

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 500-510.DOI: 10.13745/j.esf.sf.2025.10.38
Previous Articles Next Articles
SHU Wei(
), JIANG Jianguo, WU Jichun*(
)
Received:2025-05-30
Revised:2025-08-29
Online:2026-01-25
Published:2025-11-10
CLC Number:
SHU Wei, JIANG Jianguo, WU Jichun. Physics-informed neural networks with hard constraints for hydraulic conductivity field inversion[J]. Earth Science Frontiers, 2026, 33(1): 500-510.
| PINNs算法 | Nf | NB | ND | NN1 | NN2/NN3 | NNK |
|---|---|---|---|---|---|---|
| PINNs-S | 400 | 200 | 25 | 100×6 | 60×6 | |
| PINNs-H-I | 400 | 200 | 25 | 100×6 | 60×6 | |
| PINNs-H-II | 400 | 200 | 25 | 100×6 | 100×3 | 60×6 |
| PINNs-H-III | 400 | 25 | 100×6 | 100×3 | 60×6 |
Table 1 Computational hyperparameters used in the PINNs examples for the two-dimensional confined groundwater flow model
| PINNs算法 | Nf | NB | ND | NN1 | NN2/NN3 | NNK |
|---|---|---|---|---|---|---|
| PINNs-S | 400 | 200 | 25 | 100×6 | 60×6 | |
| PINNs-H-I | 400 | 200 | 25 | 100×6 | 60×6 | |
| PINNs-H-II | 400 | 200 | 25 | 100×6 | 100×3 | 60×6 |
| PINNs-H-III | 400 | 25 | 100×6 | 100×3 | 60×6 |
Fig.7 Variation of the average absolute error (AAE) between the inverted and reference K fields with the number of training iterations for the four PINNs algorithms
| [1] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
DOI URL |
| [2] |
RAISSI M, YAZDANI A, KARNIADAKIS G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030.
DOI PMID |
| [3] |
SUN L N, GAO H, PAN S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732.
DOI URL |
| [4] |
MATHEWS A, FRANCISQUEZ M, HUGHES J W, et al. Uncovering turbulent plasma dynamics via deep learning from partial observations[J]. Physical Review E, 2021, 104(2): 025205.
DOI URL |
| [5] |
PANG G, D’ELIA M, PARKS M, et al. nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications[J]. Journal of Computational Physics, 2020, 422: 109760.
DOI URL |
| [6] |
MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250.
DOI URL |
| [7] |
JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028.
DOI URL |
| [8] |
YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913.
DOI URL |
| [9] |
ZHANG X P, ZHU Y, WANG J, et al. GW-PINN: a deep learning algorithm for solving groundwater flow equations[J]. Advances in Water Resources, 2022, 165: 104243.
DOI URL |
| [10] |
GUO H W, ZHUANG X Y, CHEN P W, et al. Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media[J]. Engineering with Computers, 2022, 38(6): 5173-5198.
DOI |
| [11] |
DONG S C, NI N X. A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks[J]. Journal of Computational Physics, 2021, 435: 110242.
DOI URL |
| [12] | WANG S F, TENG Y J, PERDIKARIS P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): A3055-A3081. |
| [13] |
CHEN J R, DU R, WU K K. A comparison study of deep Galerkin method and deep ritz method for elliptic problems with different boundary conditions[J]. Communications in Mathematical Research, 2020, 36(3): 354-376.
DOI URL |
| [14] |
ZEINHOFER M, MASRI R, MARDAL K A. A unified framework for the error analysis of physics-informed neural networks[J]. IMA Journal of Numerical Analysis, 2025, 45(5): 2988-3025.
DOI URL |
| [15] |
BERRONE S, CANUTO C, PINTORE M, et al. Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks[J]. Heliyon, 2023, 9(8): e18820.
DOI URL |
| [16] |
LEAKE C, MORTARI D. Deep theory of functional connections: a new method for estimating the solutions of partial differential equations[J]. Machine Learning and Knowledge Extraction, 2020, 2(1): 37-55.
DOI PMID |
| [17] |
SUKUMAR N, SRIVASTAVA A. Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 389: 114333.
DOI URL |
| [18] |
WANG S F, SANKARAN S, PERDIKARIS P. Respecting causality for training physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116813.
DOI URL |
| [19] | LU L, PESTOURIE R, YAO W J, et al. Physics-informed neural networks with hard constraints for inverse design[J]. SIAM Journal on Scientific Computing, 2021, 43(6): B1105-B1132. |
| [20] | BARSCHKIS S. Exact and soft boundary conditions in physics-informed neural networks for the variable coefficient Poisson equation[J]. arXiv preprint arXiv:2310.02548, 2023. |
| [21] | TOSCANO J D, KÄUFER T, MAXEY M, et al. Inferring turbulent velocity and temperature fields and their statistics from Lagrangian velocity measurements using physics-informed Kolmogorov-Arnold Networks[J]. arXiv preprint arXiv:2407.15727, 2024. |
| [22] |
ANAGNOSTOPOULOS S J, TOSCANO J D, STERGIOPULOS N, et al. Learning in PINNs: phase transition, diffusion equilibrium, and generalization[J]. Neural Networks, 2026, 193: 107983.
DOI URL |
| [23] |
JIN P Z, ZHANG Z, ZHU A Q, et al. SympNets: intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems[J]. Neural Networks, 2020, 132: 166-179.
DOI PMID |
| [24] | ZHOU K, GRAUER S J. Flow reconstruction and particle characterization from inertial Lagrangian tracks[J]. arXiv preprint arXiv:2311.09076, 2023. |
| [25] |
WANG N Z, CHANG H B, ZHANG D X. Efficient uncertainty quantification for dynamic subsurface flow with surrogate by theory-guided neural network[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113492.
DOI URL |
| [26] |
JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951.
DOI URL |
| [27] |
CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing, 2022, 92(3): 88.
DOI |
| [28] | 邓书超, 宋孝天, 钟旻霄, 等. 一种求解偏微分方程的动态平衡物理信息神经网络[J]. 中国科学: 信息科学, 2024, 54(3): 18431859. |
| [29] |
TIAN Y J, ZHANG Y Q, ZHANG H B. Recent advances in stochastic gradient descent in deep learning[J]. Mathematics, 2023, 11(3): 682.
DOI URL |
| [30] | BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18(1): 5595-5637. |
| [31] | ABADI M, BARHAM P, CHEN J, et al. TensorFlow:A system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). Savannah, GA, USA: USENIX Association, 2016: 265-283. |
| [32] | PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[C]. The NIPS 2017 Autodiff Workshop. Long Beach, CA, USA: Neural Information Processing Systems Foundation, 2017. |
| [33] |
NANNI L, LUMINI A, GHIDONI S, et al. Stochastic selection of activation layers for convolutional neural networks[J]. Sensors, 2020, 20(6): 1626.
DOI URL |
| [34] |
MENG X H, YAN J Y, YE H L, et al. Construction and approximation for a class of feedforward neural networks with sigmoidal function[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2023, 21(6): 2350028.
DOI URL |
| [35] |
GODIN F, DEGRAVE J, DAMBRE J, et al. Dual rectified linear units (DReLUs): a replacement for tanh activation functions in quasi-recurrent neural networks[J]. Pattern Recognition Letters, 2018, 116: 8-14.
DOI URL |
| [36] | VENKATESWARARAO P, MURUGAVALLI S. Rectifying the problem of vanishing gradient using ReLU activation function based on BLSTM neural network[J]. International Journal of Recent Technology and Engineering, 2019, 8(1): 2615-2618. |
| [37] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]// Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA: JMLR: W&CP, 2013: 1-9. |
| [38] | RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[J]. arXiv preprint arXiv:1710.05941, 2017. |
| [39] |
ALZUBAIDI L, ZHANG J L, HUMAIDI A J, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions[J]. Journal of Big Data, 2021, 8(1): 53.
DOI PMID |
| [40] |
WANG Q, MA Y, ZHAO K, et al. A comprehensive survey of loss functions in machine learning[J]. Annals of Data Science, 2022, 9(2): 187-212.
DOI |
| [41] |
ALIAKBARI M, SOLTANY SADRABADI M, VADASZ P, et al. Ensemble physics informed neural networks: a framework to improve inverse transport modeling in heterogeneous domains[J]. Physics of Fluids, 2023, 35(5): 053616.
DOI URL |
| [1] | YANG Yiqun, LI Shenyan, DAI Junyi, GAO Di, ZHOU Shiyu, WANG Lichun. Study on the scale effect of hydraulic conductivity in the sandy shallow groundwater aquifer at Luanhe River Estuary [J]. Earth Science Frontiers, 2025, 32(3): 425-435. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||