Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 354-369.DOI: 10.13745/j.esf.sf.2021.3.11
Previous Articles Next Articles
XU Kejuan1,2(), DING Xiaozhong1,2,*(
), HAN Kunying1,2, LIU Jingwen3, LING Zongcheng4, PANG Jianfeng1,2, WANG Ying1,2
Received:
2020-12-28
Revised:
2021-03-06
Online:
2022-03-25
Published:
2022-03-31
Contact:
DING Xiaozhong
CLC Number:
XU Kejuan, DING Xiaozhong, HAN Kunying, LIU Jingwen, LING Zongcheng, PANG Jianfeng, WANG Ying. Compilation of the geological map of the Petavius quadrangle of the Moon (LQ-21) and study on the regional geological evolution[J]. Earth Science Frontiers, 2022, 29(2): 354-369.
地层年代 | 地质年代单元 | 年龄/Ga | |
---|---|---|---|
新月宙(Neolunarisian, NL) | 哥白尼纪(Copernican, C) | 0.8~0.0 | |
爱拉托逊纪(Eratothenian, E) | 3.16~0.8 | ||
古月宙(Paleolunarisian, PL) | 雨海纪(Imbrian, I) | 晚雨海世 | 3.8~3.16 |
早雨海世 | 3.85~3.8 | ||
酒海纪(Nectarian, N) | 3.92~3.85 | ||
艾肯纪(Aitkenian, A) | 4.2~3.92 | ||
冥月宙(Eolunarisian, EL) | 前艾肯纪(pre-Aitkenian, pA) | 4.52~4.2 |
Table 1 Geological time scale of the Moon. Modified after [11-12].
地层年代 | 地质年代单元 | 年龄/Ga | |
---|---|---|---|
新月宙(Neolunarisian, NL) | 哥白尼纪(Copernican, C) | 0.8~0.0 | |
爱拉托逊纪(Eratothenian, E) | 3.16~0.8 | ||
古月宙(Paleolunarisian, PL) | 雨海纪(Imbrian, I) | 晚雨海世 | 3.8~3.16 |
早雨海世 | 3.85~3.8 | ||
酒海纪(Nectarian, N) | 3.92~3.85 | ||
艾肯纪(Aitkenian, A) | 4.2~3.92 | ||
冥月宙(Eolunarisian, EL) | 前艾肯纪(pre-Aitkenian, pA) | 4.52~4.2 |
盆地名称 | 直径/km | 盆地模式年龄/Ga | 样品年龄/Ga | 岩浆活动年龄/Ga | 盆地序列[ | 地质年代单元 |
---|---|---|---|---|---|---|
丰富海 | 690 | 4.30 | 3.69~3.36 | 7 | 艾肯纪 | |
巴尔末-卡普坦 | 500 | 10 | 艾肯纪 | |||
史密斯海 | 740 | 4.26 | 3.48~3.14 | 21 | 艾肯纪 | |
酒海 | 860 | 4.17 | 3.85±0.01 3.92±0.03 4.22±0.01 | 53 | 酒海纪 | |
危海 | 740 | 4.07 | 3.93~3.89 | 3.2~2.5 | 55 | 酒海纪 |
洪堡 | 199 | 3.50 | 74 | 晚雨海世 |
Table 2 Basic information on impact basins within the Petavius quadrangle (LQ-21). Modified after [18,32-33,35,45,50].
盆地名称 | 直径/km | 盆地模式年龄/Ga | 样品年龄/Ga | 岩浆活动年龄/Ga | 盆地序列[ | 地质年代单元 |
---|---|---|---|---|---|---|
丰富海 | 690 | 4.30 | 3.69~3.36 | 7 | 艾肯纪 | |
巴尔末-卡普坦 | 500 | 10 | 艾肯纪 | |||
史密斯海 | 740 | 4.26 | 3.48~3.14 | 21 | 艾肯纪 | |
酒海 | 860 | 4.17 | 3.85±0.01 3.92±0.03 4.22±0.01 | 53 | 酒海纪 | |
危海 | 740 | 4.07 | 3.93~3.89 | 3.2~2.5 | 55 | 酒海纪 |
洪堡 | 199 | 3.50 | 74 | 晚雨海世 |
[1] | 欧阳自远, 刘建忠. 月球形成演化与月球地质图编研[J]. 地学前缘, 2014, 21(6):1-6. |
[2] | 陈建平, 丁孝忠, 王翔, 等. 月球地质研究与编图[M]. 北京: 地质出版社, 2014: 6-26. |
[3] | HODGES C. Geologic map of the Petavius Quadrangle of the Moon[CM]. Reston, VA: US Geological Survey, 1973. |
[4] | HODGES C. Geologic map of the Langrenus Quadrangle of the Moon[CM]. Reston, VA: US Geological Survey, 1973. |
[5] | WILHELMS D E, FAROUK E B. Geologic map of the east side of the Moon[CM]. Reston, VA: US Geological Survey, 1977. |
[6] | 丁孝忠, 韩坤英, 韩同林, 等. 月球虹湾幅(LQ-4)地质图的编制[J]. 地学前缘, 2012, 19(6):15-27. |
[7] | WILHELMS D E, MCCAULEY J F, TRASK N J. The geologic history of the Moon[M]. Washington DC: US Geological Survey, 1987. |
[8] | LOSIAK A, WILHELMS D E, BYRNE C J, et al. A new lunar impact crater database[C]. Lunar and Planetary Science Conference. Houston: NASA, 2009, 40:1532. |
[9] | 陈琼, 郑勇, 苏牡丹, 等. 月球地图投影理论和方法研究[J]. 测绘通报, 2006(4):26-30. |
[10] | 龚明劼, 张鹰, 张芸. 卫星遥感制图最佳影像空间分辨率与地图比例尺关系探讨[J]. 测绘科学, 2009, 34(4):232-233, 60. |
[11] | 郭弟均, 刘建忠, 张莉, 等. 月球地质年代学研究方法及月面历史划分[J]. 地学前缘, 2014, 21(6):45-61. |
[12] | GUO D J, LIU J Z, ZHANG L, et al. A lunar time scale from geodynamic evolution perspective[C]. Lunar & Planetary Science Conference. Houston: NASA, 2016, 47:1744. |
[13] | 凌宗成, 张江, 刘建忠, 等. 嫦娥一号干涉成像光谱仪数据再校正与全月铁钛元素反演[J]. 岩石学报, 2016, 32(1):87-98. |
[14] | 刘建忠, 籍进柱, 郭弟均, 等. 月球云海地区1: 2 500 000地质图编研进展[J]. 矿物岩石地球化学通报, 2017, 36(增刊1):1-15. |
[15] | 罗林, 刘建忠, 张莉, 等. 月球线性构造分类体系研究[J]. 岩石学报, 2017, 33(10):3285-3301. |
[16] | LIU J, GUO D. Lunar geological timescale[M/OL]//CUDNIK B. Encyclopedia of lunar science, Berlin: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-05546-6_63-1 . |
[17] | 陆天启, 陈圣波, 朱凯. 基于GRAIL重力数据的月球深部断裂识别和空间分布研究[J]. 地球物理学报, 2019, 62(8):2835-2844. |
[18] | LIU J W, LIU J Z, ZHANG L. New global lunar impact basins’ map based on remote sensing interpretation[C]. Lunar & Planetary Science Conference. Houston: NASA, 2020, 51:1940. |
[19] | WANG J T, KRESLAVSKY M A, LIU J Z, et al. Quantitative characterization of impact crater materials on the moon: changes in topographic roughness and thermophysical properties with age[J]. Journal of Geophysical Research: Planets, 2020, 125(10):E006091. |
[20] | 许可娟, 王梁, 韩坤英, 等. 1: 2 500 000月球地质图符号库的设计与实现[J]. 地球科学, 2020, 45(7):2650-2661. |
[21] | 凌宗成, 刘建忠, 张江, 等. 基于“嫦娥一号”干涉成像光谱仪数据的月球岩石类型填图:以月球雨海—冷海地区(LQ-4)为例[J]. 地学前缘, 2014, 21(6):107-120. |
[22] | CAHILL J T, LUCEY P G. Radiative transfer modeling of lunar highlands spectral classes and relationship to lunar samples[J]. Journal of Geophysical Research: Planets, 2007, 112(E10):E10007. |
[23] | TAYLOR G J, WARREN P, RYDER G, et al. Lunar source book[M]. Cambridge: Cambridge University Press, 1991: 183-284. |
[24] | 李泳泉, 刘建忠, 欧阳自远, 等. 月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演[J]. 岩石学报, 2007, 23(5):1169-1174. |
[25] |
SHEARER C K, ELARDO S M, PETRO N E, et al. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective[J]. American Mineralogist, 2015, 100(1):294-325.
DOI URL |
[26] | GUSTAFSON J O, BELL J F III, GADDIS L R, et al. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H25-1-E00H25-21. |
[27] | YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al. Massive layer of pure anorthosite on the Moon[J]. Geophysical Research Letters, 2012, 39(13):34-47. |
[28] |
DONALDSON HANNA K L, CHEEK L C, PIETERS C M, et al. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust[J]. Journal of Geophysical Research: Planets, 2014, 119(7):1516-1545.
DOI URL |
[29] |
PRISSEL T C, PARMAN S W, JACKSON C R M, et al. Pink Moon: the petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism[J]. Earth and Planetary Science Letters, 2014, 403:144-156.
DOI URL |
[30] |
WATTERS T R, ROBINSON M S, BANKS M E, et al. Recent extensional tectonics on the moon revealed by the lunar reconnaissance orbiter camera[J]. Nature Geoscience, 2012, 5(3):181-185.
DOI URL |
[31] |
JOZWIAK L M, HEAD J W, WILSON L. Lunar floor-fractured craters as magmatic intrusions: geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies[J]. Icarus, 2015, 248:424-447.
DOI URL |
[32] | HIESINGER H, HEAD J W, WOLF, et al. New ages for basalts in Mare Fecunditatis based on crater size-frequency measurements[C]. Lunar & Planetary Science Conference. Houston: NASA, 2006, 37:1151. |
[33] | HIESINGER H, HEAD J W, WOLF U, et al. Ages and stratigraphy of lunar mare basalts: a synjournal[J]. Special Paper of the Geological Society of America, 2011, 477:1-51. |
[34] | SPUDIS P D. The geology of multi-ring impact basins[M]. Cambridge: Cambridge University Press, 1993. |
[35] |
ORGEL C, MICHAEL G, FASSETT C I, et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface[J]. Journal of Geophysical Research: Planets, 2018, 123(3):748-762.
DOI URL |
[36] |
YUE Z, LI W, DI K, et al. Global mapping and analysis of lunar wrinkle ridges[J]. Journal of Geophysical Research: Planets, 2015, 120(5):978-994.
DOI URL |
[37] | GILLIS J J, SPUDIS P D. Geology of the Smythii and Marginis region of the Moon: using integrated remotely sensed data[J]. Journal of Geophysical Research: Planets, 2000, 105(E2):4217-4233. |
[38] |
SCHULTZ P H, SPUDIS P D. Beginning and end of lunar mare volcanism[J]. Nature, 1983, 302(5905):233-236.
DOI URL |
[39] |
WANG X M, QIU D G. Lunar cryptomare: new insights into the Balmer-kapteyn region[J]. Journal of Geophysical Research: Planets, 2018, 123(12):3238-3255.
DOI URL |
[40] |
WHITTEN J L, HEAD J W. Lunar cryptomaria: physical characteristics, distribution, and implications for ancient volcanism[J]. Icarus, 2015, 247:150-171.
DOI URL |
[41] |
BAKER D M H, HEAD J W, FASSETT C I, et al. The transition from complex crater to peak-ring basin on the Moon: new observations from the Lunar Orbiter Laser Altimeter (LOLA) instrument[J]. Icarus, 2011, 214(2):377-393.
DOI URL |
[42] |
GADDIS L R, STAID M I, TYBURCZY J A, et al. Compositional analyses of lunar pyroclastic deposits[J]. Icarus, 2003, 161(2):262-280.
DOI URL |
[43] | JOZWIAK L M, HEAD J W, ZUBER M T, et al. Lunar floor-fractured craters: classification, distribution, origin and implications for magmatism and shallow crustal structure[J]. Journal of Geophysical Research: Planets, 2012, 117(E11): E11005-1-E11005-23. |
[44] | JOZWIAK L M, HEAD J W, WILSON L. An analysis of eruption styles in lunar floor-fractured craters[C]. Lunar & Planetary Science Conference. Houston: NASA, 2016, 47:1169. |
[45] |
MARTINOT M, BESSE S, FLAHAUT J, et al. Mineralogical diversity and geology of Humboldt crater derived using moon mineralogy mapper data[J]. Journal of Geophysical Research Planets, 2018, 123(2):612-629.
DOI URL |
[46] | HARTMANN W K. Radial structures surrounding lunar basins, I-Orientale and other systems[J]. Lunar and Planetary Laboratory, 1964, 2(36):175-192. |
[47] |
SCHULTZ P H. Floor-fractured lunar craters[J]. The Moon, 1976, 15(3/4):241-273.
DOI URL |
[48] | NEUMANN G A, ZUBER M T, WIECZOREK M A, et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements[J]. Science Advances, 2015, 1(9):e1500852. |
[49] | AMBROSE W A, WILLIAMS D A. Recent advances and current research issues in lunar stratigraphy[M]. Boulder: Geological Society of America, 2011: 1-144. |
[50] |
LEE D C, HALLIDAY A N, SNYDER G A, et al. Age and origin of the Moon[J]. Science, 1997, 278(5340):1098-1103.
DOI URL |
[1] | JIN Ming, DING Xiaozhong, HAN Kunying, LIU Jianzhong, LING Zongcheng, XU Kejuan, PANG Jianfeng, SHAO Tianrui. Design of spatial database for the geological map of the Moon [J]. Earth Science Frontiers, 2022, 29(2): 343-353. |
[2] | YAO Meijuan,CHEN Jianping,JI Jinzhu. Thickness estimation of basalts in Mare Australe [J]. Earth Science Frontiers, 2019, 26(3): 271-281. |
[3] | WANG Qinglong,LIU Jianzhong,GUO Dijun,JI Jinzhu,LIU Jingwen,WANG Juntao,LUO Lin. Determination of multiring structure and analysis on the deep structure of the Lunar Mare Imbrium Basin [J]. Earth Science Frontiers, 2018, 25(1): 297-313. |
[4] | SUN Ling-Zhi, LING Zong-Cheng, LIU Jian-Zhong. The spectral characteristics and remote detection of minerals in lunar Orientale Basin [J]. Earth Science Frontiers, 2014, 21(6): 188-203. |
[5] | LING Zong-Cheng, LIU Jian-Zhong, ZHANG Jiang, LI Bo, WU Zhong-Chen, NI Yu-Heng, SUN Ling-Zhi. The lunar rock types as determined by Chang’E-1 IIM data: A case study of Mare Imbrium-Mare Frigoris region (LQ-4) [J]. Earth Science Frontiers, 2014, 21(6): 107-120. |
[6] | WU Yun-Zhao. Reflectance spectroscopy of the Moon and its application [J]. Earth Science Frontiers, 2014, 21(6): 74-87. |
[7] | Ban-Chao, ZHENG Yong-Chun, ZHANG Feng, ZHU Yong-Chao, ZOU Yong-Liao. Element abundances in Oceanus Procellarum: Data analysis of Chang’E-2 X-ray spectrometry [J]. Earth Science Frontiers, 2014, 21(6): 62-73. |
[8] | Ding-Xiao-Zhong, WANG Liang, HAN Kun-Yang, LONG Jian-Feng, LIU Jian-Zhong, GUO Di-Jun, DING Wei-Cui, JU Yuan-Jing. The lunar digital geological mapping based on ArcGIS:Taking the Arctic region as an example [J]. Earth Science Frontiers, 2014, 21(6): 19-30. |
[9] | OU Yang-Zi-Yuan, LIU Jian-Zhong. The origin and evolution of the Moon and its geological mapping. [J]. Earth Science Frontiers, 2014, 21(6): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||