Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 348-361.DOI: 10.13745/j.esf.sf.2020.12.10
Previous Articles Next Articles
LI Yongjun1,2(), LI Hai1,*(), NING Wentao1, XU Qian1, REN Pengfei1, TAO Xiaoyang1
Received:
2018-12-20
Revised:
2019-07-24
Online:
2021-03-25
Published:
2021-04-03
Contact:
LI Hai
CLC Number:
LI Yongjun, LI Hai, NING Wentao, XU Qian, REN Pengfei, TAO Xiaoyang. Redefining the Heishantou Formation and defining the Aketamu Formation in West Junggar, Xinjiang[J]. Earth Science Frontiers, 2021, 28(2): 348-361.
Fig.1 (a) Tectonic framework of northern Xinjiang (modified from [1-2]), (b-d) simplified geological map of the study area (modified from [1,48,56-57]), and (e) remote sensing image of the study area
[1] |
WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tecto-nic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007,164(1):31-47.
DOI URL |
[2] | 陈思思, 李鹏, 郭旭吉, 等. 西准噶尔萨吾尔地区黑山头金矿点二长岩锆石U-Pb年代学和地球化学特征: 对成矿前景的指示[J]. 大地构造与成矿学, 2017,41(5):865-878. |
[3] |
SENGÖR A M C, NATAL’IN B A, BURTMAN U S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993,364:299-306.
DOI URL |
[4] |
SENGÖR A M C, NATAL’IN B A, SUNAL G, et al. The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of central asia between ~750 and ~130 Ma ago[J]. Annual Review of Earth and Planetary Sciences, 2018,46(1):439-494.
DOI URL |
[5] | JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Aspects of the Tectonic Evolution of China, 2004,226(1):73-100. |
[6] |
XIAO W J, SANTOSH M. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth[J]. Gondwana Research, 2014,25(4):1429-1444.
DOI URL |
[7] |
KRÖNER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014,25(1):103-125.
DOI URL |
[8] |
KRÖNER A, KOVACH V, ALEXEIEV D, et al. No excessive crustal growth in the Central Asian Orogenic Belt: further evidence from field relationships and isotopic data[J]. Gondwana Research, 2017,50:135-166.
DOI URL |
[9] |
YANG G X, LI Y J, KERR A C, et al. Accreted seamounts in North Tianshan, NW China: implications for the evolution of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2018,153:223-237.
DOI URL |
[10] | 李锦轶, 何国琦, 徐新, 等. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 2006,80(1):148-168. |
[11] |
XIAO W J, HUANG B C, HAN C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010,18(2/3):253-273.
DOI URL |
[12] |
XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015,43:477-507.
DOI URL |
[13] |
WINDLEY B F, XIAO W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018,61:73-87.
DOI URL |
[14] | 肖序常, 汤耀庆, 冯益民, 等. 新疆北部及其邻区大地构造[M]. 北京: 地质出版社, 1992: 1-169. |
[15] |
JAHN B M, CAPDEVILA R, LIU D, et al. Sources ofPhanerozoic granitoids in the transect Bayanhongor - Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth[J]. Journal of Asian Earth Sciences, 2004,23(5):629-653.
DOI URL |
[16] |
JIANG J Y, ZHU Y F. Harzburgite found in the Hegenshan ophiolite, southeastern Central Asian Orogenic Belt: petrogenesis and geological implications[J]. Gondwana Research, 2019,75:28-46.
DOI URL |
[17] | TANG G J, WANG Q, WYMAN D A, et al. Recycling oceanic crust for continental crustal growth:Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China[J]. Lithos, 2012,128(9):73-83. |
[18] |
HE D F, ZHANG N N, QI X F, et al. How was the Carboniferous Balkhash - West Junggar remnant ocean filled and closed? Insights from the Well Tacan-1 strata in the Tacheng Basin, NW China[J]. Gondwana Research, 2015,27(1):342-362.
DOI URL |
[19] |
CHEN Y, XIAO W J, WINDLEY B F, et al. Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in West Junggar, China: imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB[J]. International Geology Review, 2016,59(9):1097-1115.
DOI URL |
[20] |
YIN J Y, CHEN W, XIAO W J, et al. Late Silurian - Early Devonian adakitic granodiorite, A-type and I-type granites in NW Junggar, NW China: partial melting of mafic lower crust and implications for slab roll-back[J]. Gondwana Research, 2017,43:55-73.
DOI URL |
[21] |
LIU Y J, LI W M, FENG Z Q, et al. A review of the paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017,43:123-148.
DOI URL |
[22] |
ZHANG J E, XIAO W J, LUO J, et al. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: implication for Early-Middle Paleozoic architecture of the western Altaids[J]. Journal of Asian Earth Sciences, 2018,159:259-278.
DOI URL |
[23] |
HAN Y G, ZHAN G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018,186:129-152.
DOI URL |
[24] |
WEI S N, ZHU Y F, JIANG J Y, et al. Magmatic oxidation state of the Baogutu porphyry copper deposit in the west Junggar of China: implication for ore-formation[J]. Ore Geology Reviews, 2019,106:351-368.
DOI URL |
[25] |
YANG G X, LI Y J, TONG L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019,179:385-398.
DOI URL |
[26] | ZHU Q M, ZHU Y F. Platinum-group minerals and Fe-Ni minerals in the Sartohay podiform chromitite (West Junggar, China): implications for T-pH-fO2-fS2 conditions during hydrothermal alteration[J]. Ore Geology Reviews, 2019,112:1-17. |
[27] | 肖文交, 韩春明, 袁超, 等. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 2005,22(5):1062-1076. |
[28] |
GENG H Y, SUN M, YUAN C, et al. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2011,42(5):854-866.
DOI URL |
[29] |
YANG G X, LI Y J, SAFONOVA I, et al. Early Carboni-ferous volcanic rocks of West Junggar in the western Central Asian Orogenic Belt: implications for a supra-subduction system[J]. International Geology Review, 2014,56(7):823-844.
DOI URL |
[30] | 尹继元, 陈文, 袁超, 等. 西准噶尔谢米斯台山东段早石炭世玄武安山岩的成因及意义[J]. 大地构造与成矿学, 2015,39(5):876-888. |
[31] |
SHEN P, PAN H D, XIAO W J, et al. Early Carboniferous intra-oceanic arc and back-arc basin system in the West Junggar, NW China[J]. International Geology Review. 2013,55(16):1991-2007.
DOI URL |
[32] |
ZHANG J E, XIAO W J, HAN C M, et al. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China[J]. Lithos, 2011,125(1/2):592-606.
DOI URL |
[33] | 韩宝福, 季建清, 宋彪, 等. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限[J]. 岩石学报, 2006,22(5):1077-1086. |
[34] |
ZHOU T F, YUAN F, FAN Y, et al. Granites in the Sawuer region of the West Junggar, Xinjiang Province, China: geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008,106(3/4):191-206.
DOI URL |
[35] | 靳松. 新疆西准噶尔地区古生代岩浆活动的年代学和地球化学研究[D]. 武汉: 中国地质大学(武汉), 2016: 1-194. |
[36] | 赵治信. 新疆北部石炭系划分[J]. 新疆石油地质, 2009,30(4):478-482. |
[37] | 李永军, 佟丽莉, 张兵, 等. 论西准噶尔石炭系希贝库拉斯组与包古图组的新老关系[J]. 新疆地质, 2010,28(2):130-136. |
[38] | 孙羽, 赵春环, 李永军, 等. 西准噶尔包古图地区石炭系希贝库拉斯组碎屑锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 地层学杂志, 2014,38(1):42-50. |
[39] | 纵瑞文, 龚一鸣, 王国灿. 西准噶尔南部石炭纪地层层序及古地理演化[J]. 地学前缘, 2014,21(2):216-233. |
[40] | 龚一鸣, 纵瑞文. 西准噶尔古生代地层区划及古地理演化[J]. 地球科学: 中国地质大学学报, 2015,40(3):461-484. |
[41] | 新疆维吾尔自治区地质局. 新疆托斯特幅(L-45-Ⅸ)地质矿产图说明书[R]. 乌鲁木齐: 新疆维吾尔自治区地质局, 1974. |
[42] | 新疆地质矿产局地质矿产研究所, 新疆地质矿产局第一区调大队. 新疆古生界(下)[M]. 乌鲁木齐: 新疆人民出版社, 1990: 1-251. |
[43] | 新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 1-841. |
[44] | 蔡土赐. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1999: 1-285. |
[45] | 杨高学, 李永军, 严镜, 等. 卡拉麦里地区黑山头组火山岩地球化学特征及构造环境分析[J]. 新疆地质, 2011,29(3):257-262. |
[46] | 杨宝凯, 李永军, 闫存兴, 等. 东准卡拉麦里地区苏吉泉一带黑山头组的厘定[J]. 新疆地质, 2011,29(1):13-16. |
[47] | 郭丽娜. 新疆巴里坤地区下石炭统黑山头组地层划分与对比及沉积特征研究[D]. 西安: 长安大学, 2014: 1-87. |
[48] | 易善鑫, 李永军, 焦光磊, 等. 西准噶尔博什库尔—成吉斯火山弧中早石炭世火山岩的地球化学特征及其构造意义[J]. 矿物岩石地球化学通报, 2014,33(4):431-438. |
[49] | 纵瑞文, 范若颖, 赵龙, 等. 准噶尔西北部塔尔巴哈台组早石炭世植物和遗迹化石的发现及其古地理意义[J]. 古地理学报, 2014,16(3):319-334. |
[50] | 熊小辉, 王剑, 熊国庆, 等. 新疆富蕴盆地下石炭统底砾岩特征及其大地构造意义[J]. 沉积学报, 2015,33(2):254-264. |
[51] | 舍建忠, 贾健, 邸晓辰, 等. 西准谢米斯台山马门特一带石炭系黑山头组的厘定: 来自地质地球化学和年代学证据[J]. 新疆地质, 2018,36(1):8-14. |
[52] | 田陟贤, 阎军, 李永军, 等. 西准噶尔巴尔雷克一带石炭系黑山头组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及构造环境[J]. 地质学报, 2013,87(3):343-352. |
[53] | 李永军, 沈锐, 王冉, 等. 新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J]. 岩石学报, 2014,30(12):3501-3511. |
[54] | 新疆工学院地质系. 新疆喀腊托拉盖幅(L-45-30-C)区域地质调查报告[R]. 乌鲁木齐: 新疆工学院, 1995. |
[55] | 马学平, 宗普, 张美琼, 等. 新疆准噶尔盆地西北缘上泥盆统两个新地层单元[J]. 中国地质, 2015,42(2):695-709. |
[56] | 袁峰, 周涛发, 谭绿贵, 等. 西准噶尔萨吾尔地区Ⅰ型花岗岩同位素精确定年及其意义[J]. 岩石学报, 2006,22(5):1238-1248. |
[57] | 周涛发, 袁峰, 谭绿贵, 等. 新疆萨吾尔地区晚古生代岩浆作用的时限、地球化学特征及地球动力学背景[J]. 岩石学报, 2006,22(5):1225-1237. |
[58] | 新疆地质区域地质调查大队. 西北地区古生物图册·新疆维吾尔自治区分册(一)[M]. 北京: 地质出版社, 1981: 1-232. |
[59] | 新疆维吾尔自治区区域地层表编写组. 西北地区区域地层表: 新疆维吾尔自治区分册[M]. 北京: 地质出版社, 1981: 1-257. |
[60] | 翁凯, 徐学义, 马中平, 等. 西准噶尔吾尔喀什尔地区泥盆纪火山岩锆石U-Pb年代学和地球化学研究[J]. 地质学报, 2013,87(4):515-524. |
[61] | 刘国仁, 龙志宁, 陈青珍, 等. 新疆阔尔真阔拉金矿一带火山岩形成时代及地球化学特征[J]. 新疆地质, 2003,21(2):177-180. |
[62] | 郭正林, 李金祥, 秦克章, 等. 新疆西准噶尔罕哲尕能Cu-Au矿床的锆石U-Pb年代学和岩石地球化学特征: 对源区和成矿构造背景的指示[J]. 岩石学报, 2010,26(12):3563-3578. |
[63] | 袁峰, 周涛发, 邓宇峰, 等. 西准噶尔萨吾尔地区主要矿床类型及成矿规律[J]. 岩石学报, 2015,31(2):388-400. |
[64] | 李海, 李永军, 徐学义, 等. 新疆西准噶尔萨吾尔地区早石炭世埃达克岩地球化学特征、岩石成因及其意义[J]. 岩石学报, 2020,36(7):2017-2034. |
[65] | 徐新, 何国琦, 李华芹, 等. 克拉玛依蛇绿混杂岩带的基本特征和锆石SHRIMP年龄信息[J]. 中国地质, 2006,33(3):470-475. |
[66] | 朱永峰, 徐新. 新疆塔尔巴哈台山发现早奥陶世蛇绿混杂岩[J]. 岩石学报, 2006,22(12):2833-2842. |
[67] | 张元元, 郭召杰. 准噶尔北部蛇绿岩形成时限新证据及其东、西准噶尔蛇绿岩的对比研究[J]. 岩石学报, 2010,26(2):421-430. |
[68] | 杨高学, 李永军, 杨宝凯, 等. 西准噶尔玛依勒蛇绿混杂岩锆石U-Pb年代学、地球化学及源区特征[J]. 岩石学报, 2013,29(1):303-316. |
[69] |
VLADIMIROV A G, KRUK N N, KHROMYKH S V, et al. Permian magmatism and lithospheric deformation in the Altai caused by crustal and mantle thermal processes[J]. Russian Geology and Geophysics, 2008,49(7):468-479.
DOI URL |
[70] |
HAN B F, GUO Z J, ZHANG Z C, et al. Age, geochemistry, and tectonic implications of a Late Paleozoicstitching pluton in the North Tian Shan suture zone, western China[J]. Geological Society of America Bulletin, 2010,122(3/4):627-640.
DOI URL |
[71] | IWATA K, WATANABE T, AKIYAMA M, et al. Paleozoic microfossils from the Chara Belt(Eastern Kazakhstan)[J]. Russian Geology and Geophysics, 1994,35:145-151. |
[72] | IWATA K, OBUT O T, BUSLOV M M. Devonian and Lower Carboniferous radiolaria from the Chara ophiolite belt, East Kazakhstan[J]. News of Osaka Micropaleontologist, 1997,10:27-32. |
[73] | 周刚. 吉木乃县塔斯特岩体地质地球化学特征及含矿性评价[J]. 新疆地质, 2000,18(1):79-84. |
[74] | 申萍, 沈远超, 刘铁兵, 等. 新疆阔尔真阔腊金矿田成矿流体地球化学及其意义[J]. 中国科学: D辑, 2005,35(9):862-869. |
[75] | 王瑞, 朱永峰. 新疆恰尔墩巴斯希铁-铜-金矿矿床地质研究[J]. 矿床地质, 2010,29(2) : 229-242. |
[76] |
SHEN P, SHEN Y C, LIU T B, et al. Geology and geochemistry of the Early Carboniferous eastern Sawur caldera complex and associated gold epithermal mineralization, Sawur Mountains, Xinjiang, China[J]. Journal of Asian Earth Sciences, 2008,32(2/3/4):259-279.
DOI URL |
[77] |
SHEN P, PAN H D, XIAO W J, et al. Two geodynamic-metallogenic events in the Balkhash(Kazakhstan) and the West Junggar(China): Carboniferous porphyry Cu and Permian greisen W-Mo mineralization[J]. International Geology Review, 2013,55(13):1660-1687.
DOI URL |
[78] |
GENG H Y, SUN M, YUAN C, et al. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction?[J]. Chemical Geology, 2009,266(3/4):364-389.
DOI URL |
[79] | 唐功建, 王强, 赵振华, 等. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义[J]. 地球科学: 中国地质大学学报, 2009,34(1):56-74. |
[80] |
YIN J Y, YUAN C, SUN M, et al. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications[J]. Gondwana Research, 2010,17(1):145-152.
DOI URL |
[81] | 郭正林. 准噶尔西北缘构造-成矿分区、区域成矿规律及找矿潜力分析[D]. 北京: 中国科学院地质与地球物理研究所, 2009: 1-152. |
[82] | 周守沄. 新疆石炭纪古地理[J]. 新疆地质, 2000,18(4):324-329. |
[83] |
SHEN P, SHEN Y C, LIU T B, et al. Genesis of volcanic-hosted gold deposits in the Sawur gold belt, northern Xinjiang, China: evidence from REE, stable isotopes, and noble gas isotopes[J]. Ore Geology Reviews, 2007,32(1/2):207-226.
DOI URL |
[84] | 邓宇峰, 周涛发, 袁峰, 等. 西准噶尔阔尔真阔腊金矿区玄武安山岩锆石 U-Pb 年龄及其地质意义[J]. 地质学报, 2014,88(5):883-894. |
[85] |
CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010,115(1/2/3/4):137-152.
DOI URL |
[86] | 熊双才, 杨俊弢, 张征峰, 等. 东准噶尔老爷庙地区早石炭世黑山头组火山岩地质、地球化学特征及构造环境分析[J]. 新疆地质, 2019,37(2):194-200. |
[87] | 全国地层委员会. 中国地层指南及中国地层指南说明书:修订版[M]. 北京: 地质出版社, 2001: 1-59. |
[88] | 李永军, 梁积伟, 杨高学. 区域地质调查导论[M]. 北京: 地质出版社, 2014: 1-290. |
[1] | LI Shan, WU Huaichun, FANG Qiang, XU Junjie, SHI Meinan. Cyclostratigraphy of the Devonian/Carboniferous boundary sections in South China [J]. Earth Science Frontiers, 2022, 29(3): 329-339. |
[2] | ZHANG Xionghua, HUANG Xing, ZHANG Meng, GAO Lu, ZHANG Kexin. Carboniferous tectonostratigraphic regionalization and stratigraphic framework in China [J]. Earth Science Frontiers, 2021, 28(5): 362-379. |
[3] | PENG Bo, LIU Chenglin, QI Kening, LIU Dapeng, WANG Jiaqi, LI Zongxing, MA Yinsheng, HU Junjie. Sedimentary di fferentiation characteristics of and the main factors controlling the Upper Devonian-Lower Carboni ferous sediments in the eastern Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(1): 104-114. |
[4] | SHEN Yang, WANG Xunlian, LI Yukun, YANG Zhihua, CEN Wuxuan, WANG Xuebing. Carboniferous foraminifers from the Shangsi area in southern Guizhou and the Visean foraminiferal succession in South China [J]. Earth Science Frontiers, 2020, 27(6): 213-233. |
[5] | CHENG Rong, XIAO Yong-Jun, LIN Hui-Chi, LIU Zhong-Quan, WANG Da-Hua. A study of Carboniferous stratigraphic distribution and controlling factors in the eastern section of North Qaidam. [J]. Earth Science Frontiers, 2016, 23(5): 75-85. |
[6] | ZHANG Ti, CHEN Shi-Yue, SUN Jiao-Feng, MA Yin-Sheng, LIU Cheng-Lin. Lithofacies and sedimentary environment of shale in Carboniferous Keluke Formation, Northern Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 86-94. |
[7] | YANG Yuan-Yuan, MA Yin-Sheng, LIU Cheng-Lin, CHENG Hai-Yan. Influence of weathering on abundance of source rocks:A case study of Keluke Formation of Upper Carboniferous in the Shihuigou area, North Margin of Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 113-118. |
[8] | CAO Jun, LIU Cheng-Lin, MA Yin-Sheng, LI Zong-Xing. Geochemical characteristics and genesis of shale gas for Carboniferous marinecontinental transitional facies coal measure strata in Eastern Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 158-166. |
[9] | ZHANG Qian, LIU Cheng-Lin, LI Zong-Xing, DU E-Feng. Characteristics and main controlling factors of Carboniferous bitumens in Eastern Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 167-175. |
[10] | CENG Qiang-Meng, LIU Cheng-Lin, ZHANG Gui-Bin, MAO Zhi-Hui. Calculation of Carboniferous seismic interval velocity in Eastern Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 176-183. |
[11] | ZHANG Cheng, JIA Lou, LI Yang-Jie, XU Jing-Chun. Study on threedimensional fracture network models of Carboniferous shale in Eastern Qaidam Basin. [J]. Earth Science Frontiers, 2016, 23(5): 184-192. |
[12] | HU Meng-Yi, DENG Meng, HU Zhong-Gui, XUE Dan. Reservoir characteristics and main control factors of the Carboniferous Huanglong Formation in Sichuan Basin. [J]. Earth Science Frontiers, 2015, 22(3): 310-321. |
[13] | CHEN Yang, WANG Xun-Lian. [J]. Earth Science Frontiers, 2014, 21(2): 251-264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||