Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 87-96.DOI: 10.13745/j.esf.sf.2021.1.10
Previous Articles Next Articles
HONG Shuang(), ZUO Renguang*(
), HU Hao, XIONG Yihui, WANG Ziye
Received:
2021-01-11
Revised:
2021-01-20
Online:
2021-05-20
Published:
2021-05-23
Contact:
ZUO Renguang
CLC Number:
HONG Shuang, ZUO Renguang, HU Hao, XIONG Yihui, WANG Ziye. Magnetite geochemical big data: Dataset construction and application in genetic classification of ore deposits[J]. Earth Science Frontiers, 2021, 28(3): 87-96.
矿床类型 | 数据集数量/条 | |
---|---|---|
EPMA | LA-ICP-MS | |
IOCG | 680 | 490 |
斑岩型 | 535 | 1 488 |
夕卡岩型 | 511 | 813 |
VMS | 432 | 11 |
IOA | 628 | 465 |
BIF | 61 | 628 |
Fe-Ti | 66 | 332 |
Ni-Cu | 198 | 0 |
Table 1 Number of published magnetite EMPA and LA-ICP-MS data records for different types of mineral deposits
矿床类型 | 数据集数量/条 | |
---|---|---|
EPMA | LA-ICP-MS | |
IOCG | 680 | 490 |
斑岩型 | 535 | 1 488 |
夕卡岩型 | 511 | 813 |
VMS | 432 | 11 |
IOA | 628 | 465 |
BIF | 61 | 628 |
Fe-Ti | 66 | 332 |
Ni-Cu | 198 | 0 |
样本编号 | 各类型矿床的概率 | |||
---|---|---|---|---|
BIF | IOA | 热液型 | 岩浆型 | |
1 | 0.00 | 0.43 | 0.57 | 0.00 |
2 | 0.00 | 0.58 | 0.39 | 0.04 |
3 | 0.00 | 0.69 | 0.26 | 0.05 |
4 | 0.00 | 0.55 | 0.40 | 0.05 |
5 | 0.00 | 0.36 | 0.59 | 0.05 |
6 | 0.00 | 0.37 | 0.58 | 0.05 |
7 | 0.00 | 0.82 | 0.18 | 0.00 |
8 | 0.00 | 0.73 | 0.26 | 0.00 |
9 | 0.00 | 0.42 | 0.49 | 0.09 |
10 | 0.00 | 0.52 | 0.46 | 0.02 |
平均概率 | 0.00 | 0.55 | 0.41 | 0.04 |
Table 2 Classification results based on EPMA data (data from [39])
样本编号 | 各类型矿床的概率 | |||
---|---|---|---|---|
BIF | IOA | 热液型 | 岩浆型 | |
1 | 0.00 | 0.43 | 0.57 | 0.00 |
2 | 0.00 | 0.58 | 0.39 | 0.04 |
3 | 0.00 | 0.69 | 0.26 | 0.05 |
4 | 0.00 | 0.55 | 0.40 | 0.05 |
5 | 0.00 | 0.36 | 0.59 | 0.05 |
6 | 0.00 | 0.37 | 0.58 | 0.05 |
7 | 0.00 | 0.82 | 0.18 | 0.00 |
8 | 0.00 | 0.73 | 0.26 | 0.00 |
9 | 0.00 | 0.42 | 0.49 | 0.09 |
10 | 0.00 | 0.52 | 0.46 | 0.02 |
平均概率 | 0.00 | 0.55 | 0.41 | 0.04 |
样本编号 | 各类型矿床的概率 | |||
---|---|---|---|---|
BIF | IOA | 热液型 | 岩浆型 | |
1 | 0.07 | 0.69 | 0.22 | 0.02 |
2 | 0.08 | 0.69 | 0.21 | 0.02 |
3 | 0.08 | 0.69 | 0.20 | 0.02 |
4 | 0.11 | 0.59 | 0.28 | 0.02 |
5 | 0.10 | 0.58 | 0.30 | 0.02 |
6 | 0.13 | 0.56 | 0.29 | 0.02 |
7 | 0.14 | 0.57 | 0.29 | 0.00 |
8 | 0.00 | 0.44 | 0.47 | 0.09 |
9 | 0.13 | 0.56 | 0.29 | 0.02 |
10 | 0.10 | 0.58 | 0.30 | 0.02 |
平均概率 | 0.10 | 0.57 | 0.30 | 0.03 |
Table 3 Classification results based on LA-ICP-MS data (data from [40])
样本编号 | 各类型矿床的概率 | |||
---|---|---|---|---|
BIF | IOA | 热液型 | 岩浆型 | |
1 | 0.07 | 0.69 | 0.22 | 0.02 |
2 | 0.08 | 0.69 | 0.21 | 0.02 |
3 | 0.08 | 0.69 | 0.20 | 0.02 |
4 | 0.11 | 0.59 | 0.28 | 0.02 |
5 | 0.10 | 0.58 | 0.30 | 0.02 |
6 | 0.13 | 0.56 | 0.29 | 0.02 |
7 | 0.14 | 0.57 | 0.29 | 0.00 |
8 | 0.00 | 0.44 | 0.47 | 0.09 |
9 | 0.13 | 0.56 | 0.29 | 0.02 |
10 | 0.10 | 0.58 | 0.30 | 0.02 |
平均概率 | 0.10 | 0.57 | 0.30 | 0.03 |
[1] |
WARK D A, WATSON E B. TitaniQ: a titanium-in-quartz geothermometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754.
DOI URL |
[2] |
KEITH M, HAASE K M, SCHWARZ-SCHAMPERA U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8):699-702.
DOI URL |
[3] |
REICH M, DEDITIUS A, CHRYSSOULIS S, et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: a SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104:42-62.
DOI URL |
[4] | 金露英, 秦克章, 李光明, 等. 大兴安岭北段岔路口斑岩 Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报, 2015, 31(8):2417-2434. |
[5] |
DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4):319-335.
DOI URL |
[6] | HUANG X W, QI L, MENG Y M. Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica-English Edition, 2014, 88(1):176-195. |
[7] |
NIELSEN R L, FORSYTHE L M, GALLAHAN W E, et al. Major-and trace-element magnetite-melt equilibria[J]. Chemical Geology, 1994, 117(1/2/3/4):167-191.
DOI URL |
[8] |
DEYELL C L, HEDENQUIST J W. Trace element geochemistry of enargite in the Mankayan district, Philippines[J]. Economic Geology, 2011, 106(8):1465-1478.
DOI URL |
[9] |
NADOLL P, ANGERER T, MAUK J L, et al. The chemistry of hydrothermal magnetite: a review[J]. Ore Geology Reviews, 2014, 61:1-32.
DOI URL |
[10] | GHIORSO M S, SACK R O. Thermochemistry of the oxide minerals[J]. Reviews in Mineralogy and Geochemistry, 1991, 25(1):221-264. |
[11] |
ANDERSON J L, BARTH A P, WOODEN J L, et al. Thermometers and thermobarometers in granitic systems[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1):121-142.
DOI URL |
[12] |
BUDDINGTON A F, LINDSLEY D H. Iron-titanium oxide minerals and synthetic equivalents[J]. Journal of Petrology, 1964, 5(2):310-357.
DOI URL |
[13] | SCHEKA S A, PLATKOV A V, VEZHOSEK A A, et al. The trace element paragenesis of magnetite[M]. Moscow: Nauka, 1980: 147(in Russian). |
[14] | RAMDOHR P. The ore minerals and their intergrowths[M]. New York: Pergamon Press, 1980. |
[15] |
LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-hosted lead-zinc deposits in Earth history[J]. Economic Geology, 2010, 105(3):593-625.
DOI URL |
[16] |
MALMQVIST D, PARASNIS D S. Aitik: geophysical documentation of a third-generation copper deposit in north Sweden[J]. Geoexploration, 1972, 10(3):149-200.
DOI URL |
[17] |
MCENROE S A, ROBINSON P, PANISH P T. Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmenite-and magnetite-rich cumulate rocks from the Sokndal Region, South Rogaland, Norway[J]. American Mineralogist, 2001, 86(11/12):1447-1468.
DOI URL |
[18] |
GREGORY D D, CRACKNELL M J, LARGE R R, et al. Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets[J]. Economic Geology, 2019, 114(4):771-786.
DOI URL |
[19] |
NADOLL P, KOENIG A E. LA-ICP-MS of magnetite: methods and reference materials[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1872-1877.
DOI URL |
[20] | SAVARD D, BARNES S J, DARE S A S, et al. Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6):2329. |
[21] |
MÜLLER B, AXELSSON M D, ÖHLANDER B. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS[J]. Gff, 2003, 125(1):1-5.
DOI URL |
[22] | BEAUDOIN G, DUPUIS C. Iron-oxide trace element fingerprinting of mineral deposit types. Exploring for iron oxide copper-gold deposits: Canada and global analogues[R]. In Exploring for iron oxide copper-gold deposits: Canada and global analogues. GAC Short Course Notes, 2009: 107-121. |
[23] | 黄柯, 朱明田, 张连昌, 等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3):262-275. |
[24] | 徐国风, 邵洁涟. 磁铁矿的标型特征及其实际意义[J]. 地质与勘探, 1979, 3:30-37. |
[25] | 林师整. 磁铁矿矿物化学、成因及演化的探讨[J]. 矿物学报, 1982, 3:166-174. |
[26] | 陈光远, 孙岱生, 殷辉安. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1987. |
[27] | 王顺金. 论磁铁矿的标型特征[M]. 武汉: 中国地质大学出版社, 1987. |
[28] |
LOBERG B E H, HORNDAHL A K. Ferride geochemistry of Swedish Precambrian iron ores[J]. Mineralium Deposita, 1983, 18(3):487-504.
DOI URL |
[29] | SINGOYI B, DANYUSHEVSKY L, DAVIDSON G J, et al. Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique[C]// Keystone: 2006 Conference on Society of Economic Geologists, USA. 2006: 367-368. |
[30] | 陈华勇, 韩金生. 磁铁矿单矿物研究现状、存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4):724-730. |
[31] |
DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7):785-796.
DOI URL |
[32] |
BOUTROY E, DARE S A A, BEAUDOIN G, et al. Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration[J]. Journal of Geochemical Exploration, 2014, 145:64-81.
DOI URL |
[33] |
KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171:15-38.
DOI URL |
[34] |
PISIAK L K, CANIL D, LACOURSE T, et al. Magnetite as an indicator mineral in the exploration of porphyry deposits: a case study in till near the Mount Polley Cu-Au deposit, British Columbia, Canada[J]. Economic Geology, 2017, 112(4):919-940.
DOI URL |
[35] |
HUANG X W, BOUTROY é, MAKVANDI S, et al. Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes[J]. Mineralium Deposita, 2019, 54(4):525-552.
DOI URL |
[36] |
BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1):5-32.
DOI URL |
[37] | BREIMAN L, CUTLER A. RFtools: for predicting and understanding data[C]. Interface'04 Workshop, 2004. http://oz.berkeley.edu/users/breiman/Random Forests. |
[38] |
COHEN J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1):37-46.
DOI URL |
[39] | OVALLE J T, LA CRUZ N L, REICH M, et al. Formation of massive iron deposits linked to explosive volcanic eruptions[J]. Scientific reports, 2018, 8(1):1-11. |
[40] |
LA CRUZ N L, OVALLE J T, SIMON A C, et al. The geochemistry of magnetite and apatite from the El Laco iron oxide-apatite deposit, Chile: implications for ore genesis[J]. Economic Geology, 2020, 115(7):1461-1491.
DOI URL |
[41] |
BROUGHM S G, HANCHAR J M, TORNOS F, et al. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile[J]. Mineralium Deposita, 2017, 52(8):1223-1244.
DOI URL |
[42] |
NYSTROEM J O, HENRIQUEZ F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry[J]. Economic geology, 1994, 89(4):820-839.
DOI URL |
[43] | NASLUND H R, HENRIQUEZ F, NYSTRÖM J O, et al. Magmatic iron ores and associated mineralisation: examples from the Chilean high Andes and coastal Cordillera[M]. Adelaide: hydrothermal iron oxide copper-gold & related deposits: a global perspective, PGC Publishing, 2002, 2:207-226. |
[44] |
VELASCO F, TORNOS F, HANCHAR J M. Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits[J]. Ore Geology Reviews, 2016, 79:346-366.
DOI URL |
[45] |
HITZMAN M W, ORESKES N, EINAUDI M T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu±U±Au±REE) deposits[J]. Precambrian Research, 1992, 58:241-287.
DOI URL |
[46] | RHODES A L, ORESKES N, SHEETS S. Geology and rare earth element geochemistry of magnetite deposits at El Laco, Chile[J]. Society of Economic Geologists Special Publication, 1999, 7:299-332. |
[47] | SILLITOE R H, BURROWS D R. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile[J]. Economic Geology, 2002, 97(5):1101-1109. |
[48] |
HU H, LI J W, HARLOV D E, et al. A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China: evidence from magnetite geochemistry and multi-mineral U-Pb geochronology[J]. Geological Society of America Bulletin, 2020, 132(5/6):899-917.
DOI URL |
[1] | JIANG Zhaoxia, LI Sanzhong, SUO Yanhui, WU Lixin. Prospects for submarine hydrogen exploration and extraction technologies [J]. Earth Science Frontiers, 2024, 31(4): 183-190. |
[2] | LIU Qixin, GU Xingfa, WANG Chunmei, YANG Jian, ZHAN Yulin. Soil moisture retrieval on both active and passive microwave data scales [J]. Earth Science Frontiers, 2024, 31(2): 42-53. |
[3] | XU Zhihao, YAN Guoying, YANG Zongfeng, WANG Zhaojing, SHEN Junfeng, ZHANG Mengmeng, LI Peipei, XU Kexin. Typomorphic characteristics of magnetite and prediction of deep iron-rich orebody in the Bayan Obo ore deposit [J]. Earth Science Frontiers, 2023, 30(2): 426-439. |
[4] | HOU Xiaolin, XU Jishang, JIANG Zhaoxia, CAO Lihua, ZHANG Qiang, LI Guangxue, WANG Shuang, ZHAI Ke. Environmental magnetic characteristics of sediments of the western tropical Pacific: Response to the East Asian Winter Monsoon [J]. Earth Science Frontiers, 2022, 29(5): 23-34. |
[5] | YANG Yubo, SU Shangguo, HUO Yan’an, NING Yage, GU Dapeng. Formation mechanism of Hanxing type iron deposit: Evidence from the iron-bearing melt-fluid assemblage in porphyritic monzonite from Wu’an, Hebei Province [J]. Earth Science Frontiers, 2022, 29(3): 304-318. |
[6] | HU Yiming, CHEN Teng, LUO Xuyi, TANG Chao, LIANG Zhongmin. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm [J]. Earth Science Frontiers, 2022, 29(3): 284-291. |
[7] | HOU Xiaoyang,SU Shangguo,YANG Yueyue. Magnetite characteristics of the Yushiwa iron deposit in Wu‘an, Hebei Province and its indication significance to the genesis of iron deposit [J]. Earth Science Frontiers, 2019, 26(6): 244-256. |
[8] | HONG Jin,GAN Chengshi,LIU Jie. Prediction of REEs in OIB by major elements based on machine learning [J]. Earth Science Frontiers, 2019, 26(4): 45-54. |
[9] | CHEN Yinghua,LAN Tingguang,WANG Hong,TANG Yanwen,DAI Zhihui. LA-ICP-MS trace element characteristics of magnetite from the Zhangjiawa iron deposit, Laiwu and constraints on metallogenic processes. [J]. Earth Science Frontiers, 2018, 25(4): 32-49. |
[10] | ZHENG Meng-Tian, ZHANG Lian-Chang, SHU Meng-Tian, LI Zhi-Quan. Geological characteristics, formation age and genesis of the Kalaizi BaFe deposit in West Kunlun. [J]. Earth Science Frontiers, 2016, 23(5): 252-265. |
[11] | . Petrologic and geochemical research of Xiaohalajunshan gabbro in Southwest Tianshan Mts., Xinjiang. [J]. Earth Science Frontiers, 2011, 18(2): 180-190. |
[12] | CHEN Yan-Jing. On epizonogenism and genetic classification of hydrothermal deposits. [J]. Earth Science Frontiers, 2010, 17(2): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||