Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 263-287.DOI: 10.13745/j.esf.sf.2024.6.27
Previous Articles Next Articles
LI Yuntao1,2(), DING Wenlong1,2,*(
), HAN Jun3, HUANG Cheng3, WANG Laiyuan3, MENG Qingxiu3
Received:
2023-11-15
Revised:
2024-05-22
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors[J]. Earth Science Frontiers, 2024, 31(5): 263-287.
Fig.1 (a) Tectonic units of the Tarim Basin, (b) strike-slip fault system in Shunbei and surrounding areas (modified after [4,5,11,26]); see a for location), and (c) stratigraphic framework (adapted from [4]).
Fig.2 Characteristics of SHB16 fault zone development. (a) Fault zone distribution at T 7 4 interface and vertical stress distribution in the study area. (b-e) Stratigraphic-strctural interpretation of cross sections 1-4 perpendicular to the strike of the fault zone (locations see a).
Fig.3 Characteristics of Ordovician carbonates in Shunbei. (a-d) High-angle fracture developments in Ordovician gray mud-crystal limestone of well X4, at depths of 6932 m, 6934.88 m, 6936.91 m, and 6937.12 m, respectively. (e-h) Medium-low angle fracture developments in Ordovician gray mud-crystal limestone of well X5, at depths of 6460.58 m, 6462.14 m, 6463.26 m, and 6464.72 m, respectively.
Fig.4 Calculated dynamic rock mechanical parameters based on well logs in the Middle Ordovician Yijianfang Formation in wells X4 (a), X6 (b), X5 (c) and X7 (d). See Fig.2a for well locations.
Fig.5 Characteristics of middle Galedonia and current stresses in Shunbei area.(a) Rose diagram of horizontal maximum principal stress azimuths in the middle Galedonian. (b) Sound velocity anisotropy of three samples from the Ordovician Yijianfang Formation of well X4. (c) Rose diagram of current horizontal maximum principal stress azimuths in well X6, obtained from array acoustic logging. (d) Rose diagram of current horizontal maximum principal stress azimuths in well X5, obtained from borehole collapse. (e) Imaging log of the Ordovician in well X2, with depths between 6079.6-6085.2 m. (f, g) Rose diagram of fracture orientation and histogram of dip angle of drilling induced fractures.
岩心编号 | 测试方位角/(°) | 直径/mm | 走时/μs | 波速/(m·s-1) | 磁偏角/(°) | 最小波速与标志线的夹角/(°) | 最大主应力方向 |
---|---|---|---|---|---|---|---|
No.1 | 150 | 65.52 | 11.89 | 5 512 | 141.5 | 185 | NE43.9° |
No.2 | 150 | 65.58 | 11.98 | 5 475 | 316.9 | 185 | NE58.1° |
No.3 | 105 | 64.78 | 11.81 | 5 486 | 289.3 | 145 | NE35.7° |
Table 1 Results of paleomagnetic and acoustic anisotropy experiments for Ordovician carbonate rock cores from well X4
岩心编号 | 测试方位角/(°) | 直径/mm | 走时/μs | 波速/(m·s-1) | 磁偏角/(°) | 最小波速与标志线的夹角/(°) | 最大主应力方向 |
---|---|---|---|---|---|---|---|
No.1 | 150 | 65.52 | 11.89 | 5 512 | 141.5 | 185 | NE43.9° |
No.2 | 150 | 65.58 | 11.98 | 5 475 | 316.9 | 185 | NE58.1° |
No.3 | 105 | 64.78 | 11.81 | 5 486 | 289.3 | 145 | NE35.7° |
Fig.6 Acoustic emission test. (a) Samples from the Middle Ordovician Yijianfang Formation in well well X4. (b) Acoustic emission sampling. (c-f) Paleostress measurement curves based on initial pressure.
样品编号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|
1 | 7 470.15~7 470.21 | 65 | — | 0.21 | 39.88 | — | — |
2 | 7 470.15~7 470.21 | 75 | — | 0.26 | 42.93 | ||
3 | 7 470.15~7 470.21 | 85 | — | 0.22 | 37.13 | ||
4 | 7 560.23~7 560.38 | 65 | — | 0.23 | 34.7 | 38 | 26.3 |
5 | 7 560.23~7 560.38 | 75 | — | 0.22 | 36.5 | ||
6 | 7 560.23~7 560.38 | 85 | — | 0.22 | 36.6 | ||
7 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
Table 2 Mechanical parameters for Ordovician rocks in Shunbei
样品编号 | 深度/m | 围压/MPa | 抗压强度/MPa | 泊松比 | 杨氏模量/GPa | 内聚力/MPa | 内摩擦角/(°) |
---|---|---|---|---|---|---|---|
1 | 7 470.15~7 470.21 | 65 | — | 0.21 | 39.88 | — | — |
2 | 7 470.15~7 470.21 | 75 | — | 0.26 | 42.93 | ||
3 | 7 470.15~7 470.21 | 85 | — | 0.22 | 37.13 | ||
4 | 7 560.23~7 560.38 | 65 | — | 0.23 | 34.7 | 38 | 26.3 |
5 | 7 560.23~7 560.38 | 75 | — | 0.22 | 36.5 | ||
6 | 7 560.23~7 560.38 | 85 | — | 0.22 | 36.6 | ||
7 | 7 652.00~7 653.73 | 0 | 70.16 | 0.204 | 36.83 | — | — |
8 | 7 652.00~7 653.73 | 0 | 75.74 | 0.226 | 43.43 | ||
9 | 7 656.46~7 656.57 | 30 | 279.06 | 0.242 | 44.65 | ||
10 | 7 656.46~7 656.57 | 30 | 274.83 | 0.273 | 46.24 | ||
11 | 7 656.46~7 656.57 | 30 | 249.73 | 0.235 | 42.63 | ||
12 | 7 656.38~7 656.46 | 0 | 72.14 | 0.252 | 37.68 | 17.6 | 41.6 |
13 | 7 656.38~7 656.46 | 60 | 310.22 | 0.338 | 60.89 | ||
14 | 7 656.38~7 656.46 | 30 | 267.40 | 0.314 | 56.86 |
Fig.8 Geomechanical and mathematical models for the simulation of stress field in Middle Ordovician Yijianfang Formation in the study area. (a, b) Middle Galedonian stress field. (c, d) Current stress field.
Fig.10 Current stress field simulation using the mathematical model. (a) Simulated values of horizontal maximum principal stress obtained at well X4 under different stress loads. (b) Discrepancy between the simulated and measured values.
Fig.11 Charateristics of middle Galedonian stress field in the Middle Ordovician Yijianfang Formationin the study area. (a) Distribution of horizontal maximum principal stress. (b) Horizontal minimum principal stress. (c) Horizontal stress difference. (d) Stress difference coefficient. (e) Azimuthal distribution of horizontal maximum principal stress
Fig.16 Method to calculate the vertical deformation amplitude and width of deformation zones in a strike-slip fault zone. (a, b) Representation of positive and negative structural reliefs. (c) Sections used to obtain fault activity intensity in the vertical direction in the principal displacement zone. (c) Distribution of fault activity intensities along the strike of the fault zone. A and b modified after [10].
Fig.17 Normalized current comprehensive rupture rate in the study area. (a) As a function of distance from the main fault. (b) As a function of horizontal stress difference.
Fig.18 Current reservoir development in the study area. (a) Rreservior development indexes for sizable reservoirs. (b) Geologic pattern of reservoir development in the Middle Ordovician Yijianfang Formation in wells X4 and X5. Є—Cambrian; O1—Lower Ordovician; O1-2y—Middle and Lower Ordovician Yingshan Formation; O2yj—Middle Ordovician Yijianfang Formation; O3—Upper Ordovician; S-C1—Silurian to Lower Carboniferous
储集体发育级别 | I级 | II级 | III级 | IV级 |
储集体发育指数 | >3.8 | >3.4~3.8 | 2.5~3.4 | <2.5 |
Table 3 Grading criteria for sizable Ordovician carbonates reservoirs in the study area
储集体发育级别 | I级 | II级 | III级 | IV级 |
储集体发育指数 | >3.8 | >3.4~3.8 | 2.5~3.4 | <2.5 |
分段 | I类储集体 占比 | II类储集体 占比 | III类储集体 占比 | 储集体综合 评价级别 |
---|---|---|---|---|
①张扭段 | 0% | 12% | 88% | 差 |
②压扭段 | 12% | 58% | 30% | 中 |
③张扭段 | 20% | 60% | 20% | 中 |
④压扭段 | 20% | 60% | 20% | 中 |
⑤张扭段 | 50% | 10% | 40% | 优 |
⑥压扭段 | 0% | 80% | 20% | 差 |
平移段 | 20% | 30% | 50% | 差 |
Table 4 Comprehensive evaluation of reservoir quality levels within different segments of the SHB16 fault zone
分段 | I类储集体 占比 | II类储集体 占比 | III类储集体 占比 | 储集体综合 评价级别 |
---|---|---|---|---|
①张扭段 | 0% | 12% | 88% | 差 |
②压扭段 | 12% | 58% | 30% | 中 |
③张扭段 | 20% | 60% | 20% | 中 |
④压扭段 | 20% | 60% | 20% | 中 |
⑤张扭段 | 50% | 10% | 40% | 优 |
⑥压扭段 | 0% | 80% | 20% | 差 |
平移段 | 20% | 30% | 50% | 差 |
变形方式 | 综合评价为 优的数量 | 综合评价为 中等的数量 | 综合评价为 差的数量 |
---|---|---|---|
张扭变形 | 1 | 1 | 1 |
压扭变形 | 0 | 2 | 1 |
简单剪切变形 | 0 | 0 | 1 |
Table 5 Comprehensive evaluation of reservoir levels corresponding to different deformation patterns in the SHB16 fault zone
变形方式 | 综合评价为 优的数量 | 综合评价为 中等的数量 | 综合评价为 差的数量 |
---|---|---|---|
张扭变形 | 1 | 1 | 1 |
压扭变形 | 0 | 2 | 1 |
简单剪切变形 | 0 | 0 | 1 |
[1] | 张鹏, 侯贵廷, 潘文庆, 等. 新疆柯坪地区碳酸盐岩对构造裂缝发育的影响[J]. 北京大学学报(自然科学版), 2011, 47(5): 831-836. |
[2] | DING W L, FAN T L, YU B S, et al. Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin, Northwest China[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 62-70. |
[3] | 刘敬寿, 丁文龙, 肖子亢, 等. 储层裂缝综合表征与预测研究进展[J]. 地球物理学进展, 2019, 34(6): 2283-2300. |
[4] | DENG S, LI H L, ZHANG Z P, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. |
[5] | HAN X Y, DENG S, TANG L J, et al. Geometry, kinematics and displacement characteristics of strike-slip faults in the northern slope of Tazhong uplift in Tarim Basin: a study based on 3D seismic data[J]. Marine and Petroleum Geology, 2017, 88: 410-427. |
[6] |
郑和荣, 胡宗全, 云露, 等. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用[J]. 地学前缘, 2022, 29(6): 224-238.
DOI |
[7] |
云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787.
DOI |
[8] |
段金宝, 潘磊, 石司宇, 等. 川东涪陵地区15号走滑断裂带几何学、 运动学特征及演化过程研究[J]. 地学前缘, 2023, 30(6): 57-68.
DOI |
[9] |
曾韬, 凡睿, 夏文谦, 等. 四川盆地东部走滑断裂识别与特征分析及形成演化: 以涪陵地区为例[J]. 地学前缘, 2023, 30(3): 366-385.
DOI |
[10] | LI Y T, DING W L, ZENG T, et al. Structural geometry and kinematics of a strike-slip fault zone in an intracontinental thrust system: a case study of the No. 15 fault zone in the Fuling Area, eastern Sichuan Basin, Southwest China[J]. Journal of Asian Earth Sciences, 2023, 242: 105512. |
[11] | 张继标, 张仲培, 汪必峰, 等. 塔里木盆地顺南地区走滑断裂派生裂缝发育规律及预测[J]. 石油与天然气地质, 2018, 39(5): 955-963, 1055. |
[12] | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
[13] | LIU J S, DING W L, GU Y, et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology, 2018, 246: 222-232. |
[14] | 朱圣举, 赵向原, 张皎生, 等. 低渗透砂岩油藏天然裂缝开启压力及影响因素[J]. 西北大学学报(自然科学版), 2016, 46(4): 573-578. |
[15] | 戴俊生, 刘敬寿, 杨海盟, 等. 铜城断裂带阜二段储层应力场数值模拟及开发建议[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 1-9. |
[16] | 周新桂, 张林炎, 黄臣军. 华庆探区长63储层破裂压力及裂缝开启压力估测与开发建议[J]. 中南大学学报(自然科学版), 2013, 44(7): 2812-2818. |
[17] | 刘敬寿. 铜城断裂带天33断块阜二段储层裂缝定量描述[D]. 东营: 中国石油大学(华东), 2016. |
[18] |
邬光辉, 李建军, 卢玉红. 塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨[J]. 石油学报, 1999, 20(4): 19-23.
DOI |
[19] | 丁文龙, 许长春, 久凯, 等. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144. |
[20] | 丁文龙, 李超, 李春燕, 等. 页岩裂缝发育主控因素及其对含气性的影响[J]. 地学前缘, 2012, 19(2): 212-220. |
[21] |
HAN L J. Characteristics of Ordovician limestone fractures in the northern Tarim Basin and their controlling effects on karst reservoirs[J]. Acta Petrolei Sinica, 2010, 31(6): 933-940.
DOI |
[22] | BARBIER M, HAMON Y, CALLOT J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: the Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67. |
[23] |
丁文龙, 曾维特, 王濡岳, 等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2): 63-74.
DOI |
[24] | LIU J S, DING W L, YANG H M, et al. Quantitative multiparameter prediction of fractured tight sandstone reservoirs: a case study of the Yanchang Formation of the Ordos Basin, central China[J]. SPE Journal, 2021, 26(5): 3342-3373. |
[25] | LIU H, ZUO Y J, RODRIGUEZ-DONO A, et al. Study on multi-period palaeotectonic stress fields simulation and fractures distribution prediction in Lannigou gold mine, Guizhou[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 92. |
[26] | YUAN J Y, NENG X C, ZHU J W, et al. Features and effects of basement faults on deposition in the Tarim Basin[J]. Earth Science Reviews the International Geological Journal Bridging the Gap Between Research Articles and Textbooks, 2015, 145: 43-55. |
[27] | LI Z, QIU N S, CHANG J, et al. Precambrian evolution of the Tarim Block and its tectonic affinity to other major continental blocks in China: new clues from U-Pb geochronology and Lu-Hf isotopes of detrital zircons[J]. Precambrian Research, 2015, 270: 1-21. |
[28] | XU Z Q, HE B Z, ZHANG C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples[J]. Precambrian Research, 2013, 235: 150-162. |
[29] | SUN Q Q, FAN T L, GAO Z Q, et al. New insights on the geometry and kinematics of the Shunbei 5 strike-slip fault in the central Tarim Basin, China[J]. Journal of Structural Geology, 2021, 150: 104400. |
[30] | TENG C Y, CAI Z X, HAO F, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: a case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159. |
[31] | 李本亮, 管树巍, 李传新, 等. 塔里木盆地塔中低凸起古构造演化与变形特征[J]. 地质论评, 2009, 55(4): 521-530. |
[32] | GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238. |
[33] | 贾承造, 马德波, 袁敬一, 等. 塔里木盆地走滑断裂构造特征、 形成演化与成因机制[J]. 天然气工业, 2021, 41(8): 81-91. |
[34] |
邬光辉, 马兵山, 韩剑发, 等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发, 2021, 48(3): 510-520.
DOI |
[35] | LI C X, WANG X F, LI B L, et al. Paleozoic fault systems of the Tazhong Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2013, 39(1): 48-58. |
[36] | YU J B. Using cylindrical surface-based curvature change rate to detect faults and fractures[J]. Geophysics, 2014, 79(5): O1-O9. |
[37] | 张光亚, 赵文智, 王红军, 等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质, 2007, 28(5): 653-663. |
[38] | 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934. |
[39] | LI Y J, ZHANG Q, ZHANG G Y, et al. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): effects of the collisions on the southern margin of the Eurasian Plate[J]. Journal of Asian Earth Sciences, 2016, 132: 40-57. |
[40] | SOBEL E R, DUMITRU T A. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5043-5063. |
[41] | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128. |
[42] | ZOBACK M D, PESKA P. In-situ stress and rock strength in the GBRN/DOE pathfinder well, South Eugene Island, Gulf of Mexico[J]. Journal of Petroleum Technology, 1995, 47(7): 582-585. |
[43] |
陆诗阔, 王迪, 李玉坤, 等. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J]. 天然气地球科学, 2015, 26(10): 1844-1850.
DOI |
[44] | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
[45] | 李培军, 陈红汉, 唐大卿, 等. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系[J]. 地球科学, 2017, 42(1): 93-104. |
[46] | LIU J S, ZHANG G J, BAI J P, et al. Quantitative prediction of the drilling azimuth of horizontal wells in fractured tight sandstone based on reservoir geomechanics in the Ordos Basin, central China[J]. Marine and Petroleum Geology, 2022, 136: 105439. |
[47] | LIU J S, DING W L, WANG R Y, et al. Methodology for quantitative prediction of fracture sealing with a case study of the Lower Cambrian Niutitang Formation in the Cen’gong Block in South China[J]. Journal of Petroleum Science and Engineering, 2018, 160: 565-581. |
[48] | RAJABI M, TINGAY M, KING R, et al. Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations[J]. Basin Research, 2017, 29: 622-640. |
[49] | YAGHOUBI A A, ZEINALI M. Determination of magnitude and orientation of the in situ stress from borehole breakout and effect of pore pressure on borehole stability: case study in Cheshmeh Khush oil field of Iran[J]. Journal of Petroleum Science and Engineering, 2009, 67(3/4): 116-126. |
[50] | TINGAY M R P, MORLEY C K, HILLIS R R, et al. Present-day stress orientation in Thailand’s basins[J]. Journal of Structural Geology, 2010, 32(2): 235-248. |
[51] | JIU K, DING W L, HUANG W H, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, East China[J]. Journal of Petroleum Science and Engineering, 2013, 110: 119-131. |
[52] | LIU J S, DING W L, WANG R Y, et al. Simulation of paleotectonic stress fields and quantitative prediction of multi-period fractures in shale reservoirs: a case study of the Niutitang Formation in the Lower Cambrian in the Cen’gong Block, South China[J]. Marine and Petroleum Geology, 2017, 84: 289-310. |
[53] | HOLCOMB D J. Using acoustic emissions to determine in situ stress: problems and promise[J]. Geomechanics, 1983, 57: 11-21. |
[54] | ISHIDA T. Acoustic emission monitoring of hydraulic fracturing in laboratory and field[J]. Construction and Building Materials, 2001, 15(5/6): 283-295. |
[55] | ZHOU J, JIN Y, CHEN M. Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1193-1199. |
[56] | WEN Q Z, WANG S T, DUAN X F, et al. Experimental investigation of proppant settling in complex hydraulic-natural fracture system in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 70-80. |
[57] | DAHI TALEGHANI A, GONZALEZ M, SHOJAEI A. Overview of numerical models for interactions between hydraulic fractures and natural fractures: challenges and limitations[J]. Computers and Geotechnics, 2016, 71: 361-368. |
[58] | FATAHI H, HOSSAIN M M, SARMADIVALEH M. Numerical and experimental investigation of the interaction of natural and propagated hydraulic fracture[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 409-424. |
[59] | LIU J S, DING W L, YANG H M, et al. 3D geomechanical modeling and numerical simulation of in situ stress fields in shale reservoirs: a case study of the lower Cambrian Niutitang Formation in the Cen’gong Block, South China[J]. Tectonophysics, 2017, 712: 663-683. |
[60] | GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198. |
[61] | HANDIN J. On the Coulomb-Mohr failure criterion[J]. Journal of Geophysical Research, 1969, 74(22): 5343-5348. |
[62] | PEARSON E S, SNOW B A S. Tests for rank correlation coefficients[J]. Biometrika, 1962, 49(1/2): 185-191. |
[63] | PIANTADOSI J, HOWLETT P, BOLAND J. Matching the grade correlation coefficient using a copula with maximum disorder[J]. Journal of Industrial and Management Optimization, 2007, 3(2): 305-312. |
[64] | MARITZ J S. Distribution-free statistical methods[M]. London: Chapman and Hall, 1981. |
[65] | MYERS J L, WELL A D, LORCH R F. Research design and statistical analysis[M]. New York: Routledge, 2013. |
[1] | ZHU Xiuxiang, CAO Zicheng, LONG Hui, ZENG Jianhui, HUANG Cheng, CHEN Xuyun. Experimental simulation and characteristics of hydrocarbon accumulation in strike-slip fault zone in Shunbei area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 289-304. |
[2] | DING Wen-Long, CENG Wei-Te, WANG Er-Yue, JIU Kai, WANG Zhe, SUN Ya-Xiong, WANG Xin-Hua. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir. [J]. Earth Science Frontiers, 2016, 23(2): 63-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||