

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 224-244.DOI: 10.13745/j.esf.sf.2025.7.12
Previous Articles Next Articles
YU Xianghui1(
), LIU Cui1,*(
), SU Shangguo1, LIU Jixu1, WANG Miao1, GUO Xu2, ZHOU Chenghao3, GAO Yalin4,5
Received:2025-06-14
Revised:2025-07-03
Online:2025-11-25
Published:2025-11-12
Contact:
LIU Cui
CLC Number:
YU Xianghui, LIU Cui, SU Shangguo, LIU Jixu, WANG Miao, GUO Xu, ZHOU Chenghao, GAO Yalin. Types, genesis, and implications of phlogopite in the Jinchuan Cu-Ni (Pt) sulfide deposit, Gansu Province, China[J]. Earth Science Frontiers, 2025, 32(6): 224-244.
Fig.2 Geological sketch map with representative cross-section of the Jinchuan Cu-Ni deposit (a) and graphical capture of the 3D model of main orebodies (b). a modified after [19]; b modified after [28].
| [1] | CHAI G, NALDRETT A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China[J]. Economic Geology, 1992, 87(6): 1475-1495. |
| [2] | 汤中立, 李文渊. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995: 1-209. |
| [3] | 宋谢炎, 康健, 隆廷茂, 等. 甘肃金川超大型Ni-Cu-PGE硫化物矿床岩浆通道分枝构造及其深部找矿意义[J]. 地球科学与环境学报, 2023, 45(5): 1049-1062. |
| [4] | 汤中立. 中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J]. 地学前缘, 2004, 11(1): 113-119. |
| [5] | 汤中立, 焦建刚, 闫海卿, 等. 小岩体成(大)矿理论体系[J]. 中国工程科学, 2015(2): 4-18. |
| [6] | NALDRETT AJ. World-class Ni-Cu-PGE deposits: key factors in their genesis[J]. Mineralium Deposita, 1999, 34(3): 227-240. |
| [7] | 罗照华, 卢欣祥, 陈必河. 透岩浆流体成矿作用导论[M]. 北京: 地质出版社, 2009. |
| [8] | LI C S, RIPLEY E M, NALDRETT A J. A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts[J]. Economic Geology, 2009, 104(2): 29-301. |
| [9] | EVANS-LAMSWOOD D M, BUTT D P, JACKSON R S, et al. Physical controls associated with the distribution of sulfides in the Voisey’s Bay Ni-Cu-Co deposit, Labrador[J]. Economic Geology, 2000, 95: 749-770. |
| [10] | LIGHTFOOT P C, KEAYS R R. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk region: implications for the origin of the Ni-Cu-PGE sulfide ores[J]. Economic Geology, 2005, 100(3): 439-462. |
| [11] | 苏尚国, 汤中立, 罗照华, 等. 岩浆通道成矿系统[J]. 岩石学报, 2014, 30(11): 3120-3130. |
| [12] | 苏尚国, 汤中立. 岩浆通道成矿系统的理论与实践[J]. 矿床地质, 2010, 29(增刊1): 885-886. |
| [13] | 陈学根, 苏尚国, 施南, 等. 金川岩浆铜镍(铂)硫化物矿床铂族金属富集过程及富集机制[J]. 地质学报, 2023, 97(11): 3715-3744. |
| [14] | HEDENQUIST J W, LOWENSTERN J B. The role of magmas in the formation of hydrothermal ore deposits[J]. Nature, 1994, 370(6490): 519-527. |
| [15] | 汤中立. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 1990, 4(4): 55-64. |
| [16] | LI L J, MAO X C, LIU Z K, et al. Variation of chalcophile elements in base metal sulfide minerals from the Jinchuan magmatic Ni-Cu sulfide deposit, NW China: implications for mineral exploration[J]. Journal of Geochemical Exploration, 2024, 259: 107440. |
| [17] | 甘肃省地质矿产局第六地质队. 白家咀子硫化铜镍矿床地质[M]. 北京: 地质出版社, 1984. |
| [18] | 高亚林. 金川矿区地质特征、时空演化及深边部找矿研究[D]. 兰州: 兰州大学, 2009. |
| [19] | SONG X Y, DANYUSHEVSKY L V, KEAYS R R, et al. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China[J]. Mineralium Deposita, 2012, 47: 277-297. |
| [20] | SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424. |
| [21] | 闫海卿, 范超鹏, 丁孝存, 等. 金川岩浆铜镍硫化物矿床围岩的成矿贡献[J]. 矿物学报, 2015, 35(增刊1): 174. |
| [22] | 徐刚. 金川铜镍矿床铂族元素特征研究[D]. 西安: 长安大学, 2010. |
| [23] | 王守良, 王荆程, 夏明强, 等. 金川铜镍硫化矿床成岩(矿)断裂构造分析[J]. 青海大学学报(自然科学版), 2014, 32(3): 43-50. |
| [24] | 李士彬, 宋谢炎, 胡瑞忠, 等. 甘肃金川Ⅱ号岩体岩相学特征及分离结晶过程探讨[J]. 岩石学报, 2007(10): 2553-2560. |
| [25] | 江金进, 陈列锰, 宋谢炎, 等. 金川铜镍矿床58号矿体亲铜和亲铁元素特征及其地质意义[J]. 矿床地质, 2013, 32(5): 941-953. |
| [26] | 闫海卿, 王强, 胡彦强, 等. 金川铜镍硫化物岩浆矿床前锋岩浆与岩浆通道[J]. 中国地质, 2013, 40(3): 807-819. |
| [27] | 曾认宇, 赖健清, 毛先成, 等. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 2013, 23(9): 2574-2583. |
| [28] | 高亚林, 王珉, 阮俊红. 金川矿床深边部找矿预测区探讨[J]. 铜业工程, 2020(1): 31-34, 60. |
| [29] | 焦建刚, 汤中立, 闫海卿, 等. 金川铜镍硫化物矿床中富铜矿石铂族元素特征及矿床成因[J]. 西北地质, 2012, 45(4): 242-253. |
| [30] | FOSTER M D. Interpretation of the composition of trioctahedral micas[J]. United States Geological Survey Professional Paper, 1962, 354(B): 11-49. |
| [31] | CHALAPATHI RA N V, Madhava V. Titanium-rich phlogopites from the Zangamarajupalle kimberlitic rock, Andhra Pradesh, India[J]. Journal Geological Society of India, 1996, 47(3): 355-363. |
| [32] | NEAL C R, TAYLO A. The petrography and composition of phlogopite micas from the Blue Ball kimberlite, Arkansas: a record of chemical evolution during crystallization[J]. Mineralogy and Petrology, 1989, 40(3): 207-224. |
| [33] | DAWSON J B, SMITH J V. Chemistry and origin of phlogopite megacrysts in kimberlite[J]. Nature, 1975, 253(5490): 336-338. |
| [34] | NUGUMANOVA Y N, DOROSHKEVICH A G, STARIKOVA A E, et al. Composition of phlogopite from ultramafic lamprophyres as an indicator of formation conditions (Zima alkaline ultramafic carbonatite complex, Southern Siberian Craton)[J]. Russian Geology and Geophysics, 2024, 65(11): 1285-1301. |
| [35] | JAQUESA L, BOXER G, LUCAS H, et al. Mineralogy and petrology of the Argyle lamproite pipe, western Australia[J]. International Kimberlite Conference: Extended Abstracts, 1986, 4: 48-50. |
| [36] | 傅金宝. 斑岩铜矿中黑云母的化学组成特征[J]. 地质与勘探, 1981(9): 16-19. |
| [37] | 杨文金, 王联魁, 张绍立, 等. 华南两个不同成因系列花岗岩的云母标型特征[J]. 矿物学报, 1986(4): 298-307. |
| [38] | 孙世华, 于洁. Mg-Fe云母化学成分的解释和分类(Ⅱ): Mg-Fe云母的自然分类[J]. 地质科学, 1989(2): 176-189. |
| [39] | ZHU C, SVERJENSKY D A. F-Cl-OH partitioning between biotite and apatite[J]. Geochimica et Cosmochimica Acta, 1992, 56(9): 3435-3467. |
| [40] | ABDEL-RAHMAN A F M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2): 525-541. |
| [41] | PARSAPOOR A, KHALILI M, TEPLEY F, et al. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran)[J]. Ore Geology Reviews, 2015, 66: 200-218. |
| [42] | SUN K K, DENG J, WANG Q F, et al. Formation of Sn-rich granitic magma: a case study of the highly evolved Kafang granite in the Gejiu tin polymetallic ore district, South China[J]. Mineralium Deposita, 2023, 58(2): 359-378. |
| [43] | RIEDER M, CAVAZZINI G, D’YAKONOV Y S, et al. Nomenclature of the micas[J]. Clays and clay minerals, 1998, 46(5): 586-595. |
| [44] | JACOBS D C, PARRY W T. A comparison of the geochemistry of biotite from some basin and range stocks[J]. Economic Geology, 1976, 71(6): 1029-1035. |
| [45] | JACOBS D C, PARRY W T. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico[J]. Economic Geology, 1979, 74(4): 860-887. |
| [46] | SELBY D, NESBITT B E. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry[J]. Chemical Geology, 2000, 171(1/2): 77-93. |
| [47] | NACHIT H, IBHI A, ABIA E H, et al. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 2005, 337(16): 1415-1420. |
| [48] | 周作侠. 侵入岩的镁铁云母化学成分特征及其地质意义[J]. 岩石学报, 1988(3): 63-73. |
| [49] | 周作侠. 湖北丰山洞岩体成因探讨[J]. 岩石学报, 1986(1): 59-70. |
| [50] | 刘翠, 邓晋福, 苏尚国, 等. 北京门头沟地区棋盘岩铁辉长岩的发现及其地质意义[J]. 现代地质, 2007(2): 327-331. |
| [51] | JONES A P, SMITH J V. Petrological significance of mineral chemistry in the Agathla Peak and the Thumb minettes, Navajo volcanic field[J]. The Journal of Geology, 1983, 91(6): 643-656. |
| [52] | PANDEY R, CHALAPATHI R N V, DHOTE P, et al. Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: tectonomagmatic implications[J]. Geoscience Frontiers, 2018, 9(6): 1883-1902. |
| [53] | 刘秉翔, 张招崇, 程志国. 煌斑岩的分类、特征及成因[J]. 地质学报, 2021, 95(2): 292-316. |
| [54] | KRMíČEK L, CHALAPATHI RAO N V. Lamprophyres, lamproites and related rocks as tracers to supercontinent cycles and metallogenesis[J]. Geological Society, London, Special Publications, 2022, 513(1): 1-16. |
| [55] | MITCHELL R H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions[J]. Journal of Volcanology and Geothermal Research, 2008, 174(1): 1-8. |
| [56] | 董振信. 金伯利岩中的云母[J]. 矿物岩石, 1991(4): 33-43. |
| [57] | HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms[J]. American Mineralogist, 2005, 90(2/3): 316-328. |
| [58] | DAVID R W, HANS P E. Stability of biotite: experiment, theory, and application[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1965, 50(9): 1228-1272. |
| [59] | BEANE R E. Biotite stability in the porphyry copper environment[J]. Economic Geology, 1974, 69(2): 241-256. |
| [60] | YAVUZ F. Evaluating micas in petrologic and metallogenic aspect: I-definitions and structure of the computer program MICA+[J]. Computers & Geosciences, 2003, 29(10): 1203-1213. |
| [61] | TANG P, CHEN Y C, TANG J X, et al. Advances in research of mineral chemistry of magmatic and hydrothermal biotites[J]. Acta Geologica Sinica (English Edition), 2019, 93(6): 1947-1966. |
| [62] | DE ALBUQUERQUE C A R. Geochemistry of biotites from granitic rocks, northern Portugal[J]. Geochimica et Cosmochimica Acta, 1973, 37(7): 1779-1802. |
| [1] | XU Yudi, LIU Chengshuai, GAO Ting, LIU Yu, YIN Runsheng, SUN Lu. The paleoenvironmental evolution since 0.78 Ma in Caohai, Guizhou: evidence from XRF core scanning [J]. Earth Science Frontiers, 2025, 32(3): 168-182. |
| [2] | WU Jiawang, YAO Shengnan, Amalia FILIPPIDI, LIU Zhifei, Gert J. DE LANGE. Terrigenous detrital inputs and hydroclimate changes in the Holocene eastern Mediterranean Sea: A basin-wide geochemical view [J]. Earth Science Frontiers, 2022, 29(4): 156-167. |
| [3] | LUO Zhaohua,JIANG Xiumin,LIU Xiao,LI Zhong,WU Zongchang,JING Wenchao. Imprints of fluid process of shell dunite in ophiolitic chromite deposits: evidences from geology, petrology and crystal chemistry of olivine found in Luobusa and Zedang ophiolites in the Yarlung Zangbo suture zone, Tibet [J]. Earth Science Frontiers, 2019, 26(1): 272-285. |
| [4] | . Progress in geochemistry of sandstonetype uranium deposit in North Ordos Basin. [J]. Earth Science Frontiers, 2012, 19(3): 139-146. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||