12] | 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学[M]. 北京: 地质出版社, 1996. |
[13] | GOLDFARB R J, GROVES D I, GARDOLL S. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews, 2001, 18(1/2): 1-75. |
[14] | QIU Y M, GROVES D I, MCNAUGHTON N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China Craton, China[J]. Mineralium Deposita, 2002, 37(3): 283-305. |
[15] | 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学: 地球科学, 2015, 45(8): 1153-1168, 1-4. |
[16] | 宋明春, 林少一, 杨立强, 等. 胶东金矿成矿模式[J]. 矿床地质, 2020, 39(2): 215-236. |
[17] | DENG J, LIU X F, WANG Q F, et al. Origin of the Jiaodong-type Xinli gold deposit, Jiaodong Peninsula, China: constraints from fluid inclusion and C-D-O-S-Sr isotope compositions[J]. Ore Geology Reviews, 2015, 65: 674-686. |
[18] | DENG J, YANG L Q, GROVES D I, et al. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China[J]. Earth-Science Reviews, 2020, 208: 103274. |
[19] | WANG B, ZHOU J B, DING Z J, et al. Late Mesozoic magmatism and gold metallogeny of the Jiaodong Peninsula, China: a response to the destruction of the North China Craton[J]. Geological Society of America Bulletin, 2023: 136(3/4): 1395-1412. |
[20] | GOLDFARB R J, SANTOSH M. The dilemma of the Jiaodong gold deposits: are they unique?[J]. Geoscience Frontiers, 2014, 5(2): 139-153. |
[21] | 张良. 胶西北金成矿系统热年代学[D]. 北京: 中国地质大学(北京), 2016. |
[22] | 姜晓辉, 范宏瑞, 胡芳芳, 等. 胶西北留村金矿成矿流体特征与矿床成因[J]. 矿床地质, 2011, 30(3): 511-521. |
[23] | JIAN-WEI L, VASCONCELOS P, MEI-FU Z, et al. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting[J]. Economic Geology, 2006, 101(5): 1023-1038. |
[24] | 邓军, 杨立强, 王庆飞, 等. 胶东矿集区金成矿系统组成与演化概论[J]. 矿床地质, 2006, 25(增刊1): 67-70. |
[25] | 丁正江, 孙丰月, 刘福来, 等. 胶东中生代动力学演化及主要金属矿床成矿系列[J]. 岩石学报, 2015, 31(10): 3045-3080. |
[26] | 李洪奎, 李大鹏, 耿科, 等. 胶东地区燕山期岩浆活动及其构造环境: 来自单颗锆石SHRIMP年代学的记录[J]. 地质学报, 2017, 91(1): 163-179. |
[27] | 于晓卫, 王来明, 刘汉栋, 等. 胶东中生代花岗岩与金矿关系及成矿期划分[J]. 地质学报, 2023, 97(6): 1848-1873. |
[28] | LI H, SUN H S, EVANS N J, et al. Geochemistry and geochronology of zircons from granite-hosted gold mineralization in the Jiaodong Peninsula, North China: implications for ore genesis[J]. Ore Geology Reviews, 2019, 115: 103188. |
[29] | SUN H S, LI H, LIU L, et al. Exhumation history of the Jiaodong and its adjacent areas since the Late Cretaceous: constraints from low temperature thermochronology[J]. Science China Earth Sciences, 2017, 60(3): 531-545. |
[30] | CHEN Y L, LI H, ZHENG C Y, et al. Exhumation history and exploration potential of gold deposits in the NE Jiaodong Peninsula, North China: evidence from apatite and zircon fission track thermochronology[J]. Journal of Earth Science, 2023, 34(3): 776-789. |
[31] | YANG K F, FAN H R, SANTOSH M, et al. Reactivation of the Archean lower crust: implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong terrane, the North China Craton[J]. Lithos, 2012, 146: 112-127. |
[32] | MA L, JIANG S Y, DAI B Z, et al. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2013, 162: 251-263. |
[33] | WANG B, DING Z J, BAO Z Y, et al. Mesozoic magmatic and geodynamic evolution in the Jiaodong Peninsula, China: implications for the gold and polymetallic mineralization[J]. Minerals, 2022, 12(9): 1073. |
[34] | CAI W Y, SONG M C, SANTOSH M, et al. The gold-telluride connection: evidence for multiple fluid pulses in the Jinqingding telluride-rich gold deposit of Jiaodong Peninsula, eastern China[J]. Geoscience Frontiers, 2024, 15(3): 101795. |
[35] | LI X H, FAN H R, ZHANG Y W, et al. Rapid exhumation of the northern Jiaobei terrane, North China Craton in the Early Cretaceous: insights from Al-in-hornblende barometry and U-Pb geochronology[J]. Journal of Asian Earth Sciences, 2018, 160: 365-379. |
[36] | SONG M C, ZHOU J B, SONG Y X, et al. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China[J]. Geological Journal, 2020, 55(8): 5703-5724. |
[37] | 范宏瑞, 冯凯, 李兴辉, 等. 胶东-朝鲜半岛中生代金成矿作用[J]. 岩石学报, 2016, 32(10): 3225-3238. |
[38] | 宋明春, 杨立强, 范宏瑞, 等. 找矿突破战略行动十年胶东金矿成矿理论与深部勘查进展[J]. 地质通报, 2022, 41(6): 903-935. |
[39] | 范宏瑞, 蓝廷广, 李兴辉, 等. 胶东金成矿系统的末端效应[J]. 中国科学: 地球科学, 2021, 51(9): 1504-1523. |
[40] | 孙丽伟. 胶东乳山蓬家夼金矿床地质特征及矿化富集规律研究[D]. 长春: 吉林大学, 2015. |
[41] | 王美云, 李杰, 宋明春, 等. 胶东大邓格金多金属矿床成矿机制: 来自黄铁矿Rb-Sr定年、原位硫同位素及微量元素的制约[J]. 岩石学报, 2023, 39(5): 1501-1515. |
[42] | 周起凤. 胶东乳山英格庄金矿成因矿物学与深部远景研究[D]. 北京: 中国地质大学(北京), 2010. |
[43] | 郭敬辉, 陈福坤, 张晓曼, 等. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石 U-Pb 年代学[J]. 岩石学报, 2005, 21(4): 1281-1301. |
[44] | 薛建玲, 庞振山, 李胜荣, 等. 胶东邓格庄金矿床成因: 地质年代学和同位素体系制约[J]. 岩石学报, 2019, 35(5): 1532-1550. |
[45] | 李增达, 于晓飞, 王全明, 等. 胶东三佛山花岗岩的成因: 成岩物理化学条件、锆石U-Pb年代学及Sr-Nd同位素约束[J]. 岩石学报, 2018, 34(2): 447-468. |
[46] | LONG Q, HU R, YANG Y Z, et al. Geochemistry of Early Cretaceous intermediate to mafic dikes in the Jiaodong Peninsula: constraints on mantle source composition beneath eastern China[J]. The Journal of Geology, 2017, 125(6): 713-732. |
[47] | 张田, 张岳桥. 胶北隆起晚中生代构造-岩浆演化历史[J]. 地质学报, 2008, 82(9): 1210-1228. |
[48] | 唐文龙, 付超, 邹键, 等. 胶东唐家沟金矿床独居石LA-ICP-MS U-Pb同位素年代学及其地质意义[J]. 地质学报, 2021, 95(3): 809-821. |
[49] | 胡芳芳. 胶东昆嵛山地区中生代构造体制转折期岩浆活动、成矿流体演化与金矿床成因[D]. 北京: 中国科学院地质与地球物理研究所, 2006. |
[50] | GOSS S C, WILDE S A, WU F Y, et al. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong terrane, Shandong Province, North China Craton[J]. Lithos, 2010, 120(3/4): 309-326. |
[51] | LIU X F, DENG J, LIANG Y Y, et al. Geochemical, mineralogical and chronological studies of mafic-intermediate dykes in the Jiaodong Peninsula: implications for Late Mesozoic mantle source metasomatism and lithospheric thinning of the eastern North China Craton[J]. International Geology Review, 2020, 62(18): 2239-2260. |
[52] | 韩小梦, 段留安, 王建田, 等. 胶东前垂柳金矿床中-基性脉岩锆石U-Pb年龄、地球化学特征及对成矿时代的约束[J/OL]. 地质通报, 1-20[2025-05-12]. http://kns.cnki.net/kcms/detail/11.4648.P.20240704.0900.002.html. |
[53] | MA W D, FAN H R, LIU X, et al. Geochronological framework of the Xiadian gold deposit in the Jiaodong province, China: implications for the timing of gold mineralization[J]. Ore Geology Reviews, 2017, 86: 196-211. |
[54] | 张华锋, 翟明国, 何中甫, 等. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义[J]. 岩石学报, 2004, 20(3): 369-380. |
[55] | 陈光远, 孙岱生, 邵岳. 胶东昆嵛山二长花岗岩副矿物成因矿物学研究[J]. 现代地质, 1996, 10(2): 175-186. |
[56] | 郭云成, 段留安, 韩小梦, 等. 胶东前垂柳金矿区花岗岩锆石U-Pb年代学和地球化学特征及其地质意义[J]. 现代地质, 2022, 36(3): 876-897. |
[57] | 张华锋, 翟明国, 童英, 等. 胶东半岛三佛山高Ba-Sr花岗岩成因[J]. 地质论评, 2006, 52(1): 43-53. |
[58] | DENG J, LIU X F, WANG Q F, et al. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking: lithospheric extension in the North China Craton, eastern Asia[J]. GSA Bulletin, 2017, 129(11/12): 1379-1407. |
[59] | CHEN B H, DENG J, JI X Z. Time limit of gold mineralization in Muping-Rushan belt, eastern Jiaodong Peninsula, China: evidence from muscovite Ar-Ar dating[J]. Minerals, 2022, 12(3): 278. |
[60] | 赛盛勋, 邱昆峰. 胶东乳山金矿床成矿过程: 周期性压力波动诱发的流体不混溶[J]. 岩石学报, 2020, 36(5): 1547-1566. |
[61] | 徐洪林, 张德全, 孙桂英. 胶东昆嵛山花岗岩的特征、成因及其与金矿的关系[J]. 岩石矿物学杂志, 1997, 16(2): 131-143. |
[62] | 张连昌, 沈远超, 李厚民, 等. 胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪[J]. 岩石学报, 2002, 18(4): 559-565. |
[63] | 周起凤, 李胜荣, 陈海燕, 等. 胶东乳山英格庄金矿碲化物的发现及其意义[J]. 岩石学报, 2011, 27(6): 1847-1856. |
[64] | WANG Z C, XU Z, CHENG H, et al. Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula, China[J]. Precambrian Research, 2021, 354: 106045. |
[65] | CHENG H, WANG Z C, CHEN K, et al. High-precision determination of gold mass fractions in geological reference materials by internal standardisation[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 663-680. |
[66] | LIU Y H, WANG Z C, XUE D S, et al. An improved analytical protocol for the determination of sub-nanogram gold in 1-2 g rock samples using GFAAS after polyurethane foam pretreatment[J]. Atomic Spectroscopy, 2020, 41(3): 131-140. |
[67] | ZOU Z Q, WANG Z C, CHENG H, et al. Comparative determination of mass fractions of elements with variable chalcophile affinities in geological reference materials with and without HF-desilicification[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 501-521. |
[68] | ALEINIKOFF J N, WINTSCH R P, TOLLO R P, et al. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: implications for the tectonic evolution of southern New England[J]. American Journal of Science, 2007, 307(1): 63-118. |
[69] | SCHOENE B, BOWRING S A. U-Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the40Ar/39Ar standard MMhb[J]. Contributions to Mineralogy and Petrology, 2006, 151(5): 615-630. |
[70] | LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. |
[71] | LIU Y, GAO S, HU Z, et al. Continental andoceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. |
[72] | CAI P R, WANG T, WANG Z Q, et al. Geochronology and geochemistry of Late Paleozoic volcanic rocks from eastern Inner Mongolia, NE China: implications for igneous petrogenesis, tectonic setting, and geodynamic evolution of the south-eastern Central Asian Orogenic Belt[J]. Lithos, 2020, 362: 105480. |
[73] | CHEW D M, SYLVESTER P J, TUBRETT M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1/2): 200-216. |
[74] | CHEW D M, PETRUS J A, KAMBER B S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185-199. |
[75] | SLÁMA J, KOŠLER J, CONDON D J, et al. Plešovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35. |
[76] | 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. |
[77] | STOREY C D, JEFFRIES T E, SMITH M. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite[J]. Chemical Geology, 2006, 227(1): 37-52. |
[78] | RUBATTO D. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1/2): 123-138. |
[79] | BRENAN J M, BENNETT N R, ZAJACZ Z. Experimentalresults on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation[J]. Reviews in Mineralogy and Geochemistry, 2016, 81(1): 1-87. |
[80] | RICHARDS J P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny[J]. Lithos, 2015, 233: 27-45. |
[81] | SULLIVAN N A, ZAJACZ Z, BRENAN J M. The solubility of Pd and Au in hydrous intermediate silicate melts: the effect of oxygen fugacity and the addition of Cl and S[J]. Geochimica et Cosmochimica Acta, 2018, 231: 15-29. |
[82] | 田瑞聪, 李大鹏, 张文, 等. 胶北隆起中生代壳幔岩浆的混合反应是巨量金质来源的关键[J]. 岩石学报, 2022, 38(1): 23-40. |
[83] |
陈玉民, 曾庆栋, 孙之夫, 等. 胶东金地球化学背景研究[J]. 黄金科学技术, 2019, 27(6): 791-801.
DOI |
[84] | XU Z, WANG Z C, GUO J L, et al. Chalcophile elements of the Early Cretaceous Guojialing granodiorites and mafic enclaves, eastern China, and implications for the formation of giant Jiaodong gold deposits[J]. Journal of Asian Earth Sciences, 2022, 238: 105374. |
[85] | RUDNICK R L, FOUNTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3): 267-309. |
[86] | 迟清华, 鄢明才, 戚长谋. 华北地台太古宙主要变质岩的平均化学组成[J]. 长春地质学院学报, 1997, 27(2): 126-134. |
[87] | SAUNDERS J E, PEARSON N J, O’REILLY S Y, et al. Gold in the mantle: a global assessment of abundance and redistribution processes[J]. Lithos, 2018, 322: 376-391. |
[88] | SALTERS V J M, STRACKE A. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(5): Q05B07. |
[89] | FROST B R, CHAMBERLAIN K R, SCHUMACHER J C. Sphene (titanite): phase relations and role as a geochronometer[J]. Chemical Geology, 2001, 172(1/2): 131-148. |
[90] | KENNEDY A K, KAMO S L, NASDALA L, et al. Grenville skarn titanite: potential reference material for SIMS U-Th-Pb analysis[J]. The Canadian Mineralogist, 2010, 48(6): 1423-1443. |
[91] | 聂凤军, 江思宏, 刘翼飞, 等. 碱性岩浆活动与铜、金和铀成矿作用[J]. 矿床地质, 2010, 29(增刊1): 247-248. |
[92] | 王丰翔, 裴荣富, 江思宏, 等. 碱性岩相关铜-金(钼)矿床的研究进展[J]. 地质通报, 2017, 36(1): 140-153. |
[93] | SILLITOE R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration[J]. Mineralium Deposita, 2002, 37(1): 4-13. |
[94] | JENSEN E P, BARTON M D. Gold deposits related to alkaline magmatism[M]// Gold in 2000. Littleton: Society of Economic Geologists, 2000: 279-314. |
[95] | MÜLLER D, HERZIG P M, SCHOLTEN J C, et al. Ladolam gold deposit, Lihir island, Papua New Guinea: gold mineralization hosted by alkaline rocks[M]//Integrated methods for discovery:global exploration in the twenty-first century. Littleton: Society of Economic Geologists, 2002: 201-213. |
[96] | LI Z, LIU J C, ZHANG H D, et al. Multistage gold mineralization in the Hadamengou gold deposit in the northern margin of the North China Craton: insights from in situ trace element contents and sulfur isotope analyses of pyrite[J]. Ore Geology Reviews, 2021, 134: 104135. |
[97] | ZHEN S M, WANG D Z, ZHA Z J, et al. Geology and mineralization of the Dongping supergiant alkalic-hosted Au-Te deposit (>100 t Au) in northern Hebei Province, China: a review[J]. China Geology, 2024, 7(3): 533-550. |
[98] | SILLITOE R H. Porphyry copper systems[J]. Economic Geology, 2010, 105(1): 3-41. |
[99] | AZEVEDO C, JÉBRAK M, GENNA D, et al. Evidence of gold related to Neoarchean alkaline magmatism in the Abitibi greenstone belt (Canada) from mineral parageneses and microscale trace element geochemistry on pyrite[J]. Ore Geology Reviews, 2022, 145: 104878. |
[100] | 于学峰, 李洪奎, 单伟. 山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨[J]. 地质学报, 2012, 86(12): 1946-1956. |
[101] | 田杰鹏, 田京祥, 郭瑞朋, 等. 胶东型金矿: 与壳源重熔层状花岗岩和壳幔混合花岗闪长岩有关的金矿[J]. 地质学报, 2016, 90(5): 987-996. |
[102] | 王来明, 王金辉, 任天龙, 等. 胶东金矿与中生代区域性花岗岩关系及成矿预测和找矿方向[J]. 山东国土资源, 2024, 40(3): 6-22. |
[103] | 宋明春, 伊丕厚, 崔书学, 等. 胶东金矿“热隆-伸展” 成矿理论及其找矿意义[J]. 山东国土资源, 2013, 29(7): 1-12. |
[104] | 叶天竺, 吕志成, 庞振山, 等. 勘查区找矿预测理论与方法: 总论[M]. 北京: 地质出版社, 2014. |
[1] | 王斌, 周明岭, 丁正江, 张琪彬, 刘向东, 吕军阳, 周晓萍. 胶西北蚀变岩型金矿构造控矿机制与三维深部定位预测[J]. 地学前缘, 2025, 32(4): 140-154. |
[2] | 李博文, 王永志, 丁正江, 王斌, 温世博, 董宇浩, 纪政. 基于大模型与GraphRAG的胶东金矿智能搜索技术[J]. 地学前缘, 2025, 32(4): 155-164. |
[3] | 陈永清, 郑澳月, 费金娜, 赵婕, 赵鹏大. 应用二维经验模分解(2D-EMD)-主成分分析(PCA)组合模型定量圈定与评价胶东金与关键金属找矿靶区[J]. 地学前缘, 2025, 32(1): 266-282. |
[4] | 朱平平, 刘岳, 成秋明. 定量确定胶东毕郭地区勘查地球化学异常的分布方向及地质意义[J]. 地学前缘, 2023, 30(2): 440-446. |
[5] | 吕承训, 张达, 许亚青, 郭涛, 王宗永, 霍庆龙, 袁月蕾. 胶东金矿成矿深度的构造校正测算及成矿预测[J]. 地学前缘, 2022, 29(1): 427-438. |
[6] | 邵雪维, 彭永明, 王功文, 赵显勇, 唐佳洋, 黄蕾蕾, 刘晓宁, 赵宪东. 短波红外光谱、X 射线荧光光谱、黄铁矿热电性分析在胶东新城金矿田深部找矿中的应用[J]. 地学前缘, 2021, 28(3): 236-251. |
[7] | 李瑞红,王学求,迟清华,张必敏,柳青青,刘汉粮. 胶东水系沉积物金地球化学异常分布规律及其意义[J]. 地学前缘, 2019, 26(4): 221-230. |
[8] | 毛先成,王迷军,刘占坤,陈进,邓浩. 基于勘查数据的胶东大尹格庄金矿床控矿地质因素定量分析[J]. 地学前缘, 2019, 26(4): 84-93. |
[9] | 刘翠,邓晋福,李胜荣,肖庆辉,金天杰,孙浩,狄永军,刘勇,赵国春. 胶东燕山期大型超大型金矿集区形成的壳幔结构探讨:来自致矿火成岩(组合)的约束[J]. 地学前缘, 2018, 25(6): 296-307. |
[10] | 吕承训,Norbert H.MAERZ,Kenneth J.BOYKO,吕古贤,邵鹤森. 胶东区域成矿断裂带蚀变年龄研究及其矿床学意义[J]. 地学前缘, 2017, 24(2): 140-150. |
[11] | 吕古贤,霍庆龙,袁月蕾,许亚青,范潇,付长伟,廖文建,苗强军. 胶东金矿陆内构造岩浆核杂岩隆起拆离带蚀变成矿[J]. 地学前缘, 2017, 24(2): 95-103. |
[12] | 刘殿浩, 吕古贤, 张丕建, 丁正江, 张军进, 林大伟, 马宾. 胶东三山岛断裂构造蚀变岩三维控矿规律研究与海域超大型金矿的发现[J]. 地学前缘, 2015, 22(4): 162-172. |
[13] | 吕承训, 吴淦国, Norbert H.MAERZ, Kenneth J.BOYKO. 胶东区域断裂蚀变岩带构造流体成矿特征[J]. 地学前缘, 2015, 22(4): 113-121. |
[14] | 曹晖, 李胜荣, 姜文, 李青, 海东婧, 王真. 胶东金青顶金矿钾长石化岩相学特征及形成温度的估算[J]. 地学前缘, 2013, 20(3): 94-103. |
[15] | 严育通, 张娜, 李胜荣, 李永生. 胶东各类型金矿床黄铁矿化学成分标型特征[J]. 地学前缘, 2013, 20(3): 88-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||