Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (5): 59-73.DOI: 10.13745/j.esf.sf.2023.5.10
Previous Articles Next Articles
CHEN Xu1,2(), FAN Honghai1,2,*(
), CHEN Donghuan1,2, CHEN Jinyong1,2, WANG Shengyun1,2
Received:
2022-11-26
Revised:
2023-08-07
Online:
2023-09-25
Published:
2023-10-20
CLC Number:
CHEN Xu, FAN Honghai, CHEN Donghuan, CHEN Jinyong, WANG Shengyun. Genesis of and uranium mineralization in leucogranite, Rossing, Namibia[J]. Earth Science Frontiers, 2023, 30(5): 59-73.
类型 | 主要特征 | 位置 | 年龄/Ma |
---|---|---|---|
A | 呈不规则褶皱状,浅灰白色,细-中粒,糖粒状均质结构,以白色长石为主 | 欢乐谷 | 547.4±3.6 (LA-ICP-MS U-Pb锆石) [ |
B | 白色,不等粒结构(细粒至伟晶结构),常见石榴子石、黑云母、电气石 | 欢乐谷 | 537.8±4.3 (LA-ICP-MS U-Pb锆石) [ |
C | 淡红-乳白色,中粒-伟晶结构,含微斜长石和斜长石, 副矿物为磁铁矿、褐铁矿和电气石 | 欢乐谷 | 525.4±2.6 (LA-ICP-MS U-Pb锆石) [ |
D | 呈不规则网状,白色,中-粗粒状结构,原生铀矿化的白岗岩主要 由白色长石、烟灰色石英组成,见β硅钙铀矿和磷灰石 | 欢乐谷 | 506±8.1(SHRIMP U-Pb锆石) [ 497±5.5 (LA-ICP-MS U-Pb锆石) [ |
湖山 | 496.1±4.1 (EPMA U-Th-Pb晶质铀矿) [ | ||
E | 红-粉红色,颜色及粒度多变,见浅红色长石,有氧化晕圈, 矿物组成与D型相似,或者全部由烟灰色(黑色)石英和粉红色长石构成 | ||
F | 红色,粗粒-伟晶结构,见粉红色粗粒条纹长石、乳白色石英, 副矿物为磁铁矿和褐铁矿 | 欢乐谷 | 511.4±4.3 (LA-ICP-MSU-Pb锆石) [ |
Table 1 Classification of the Rossing leucogranite. Adapted from [8,11].
类型 | 主要特征 | 位置 | 年龄/Ma |
---|---|---|---|
A | 呈不规则褶皱状,浅灰白色,细-中粒,糖粒状均质结构,以白色长石为主 | 欢乐谷 | 547.4±3.6 (LA-ICP-MS U-Pb锆石) [ |
B | 白色,不等粒结构(细粒至伟晶结构),常见石榴子石、黑云母、电气石 | 欢乐谷 | 537.8±4.3 (LA-ICP-MS U-Pb锆石) [ |
C | 淡红-乳白色,中粒-伟晶结构,含微斜长石和斜长石, 副矿物为磁铁矿、褐铁矿和电气石 | 欢乐谷 | 525.4±2.6 (LA-ICP-MS U-Pb锆石) [ |
D | 呈不规则网状,白色,中-粗粒状结构,原生铀矿化的白岗岩主要 由白色长石、烟灰色石英组成,见β硅钙铀矿和磷灰石 | 欢乐谷 | 506±8.1(SHRIMP U-Pb锆石) [ 497±5.5 (LA-ICP-MS U-Pb锆石) [ |
湖山 | 496.1±4.1 (EPMA U-Th-Pb晶质铀矿) [ | ||
E | 红-粉红色,颜色及粒度多变,见浅红色长石,有氧化晕圈, 矿物组成与D型相似,或者全部由烟灰色(黑色)石英和粉红色长石构成 | ||
F | 红色,粗粒-伟晶结构,见粉红色粗粒条纹长石、乳白色石英, 副矿物为磁铁矿和褐铁矿 | 欢乐谷 | 511.4±4.3 (LA-ICP-MSU-Pb锆石) [ |
Fig.8 εNd(t)-t diagram for the Rossing leucogranite (modified after [43]). Leucogranite data are from [11]; basement data from [43⇓-45]; uraninite data from [43].
[1] | 宁福俊, 王杰, 任军平, 等. 纳米比亚达马拉构造带演化和成矿研究综述[J]. 地质调查与研究, 2018, 41(2): 113-120. |
[2] | MILLER R M G. Neoproterozoic and early Palaeozoic rocks of the Damara Orogen[M]// The geology of Namibia 2. Windhoek: Ministry of Mines and Energy, Geological Survey, 2008: 1-410. |
[3] |
GRAY T, KINNAIRD J, LABERGE J, et al. Uraniferous leucogranites in the rössing area, Namibia: new insights from geologic mapping and airborne hyperspectral imagery[J]. Economic Geology, 2021, 116(6): 1409-1434.
DOI URL |
[4] | 陈金勇. 纳米比亚欢乐谷地区白岗岩型铀矿成矿机理研究[D]. 北京: 核工业北京地质研究院, 2014. |
[5] | 陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩型铀矿成矿机理剖析[J]. 高校地质学报, 2017, 23(2): 202-212. |
[6] |
KINNAIRD J A, NEX P A M. A review of geological controls on uranium mineralisation in sheeted leucogranites within the Damara Orogen, Namibia[J]. Applied Earth Science, 2007, 116(2): 68-85.
DOI URL |
[7] |
MCDERMOTT F, HARRIS N B W, HAWKESWORTH C J. Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia[J]. Contributions to Mineralogy and Petrology, 1996, 123(4): 406-423.
DOI URL |
[8] |
NEX P A M, KINNAIRD J A, OLIVER G J H. Petrology, geochemistry and uranium mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damaran Orogen, Namibia[J]. Journal of African Earth Sciences, 2001, 33(3/4): 481-502.
DOI URL |
[9] | BASSON I J, GREENWAY G. Rössing uranium mine: genesis during late tectonism of the central zone of the Damara Orogen, Namibia[J]. Journal of African Earth Sciences, 2003: 1-15. |
[10] |
BASSON I J, GREENWAY G. The Rössing uranium deposit: a product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia[J]. Journal of African Earth Sciences, 2004, 38(5): 413-435.
DOI URL |
[11] | 王生云. 纳米比亚欢乐谷地区花岗岩地球化学特征及成因[D]. 北京: 核工业北京地质研究院, 2013. |
[12] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[13] |
CUNEY M. The extreme diversity of uranium deposits[J]. Mineralium Deposita, 2009, 44(1): 3-9.
DOI URL |
[14] |
PORADA H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989, 44(2): 103-136.
DOI URL |
[15] |
FOSTER D A, GOSCOMBE B D, NEWSTEAD B, et al. U-Pb age and Lu-Hf isotopic data of detrital zircons from the Neoproterozoic Damara Sequence: implications for Congo and Kalahari before Gondwana[J]. Gondwana Research, 2015, 28(1): 179-190.
DOI URL |
[16] | MILLER R M G. The Pan-African Damara Orogen of South West Africa/Namibia[M]//MILLER R M. Evolution of the Damara Orogen of South West Africa/Namibia. Johannesburg: Geological Society of South Africa, 1983: 431-515. |
[17] | LONGRIDGE L. Tectonothermal evolution of the southwestern Central Zone, Damara Belt, Namibia[D]. Johannesburg: University of the Witwatersrand, 2012: 525. |
[18] | MARLOW A. Geology and Rb-Sr geochronology of mineralised and radioactive granites and alaskites, Namibia[M]//MILLER R M. Evolution of the Damara Orogen of South West Africa/Namibia. Johannesburg: Geological Society of South Africa, 1981: 289-515. |
[19] | HOFFMANN K H, PRAVE A R. A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones[J]. Communications - Geological Survey of Namibia, 1996, 11: 77-82 |
[20] |
MILANI L, KINNAIRD J A, LEHMANN J, et al. Role of crustal contribution in the early stage of the Damara Orogen, Namibia: new constraints from combined U-Pb and Lu-Hf isotopes from the Goas Magmatic Complex[J]. Gondwana Research, 2015, 28(3): 961-986.
DOI URL |
[21] | KUKLA C, KRAMM U, KUKLA P, et al. U-Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia[J]. Communications - Geological Survey of Namibia, 1991, 7: 49-54. |
[22] |
MARSH J S. Relationships between transform directions and alkaline igneous rock lineaments in Africa and South America[J]. Earth and Planetary Science Letters, 1973, 18(2): 317-323.
DOI URL |
[23] | LONGRIDGE L, GIBSON R L, KINNAIRD J A, et al. New constraints on the age and conditions of LPHT metamorphism in the southwestern Central Zone of the Damara Belt, Namibia and implications for tectonic setting[J]. Lithos, 2017, 278/279/280/281: 361-382. |
[24] |
GOSCOMBE B, GRAY D, HAND M. Variation in metamorphic style along the northern margin of the Damara Orogen, Namibia[J]. Journal of Petrology, 2004, 45(6): 1261-1295.
DOI URL |
[25] |
LONGRIDGE L, GIBSON R L, KINNAIRD J A, et al. Constraining the timing of deformation in the southwestern Central Zone of the Damara Belt, Namibia[J]. Geological Society, London, Special Publications, 2011, 357(1): 107-135.
DOI URL |
[26] |
CROSS A, JAIRETH S, RAPP R, et al. Reconnaissance-style EPMA chemical U-Th-Pb dating of uraninite[J]. Australian Journal of Earth Sciences, 2011, 58(6): 675-683.
DOI URL |
[27] | BARNES J F H, HAMBLETON-JONES B B. A review of the geologicaland geochemical setting of uraniferous granites in the Damara Orogen[R]. Pelindaba: Nuclear Development Corporation of South Africa, 1978. |
[28] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
DOI URL |
[29] | 石强, 徐仲元, 李刚, 等. 原地-半原地深熔花岗岩特征: 以华北克拉通北缘包头地区石榴花岗岩为例[J]. 岩石学报, 2021, 37(1): 211-230. |
[30] |
JUNG S, HOERNES S, MEZGER K. Geochronology and petrogenesis of Pan-African, syn-tectonic, S-type and post-tectonic A-type granite (Namibia): products of melting of crustal sources, fractional crystallization and wall rock entrainment[J]. Lithos, 2000, 50(4): 259-287.
DOI URL |
[31] |
BAU M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 1996, 123(3): 323-333.
DOI URL |
[32] |
BALLOUARD C, POUJOL M, BOULVAIS P, et al. Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3): 231-234.
DOI URL |
[33] | 刘志超, 刘小驰, 俞良军, 等. 喜马拉雅康巴淡色花岗岩的高分异成因及岩浆-热液演化特征[J]. 南京大学学报(自然科学), 2020, 56(6): 800-814. |
[34] | RUDNICK R L, GAO S. Composition of the continental crust[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[35] |
MONECKE T, KEMPE U, TRINKLER M, et al. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system[J]. Geology, 2011, 39(4): 295-298.
DOI URL |
[36] | 吕荣平, 金永吉, 顾大钊, 等. 纳米比亚欢乐谷地区铀成矿条件分析及找矿潜力评价[J]. 世界核地质科学, 2015, 32(3): 125-131. |
[37] |
CORVINO A F, PRETORIUS L E. Uraniferous leucogranites south of Ida Dome, central Damara Belt, Namibia: morphology, distribution and mineralisation[J]. Journal of African Earth Sciences, 2013, 80: 60-73.
DOI URL |
[38] |
黄冉笑, 王果胜, 袁国礼, 等. 伟晶质岩浆的同化混染与分离结晶(AFC)作用及铀成矿效应: 以纳米比亚湖山铀矿为例[J]. 地学前缘, 2022, 29(1): 377-402.
DOI |
[39] |
ABDEL-RAHMAN A F M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas[J]. Journal of Petrology, 1994, 35(2): 525-541.
DOI URL |
[40] | WONES D R, EUGSTER H P. Stability of biotite-experiment theoryand application[J]. The American Mineralogist, 1965, 50(9): 1228-1272. |
[41] |
MCDONOUGH W F, SUN S S. The composition of the earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
DOI URL |
[42] | TAYLOR S, MCLENNAN S. The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific, 1985. |
[43] | 陈金勇, 范洪海, 王生云, 等. 纳米比亚欢乐谷地区白岗岩型铀矿成矿物质来源分析[J]. 地质学报, 2016, 90(2): 219-230. |
[44] |
SETH B. Isotope constraints on the origin of Pan-African granitoid rocks in the Kaoko belt, NW Namibia[J]. South African Journal of Geology, 2002, 105(2): 179-192.
DOI URL |
[45] |
FAN H H, CHEN J Y, WANG S Y, et al. Genesis and uranium sources of leucogranite-hosted uranium deposits in the gaudeanmus area, central Damara Belt, Namibia: study of element and Nd isotope geochemistry[J]. Acta Geologica Sinica (English Edition), 2017, 91(6): 2126-2137.
DOI URL |
[46] |
JANOUSEK V, KONOPÁSEKJ, ULRICH S, et al. Geochemical character and petrogenesis of Pan-African Amspoort suite of the Boundary Igneous Complex in the Kaoko Belt (NW Namibia)[J]. Gondwana Research, 2010, 18(4): 688-707.
DOI URL |
[47] | RIDGE D A M. An investigation into the controls on the distribution of betafite in the SH area, Rossing uranium mine, Namibia [D]St. Andrews: University of St. Andrews, 1993. |
[48] | 曾令森, 高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 2017, 33(5): 1420-1444. |
[49] | GARDIEN V, THOMPSON A B, GRUJIC D, et al. Experimental melting of biotite+plagioclase+quartz±muscovite assemblages and implications for crustal melting[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15581-15591. |
[50] |
STEVENS G, CLEMENS J D, DROOP G T R. Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths[J]. Contributions to Mineralogy and Petrology, 1997, 128(4): 352-370.
DOI URL |
[51] |
INGER S, HARRIS N. Geochemical constraints on leucogranite magmatism in the Langtang valley, Nepal Himalaya[J]. Journal of Petrology, 1993, 34(2): 345-368.
DOI URL |
[52] |
KNESEL K M, DAVIDSON J P. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J]. Science, 2002, 296(5576): 2206-2208.
PMID |
[53] |
ZENG L, ASIMOW P D, SALEEBY J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671-3682.
DOI URL |
[54] |
ZENG L S, SALEEBY J B, ASIMOW P. Nd isotope disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California[J]. Geology, 2005, 33(1): 53.
DOI URL |
[55] |
ZHANG H, HARRIS N, PARRISH R, et al. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J]. Earth and Planetary Science Letters, 2004, 228(1/2): 195-212.
DOI URL |
[56] |
ZENG L, GAO L E, DONG C, et al. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet[J]. Gondwana Research, 2012, 21(1): 138-151.
DOI URL |
[57] | STEPANOV A, MAVROGENES J, MEFFRE S, et al. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 2014, 167(6): 1-8. |
[58] |
PEIFFERT C, NGUYEN-TRUNG C, CUNEY M. Uranium in granitic magmas: part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X=Cl, F) system at 770 ℃, 2 kbar[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1515-1529.
DOI URL |
[59] |
WU F Y, JAHN B M, WILDE S A, et al. Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4): 241-273.
DOI URL |
[60] |
HANSON G N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition[J]. Earth and Planetary Science Letters, 1978, 38(1): 26-43.
DOI URL |
[61] | 邱检生, 肖娥, 胡建, 等. 福建北东沿海高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 2008, 24(11): 2468-2484. |
[1] | ZHOU Qifeng, QIN Kezhang, ZHU Liqun, ZHAO Junxing. Overview of magmatic differentiation and anatexis: Insights into pegmatite genesis [J]. Earth Science Frontiers, 2023, 30(5): 26-39. |
[2] | ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, CHEN Wanfeng, JIAO Shoutao, WANG Yue, YUAN Fanglin. Innovative petrogenetic classification of granitoids: Perspective from metamorphic anatexis and big data [J]. Earth Science Frontiers, 2022, 29(4): 319-329. |
[3] | HUANG Chunmei,LI Guangming,ZHANG Zhi,LIANG Wei,HUANG Yong,ZHANG Linkui,FU Jiangang. Petrogenesis of the Cuonadong leucogranite in South Tibet: constraints from bulk-rock geochemistry and zircon U-Pb dating. [J]. Earth Science Frontiers, 2018, 25(6): 182-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||