Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 425-435.DOI: 10.13745/j.esf.sf.2025.3.18
Previous Articles Next Articles
YANG Yiqun1(), LI Shenyan1, DAI Junyi1, GAO Di1, ZHOU Shiyu1, WANG Lichun1,2,3,*(
)
Received:
2024-12-05
Revised:
2025-02-27
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
YANG Yiqun, LI Shenyan, DAI Junyi, GAO Di, ZHOU Shiyu, WANG Lichun. Study on the scale effect of hydraulic conductivity in the sandy shallow groundwater aquifer at Luanhe River Estuary[J]. Earth Science Frontiers, 2025, 32(3): 425-435.
实验类别 | 渗透系数/(m·d-1) | 数据来源 | ||
---|---|---|---|---|
D02 | D03 | D04 | ||
变水头室内渗流实验 | 0.71 | 0.46 | 1.08 | 本文 |
野外微水试验 | 12.16 | 16.97 | 21.76 |
Table 1 Results of permeability test and slug test
实验类别 | 渗透系数/(m·d-1) | 数据来源 | ||
---|---|---|---|---|
D02 | D03 | D04 | ||
变水头室内渗流实验 | 0.71 | 0.46 | 1.08 | 本文 |
野外微水试验 | 12.16 | 16.97 | 21.76 |
Fig.4 Fluctuations in river and groundwater levels (a), and analytical solution-based inversion of hydraulic conductivity and the goodness of water level fitting (b)
[1] | DARCY H. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau[M]. Paris: Victor Dalmont, 1856. |
[2] | DUPUIT J É J. Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile[M]. Paris: Dunod, 1863. |
[3] | FOURIER J B J. Théorie analytique de la chaleur[M]. Paris: Gauthier-Villars, 1888. |
[4] | GELHAR L W, AXNESS C L. Three-dimensional stochastic analysis of macrodispersion in aquifers[J]. Water Resources Research, 1983, 19(1): 161-180. |
[5] | NEUMAN S P. Universal scaling of hydraulic conductivities and dispersivities in geologic media[J]. Water Resources Research, 1990, 26(8): 1749-1758. |
[6] |
ZHENG C M, BIANCHI M, GORELICK S M. Lessons learned from 25 years of research at the MADE site[J]. Groundwater, 2011, 49(5): 649-662.
DOI PMID |
[7] | LE BORGNE T, BOUR O, DE DREUZY J R, et al. Equivalent mean flow models for fractured aquifers: insights from a pumping tests scaling interpretation[J]. Water Resources Research, 2004, 40(3): W03512. |
[8] | SÁNCHEZ-VILA X, CARRERA J, GIRARDI J P. Scale effects in transmissivity[J]. Journal of Hydrology, 1996, 183(1/2): 1-22. |
[9] | GELHAR L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9S): 135S-145S. |
[10] | GODOY V A, ZUQUETTE L V, GÓMEZ-HERNÁNDEZ J J. Scale effect on hydraulic conductivity and solute transport: small and large-scale laboratory experiments and field experiments[J]. Engineering Geology, 2018, 243: 196-205. |
[11] |
WANG B, CHEN L W, NIU Z. Critical hydraulic gradient and fine particle migration of sand under upward seepage flow[J]. Scientific Reports, 2022, 12(1): 14440.
DOI PMID |
[12] | CHIRINDJA F, ROSBERG J E, DAHLIN T. Borehole logging and slug tests for evaluating the applicability of electrical resistivity tomography for groundwater exploration in Nampula complex, Mozambique[J]. Water, 2017, 9(2): 95. |
[13] | MOHAMMED M Z. The limiting factor relationship between geoelectric and hydraulic parameters: a case study[J]. Global Journal of Pure and Applied Sciences, 2016, 22(2): 157-166. |
[14] | CHAPUIS R P, DALLAIRE V, MARCOTTE D, et al. Evaluating the hydraulic conductivity at three different scales within an unconfined sand aquifer at Lachenaie, Quebec[J]. Canadian Geotechnical Journal, 2005, 42(4): 1212-1220. |
[15] | YANG T, LIU H Y, TANG C A. Scale effect in macroscopic permeability of jointed rock mass using a coupled stress-damage-flow method[J]. Engineering Geology, 2017, 228: 121-136. |
[16] | XU J C, BU Z W, LI H Y, et al. Permeability models of hydrate-bearing sediments: a comprehensive review with focus on normalized permeability[J]. Energies, 2022, 15(13): 4524. |
[17] | BERKOWITZ B, ZEHE E. Surface water and groundwater: unifying conceptualization and quantification of the two “water worlds”[J]. Hydrology and Earth System Sciences, 2020, 24(4): 1831-1858. |
[18] | TELES V, DELAY F, DE MARSILY G. Comparison of genesis and geostatistical methods for characterizing the heterogeneity of alluvial media: groundwater flow and transport simulations[J]. Journal of Hydrology, 2004, 294(1/2/3): 103-121. |
[19] |
王平. 西北干旱区间歇性河流与含水层水量交换研究进展与展望[J]. 地理科学进展, 2018, 37(2): 183-197.
DOI |
[20] | JEANNOT B, WEILL S, ESCHBACH D, et al. Assessing the effect of flood restoration on surface-subsurface interactions in Rohrschollen Island (Upper Rhine River, France) using integrated hydrological modeling and thermal infrared imaging[J]. Hydrology and Earth System Sciences, 2019, 23(1): 239-254. |
[21] | 张宇, 王建力, 杨平恒, 等. 河水-地下水侧向交互流运动机制[J]. 中国科学: 地球科学, 2017, 47(11): 1349-1356. |
[22] | MERILL L, TONJES D J. A review of the hyporheic zone, stream restoration, and means to enhance denitrification[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(21): 2337-2379. |
[23] | NEWMAN A E. Water and solute transport in the shallow subsurface of a riverine wetland natural levee[D]. Baton Rouge: Louisiana State University, 2010. |
[24] | WÖRMAN A, PACKMAN A I, JOHANSSON H, et al. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers[J]. Water Resources Research, 2002, 38(1): 2-1-2-15. |
[25] | MAQSOOM A, ASLAM B, KHALID N, et al. Delineating groundwater recharge potential through remote sensing and geographical information systems[J]. Water, 2022, 14(11): 1824. |
[26] | ROSSI M J, ARES J O. Depression storage and infiltration effects on overland flow depth-velocity-friction at desert conditions: field plot results and model[J]. Hydrology and Earth System Sciences, 2012, 16(9): 3293-3307. |
[27] | ZHU J, WINTER C L, WANG Z. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges[J]. Hydrology and Earth System Sciences, 2015, 19(11): 4531-4545. |
[28] | MICHAEL H A, VOSS C I. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh[J]. Hydrogeology Journal, 2009, 17(6): 1329-1346. |
[29] | SANCHEZ-VILA X, GUADAGNINI A, CARRERA J. Representative hydraulic conductivities in saturated groundwater flow[J]. Reviews of Geophysics, 2006, 44(3): RG3002. |
[30] | 王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4): 91-99. |
[31] |
高志鹏, 郭华明, 屈吉鸿. 卫河流域河流-地下水流系统氮素运移的数值模拟[J]. 地学前缘, 2018, 25(3): 273-284.
DOI |
[32] | 田海兰. 现代滦河三角洲滨海湿地动态变化分析研究[D]. 石家庄: 河北师范大学, 2011. |
[33] | 河海大学《土力学》教材编写组. 土力学[M]. 3版. 北京: 高等教育出版社, 2019: 57. |
[34] | BOUWER H, RICE R C. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells[J]. Water Resources Research, 1976, 12(3): 423-428. |
[35] | COOPER H H, BREDEHOEFT J D, PAPADOPULOS I S. Response of a finite-diameter well to an instantaneous charge of water[J]. Water Resources Research, 1967, 3(1): 263-269. |
[36] | HVORSLEV M J. Time lag and soil permeability in ground-water observations[M]. Vickburg: Waterways Experiment Station, Corps of Engineers, US Army, 1951. |
[37] | SPRINGER R K, GELHAR L W. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory[C]// US Department of the Interior, US Geological Survey. Proceedings of the US geological survey toxic substances hydrology program: proceedings of the technical meeting. Monterey, California, March 11-15, 1991, F, 1992: 36-40. |
[38] | SONG Z, LI L, KONG J, et al. A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer[J]. Journal of Hydrology, 2007, 340(3/4): 256-260. |
[39] | PARLANGE J Y, STAGNITTI F, STARR J L, et al. Free-surface flow in porous media and periodic solution of the shallow-flow approximation[J]. Journal of Hydrology, 1984, 70(1/2/3/4): 251-263. |
[40] | PARLANGE J Y, BRUTSAERT W. A capillarity correction for free surface flow of groundwater[J]. Water Resources Research, 1987, 23(5): 805-808. |
[41] |
MAIER H S, HOWARD K W. Influence of oscillating flow on hyporheic zone development[J]. Groundwater, 2011, 49(6): 830-844.
DOI PMID |
[42] | HE J J, JIANG X H, WANG Y B. The temperature-influenced scaling law of hydraulic conductivity of sand under the centrifugal environment[J]. Water, 2024, 16(18): 2596. |
[43] | JOSHAGHANI M, GHASEMI-FARE O. Exploring the effects of temperature on intrinsic permeability and void ratio alteration through temperature-controlled experiments[J]. Engineering Geology, 2021, 293: 106299. |
[44] | MARCINIAK M, SZCZUCIŃSKA A. Determination of diurnal water level fluctuations in headwaters[J]. Hydrology Research, 2016, 47(4): 888-901. |
[45] | ÁGUILA J F, MCDONNELL M C, FLYNN R, et al. Comparison of saturated hydraulic conductivity estimated by empirical, hydraulic and numerical modeling methods at different scales in a coastal sand aquifer in Northern Ireland[J]. Environmental Earth Sciences, 2023, 82(13): 327. |
[46] | CHAPUIS R P. Permeability scale effects in sandy aquifers: a few case studies[C]// Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. Paris: Presses des Ponts Paris, 2013: 507-510. |
[47] | ROVEY C W, CHERKAUER D S. Scale dependency of hydraulic conductivity measurements[J]. Groundwater, 1995, 33(5): 769-780. |
[48] | BIERKENS M F. Modeling hydraulic conductivity of a complex confining layer at various spatial scales[J]. Water Resources Research, 1996, 32(8): 2369-2382. |
[49] | COLECCHIO I, BOSCHAN A, OTERO A D, et al. On the multiscale characterization of effective hydraulic conductivity in random heterogeneous media: a historical survey and some new perspectives[J]. Advances in Water Resources, 2020, 140: 103594. |
[50] | 杜强, 康永尚, 万力, 等. 渗透性参数非均质特征的研究进展[J]. 地学前缘, 1996, 3(2): 182-190. |
[1] | SONG Dekun, LIU Lele, WANG Dong. Experimental study on the sensitivity of hydraulic permeability of fine-grained sediments sampled from a gas hydrate distribution area in the northern South China Sea [J]. Earth Science Frontiers, 2024, 31(6): 405-414. |
[2] | CHENG Donghui, LI Hui, WANG Jun, LI Shuang, HUANG Mengnan, MA Chenglong, RAO Ze. The relationship between groundwater displacement rate, air-entrapped saturation, and quasi-saturated hydraulic conductivity in quasi-saturated porous media [J]. Earth Science Frontiers, 2022, 29(3): 256-262. |
[3] | LIU Yulong,WU Weiyang,FAN Junxin,CHEN Honghan. Anti-seepage performance for oily pollutants in compacted clay layer of Yunnan Province, China [J]. Earth Science Frontiers, 2019, 26(4): 273-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||