

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 9-28.DOI: 10.13745/j.esf.sf.2025.8.62
Previous Articles Next Articles
XIAO Qinghui1(
), LIU Yong1,*(
), LI Tingdong1, PAN Guitang2, LU Songnian3, DING Xiaozhong1, ZHANG Kexin4, PANG Jianfeng1, QIU Ruizhao5, ZHAO Guochun6, ZHANG Heng1, CHENG Yang1, FAN Yuxu1, FU Li1
Received:2025-06-12
Revised:2025-08-13
Online:2025-11-25
Published:2025-11-12
Contact:
LIU Yong
CLC Number:
XIAO Qinghui, LIU Yong, LI Tingdong, PAN Guitang, LU Songnian, DING Xiaozhong, ZHANG Kexin, PANG Jianfeng, QIU Ruizhao, ZHAO Guochun, ZHANG Heng, CHENG Yang, FAN Yuxu, FU Li. Tracing the deep geological processes of the Mesozoic-Cenozoic oceanic plate on the continental margin of the East Asian continent in China[J]. Earth Science Frontiers, 2025, 32(6): 9-28.
Fig.2 Ubiquitous subduction in continental and oceanic arcs. Modified after [12]. 1—Uralian; 2-6—Central Asian (2—Baikal-Muya; 3—Yenisey-Transbaikalia-North Mongolia; 4— Altay-Sayan-NW Mongolia; 5—Irtysh-Zaysan; 6—Tienshan); 7—South Inner Mongolia; 8—Mongol-Okhotsk; 9—Sikhote-Alin; 10—Verkhoyansk; 11—Okhotsk-Chukotka; 12—South Anuy; 13—West Kamchatka; 14—Pamir-Hindukush; 15—Kunlun-Qinling; 16—Tibet-Himalaya; 17—South China.
| 序号 | 名称 | 俯冲或增生弧 | 序号 | 名称 | 俯冲或增生弧 |
|---|---|---|---|---|---|
| 1 | Shirshov-Bowers | 不清楚 | 21 | North Borneo-Sulu-Zamboanga | 不清楚 |
| 2 | Alaska-Aleutians | 不清楚 | 22 | Halmahera | 增生 |
| 3 | S. Kamchatka | 不清楚 | 23 | Sabgihe | 增生 |
| 4 | Kuriles | 不清楚 | 24 | Sulawesi East Arm | 增生 |
| 5 | Hidaka | 不清楚 | 25 | Sulawesi West Arm | 增生 |
| 6 | NE Japan | 不清楚 | 26 | Sula | 不清楚 |
| 7 | Izu-Bonin | 部分增生 | 27 | Banda | 不清楚 |
| 8 | East Mariana | 不清楚 | 28 | Sunda (Java-Flores) | 不清楚 |
| 9 | West Mariana | 不清楚 | 29 | Sunda (Sumatra) | 不清楚 |
| 10 | Sw Japan | 不清楚 | 30 | Bismarck | 不清楚 |
| 11 | Kyushu-Palao | 俯冲 | 31 | New Britain | 不清楚 |
| 12 | Amami | 俯冲 | 32 | Bewani-Torricelli | 不清楚 |
| 13 | Daito | 俯冲 | 33 | Central Papua New Guinea | 不清楚 |
| 14 | Okion-Daito | 俯冲 | 34 | Solomon | 不清楚 |
| 15 | Ryu-Kyu | 不清楚 | 35 | Vanuatu | 不清楚 |
| 16 | West Philippines | 不清楚 | 36 | Tofua (Tonga) | 不清楚 |
| 17 | Luzon | 不清楚 | 37 | Kermadec | 不清楚 |
| 18 | Negros | 不清楚 | 38 | New Zealand | 不清楚 |
| 19 | SE Mindanao | 不清楚 | 39 | Macquarie | 不清楚 |
| 20 | Palawan | 不清楚 |
Table 1 Intra-oceanic arcs in the western Pacific. Modified after [8].
| 序号 | 名称 | 俯冲或增生弧 | 序号 | 名称 | 俯冲或增生弧 |
|---|---|---|---|---|---|
| 1 | Shirshov-Bowers | 不清楚 | 21 | North Borneo-Sulu-Zamboanga | 不清楚 |
| 2 | Alaska-Aleutians | 不清楚 | 22 | Halmahera | 增生 |
| 3 | S. Kamchatka | 不清楚 | 23 | Sabgihe | 增生 |
| 4 | Kuriles | 不清楚 | 24 | Sulawesi East Arm | 增生 |
| 5 | Hidaka | 不清楚 | 25 | Sulawesi West Arm | 增生 |
| 6 | NE Japan | 不清楚 | 26 | Sula | 不清楚 |
| 7 | Izu-Bonin | 部分增生 | 27 | Banda | 不清楚 |
| 8 | East Mariana | 不清楚 | 28 | Sunda (Java-Flores) | 不清楚 |
| 9 | West Mariana | 不清楚 | 29 | Sunda (Sumatra) | 不清楚 |
| 10 | Sw Japan | 不清楚 | 30 | Bismarck | 不清楚 |
| 11 | Kyushu-Palao | 俯冲 | 31 | New Britain | 不清楚 |
| 12 | Amami | 俯冲 | 32 | Bewani-Torricelli | 不清楚 |
| 13 | Daito | 俯冲 | 33 | Central Papua New Guinea | 不清楚 |
| 14 | Okion-Daito | 俯冲 | 34 | Solomon | 不清楚 |
| 15 | Ryu-Kyu | 不清楚 | 35 | Vanuatu | 不清楚 |
| 16 | West Philippines | 不清楚 | 36 | Tofua (Tonga) | 不清楚 |
| 17 | Luzon | 不清楚 | 37 | Kermadec | 不清楚 |
| 18 | Negros | 不清楚 | 38 | New Zealand | 不清楚 |
| 19 | SE Mindanao | 不清楚 | 39 | Macquarie | 不清楚 |
| 20 | Palawan | 不清楚 |
Fig.17 Mantle transition zone beneath East Asia: An east-west transect illustrating its structure and role in crustal growth and continent formation. Modified after [19-20].
Fig.18 Schematic diagram illustrating the subduction, stagnation, and accumulation of an oceanic plate beneath eastern China to the mantle transition zone. Modified after [16].
Fig.21 A schematic mode of mantle dynamics analogous to mid-ocean ridges: From thermal anomalies in the transition zone to asthenspheric upwelling and continental rifting. Modified after [29].
Fig.25 Tectonic setting and profile showing five intra-oceanic arcs on the Philippine Sea Plate subducting beneath Japan’s Honshu without accretion. Modified after [44].
Fig.29 Graben structures on the subducting slab transporting trench turbidites and the accretionary complex into the deep mantle. Modified after [43].
Fig.30 Tectonic framework of Northeast Japan: Four chronostratigraphic units and associated graben systems transporting turbidites to the deep mantle. Modified after [12].
| [1] | CHENG Y, XIAO Q H, LI T D, et al. Geochemistry and tectonic history of seamount remnants in the Xingshuwa Subduction Accretionary Complex of the Xar Moron area, eastern margin of the Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 2021, 95(4): 1086-1098. |
| [2] | OSANAI Y, KOMATSU M, OWADA M. Metamorphism and granite genesis in the Hidaka metamorphic belt, Hokkaido, Japan[J]. Journal of Metamorphic Geology, 1991, 9: 111-124. |
| [3] | WHITE W M. Oceanic island basalts and mantle plumes: the geochemical perspective[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 133-160. |
| [4] | SAFONOVA I, MARUYAMA S. Asia: a frontier for a future supercontinent[J]. International Geology Review, 2014, 56: 1051e1071. |
| [5] | DEWEY J F, WINDLEY B F. Growth and differentiation of the continental crust[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 189-206. |
| [6] | FYFE W S. The evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics[J]. Chemical Geology, 1978, 23: 89-114. |
| [7] | ARMSTRONG R L. Radiogenic isotopes: the case for crustal recycling on anearsteady state nocontinental-growth Earth[J]. Philosophical Transactions of the Royal Society of London 1981, A301: 443-472. |
| [8] | YAMAMOTO S, SENSHU H, RINO S, et al. Granite subduction: arc subduction, tectonic erosion and sediment subduction[J]. Gondwana Research, 2009, 15(3/4): 443-453. |
| [9] | RINO S, KON Y, SATO W, et al. The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 2008, 14: 51-72. |
| [10] | RICHARDSON W P, OKAL E A, VAN DER LEE S. Rayleigh-wave tomography of the Ontong-Java Plateau[J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 29-51. |
| [11] | SENO T, MARUYAMA S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102: 53-84. |
| [12] | SAFONOVA I Y, MARUYAMA S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. |
| [13] | MARUYAMA S, HASEGAWA A, SANTOSH M, et al. The dynamics of big mantle wedge, magma factory, and metamorphic-metasomatic factory in subduction zones[J]. Gondwana Research, 2009, 16: 414-430. |
| [14] | OMORI S, SENSU H, KAWAI K, et al. Pacific-type orogens: new concepts and variations inspace and time from present to past[J]. Journal of Geography, 2011, 120: 115-223(in Japanese with English abstract and captions). |
| [15] | KAWAII K, TSUCHIYA T, TSUCHIYA J, et al. Lost primordial continents[J]. Gondwana Research, 2009, 16: 581-586. |
| [16] | KAWAII K, YAMAMOTO S, TSUCHIYA T, et al. The seond continent: existence of granitic continental materials around the bottom of the mantle transition zone[J]. Geoscience Frontiers, 2013, 4: 1-6. |
| [17] | HU A Q, WEI G J, ZHANG J B, et al. SHRIMP U-Pb ages for zircons of the amphibolites and tectonic evolution significance from the Wenquan domain in the West Tianshan Mountains, Xinjiang, China[J]. Acta Petrologica Sinica, 2008, 24(12): 2731-2740 (in Chinese with English abstract). |
| [18] | ZHAO W P, JIA Z K, WEN Z G, et al. The discovery of the blueschists from the Baerluke ophiolitic melange belt in Western Junggar, Xinjiang[J]. Northwest Geology, 2012, 45(2): 136-138 (in Chinese with English abstract). |
| [19] | TAIRA K, PICKERING T, WINDLEY B F, et al. Accretion of Japanese island arcs and implications for the origin of Archean greenstone belts[J]. Tectonics, 1992, 11: 1224-1244. |
| [20] | ZHAO G, SUN M, WILDE S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67: 91-123. |
| [21] | SENSHU H, MARUYAMA S, RINO S, et al. Role of tonalite-trodhjemite-granite (TTG) crust subduction on the mechanism supercontinent breakup[J]. Gondwana Research, 2009, 15(3): 433-442. |
| [22] | KANEKO Y, MARUYAMA S, KADARUSMAN A, et al. On-going orogeny in the outer-arc of the Timor-Tanimbar region, eastern Indonesia[J]. Gondwana Research, 2007, 11: 218-233. |
| [23] | BRENAN J M, SHAW H F, PHINNEY D L, et al. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts[J]. Earth and Planetary Science Letters, 1994, 128(3): 327-339. |
| [24] | PRYTULAK J, ELLIOTT, et al. TiO2 enrichment in ocean island basalts[J]. Earth and Planetary Science Letters, 2007, 263(3): 388-403. |
| [25] | SAUNDERS A. Putting continents asunder[J]. Nature, 1988, 332(6166): 679. |
| [26] | McCULLOCH M T, GAMBLE J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102(3): 358-374. |
| [27] | MARUYAMA S, SANTOSH M, ZHAO D, et al. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-37. |
| [28] | SANTOSH M, MARUYAMA S, KOMIYA T, et al. Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core-mantle boundary[J]. Geological Society, London, Special Publications, 2010, 338: 77-116. |
| [29] | HONG K C, WANG S F, ZHANG S W, et al. Oligocene melting of subducted mélange and its mantle dynamics in northeast Asia[J]. Geology, 2024, 52: 539-544. |
| [30] | CRUZ U A M, MARSCHALL H R, GAETANI G A, et al. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs: an experimental study[J]. Geology, 2018, 46(4): 343-346. |
| [31] | GERYA T V, YUEN D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones(Article)[J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62. |
| [32] | MARSCHALLCA H R, SCHUMACHER J C. Arc magmas sourced from mélange diapirs in subduction zones[J]. Nature Geoscience, 2012, 5(12): 862-867. |
| [33] | CODILLO E A, Le ROUX V, KLEIN B, et al. The ascent of subduction zone mélanges: experimental constraints on mélange rock densities and solidus temperatures[J]. Earth and Planetary Science Letters, 2023, 621: 118-398. |
| [34] | HALL P S, KINCAID, et al. Diapiric flow at subduction zones: a recipe for rapid transport[J]. Science, 2001, 292(5526): 2472-2475. |
| [35] | REBAZACA A M, MALLIK A, STRAUB S M. Multiple episodes of rock-melt reaction at the slab-mantle interface: formation of high silica primary magmas in intermediate to hot subduction zones[J]. Journal of Petrology, 2023, 64(3): 1408-1424. |
| [36] | HASEGAWA A, NAKAJIMA J, KITA S, et al. Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material[J]. Geophysical Research Letters, 2007, 34: L09305. |
| [37] | KLEIN, BENJAMIN Z, BEHN, et al. On the evolution and fate of sediment diapirs in subduction zones[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(11): e2021GC009873. |
| [38] | RYDELEK P A, SACKS I S. Asthenospheric viscosity inferred from correlated land-sea earthquakes in Northeast Japan[J]. Nature, 1988, 336(6196): 234-237. |
| [39] | ZHAO W, MECHIE J, BROWN L D, et al. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data[J]. Geophysical Journal International, 2001, 145(2): 486-498. |
| [40] | DONG Y, XIONG S, WANG F, et al. Triggering of episodic back-arc extensions in the Northeast Asian continental margin by deep mantle flow[J]. Geology, 2023, 51(2): 193-198. |
| [41] | WADA I, HE J H, HASEGAWA A, et al. Mantle wedge flow pattern and thermal structure in Northeast Japan: effects of oblique subduction and 3-D slab geometry[J]. Earth and Planetary Science Letters, 2015, 426: 76-88. |
| [42] | WANG Z W, ZHAO D P. 3D anisotropic structure of the Japan subduction zone[J]. Science Advances, 2021, 7(4): eabc9620. |
| [43] | MARUYAMA S, SANTOSH M, ZHAO D, et al. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-37. |
| [44] | ISOZAKI Y, AOKI K, NAKAMA T, et al. New insight into a subduction-related orogen: a reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18(4): 709. |
| [45] | NAKAJIMA, TAKASHI. The Ryoke plutonometamorphic belt: crustal section of the Cretaceous Eurasian continental margin[J]. Lithos, 1994, 33(1): 51-66. |
| [1] | WAN Xiaoqiao. Dynamic response of Mesozoic-Cenozoic foraminiferal paleogeography to the Tibetan Tethys evolution [J]. Earth Science Frontiers, 2020, 27(6): 116-127. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||