Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (6): 128-143.DOI: 10.13745/j.esf.sf.2020.6.23
Previous Articles Next Articles
SU Xin1(), CHEN Fang2,3, YU Chonghan1, GUO Ce1
Received:
2020-03-19
Revised:
2020-05-28
Online:
2020-11-02
Published:
2020-11-02
CLC Number:
SU Xin, CHEN Fang, YU Chonghan, GUO Ce. A PDO-like record documented by microfossils from the northern region of the California Current System since the Early Pleistocene[J]. Earth Science Frontiers, 2020, 27(6): 128-143.
ODP钻孔 | 位置 (水深/m) | 岩心深度/m | 岩性 单元 | 主要岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1020B | 41°0.051'N | 0 | 121.8 | IA | 灰色至浅橄榄色黏土和超微化石黏土互层 |
126°26.064'W | 121.8 | 228.5 | IB | 浅灰橄榄色至深灰色黏土和硅藻黏土 | |
(3 038.4) | 228.5 | 278.8 | II | 浅黄灰至橄榄灰色超微化石软泥与浅灰橄榄色超微化石黏土厚层互层 | |
1245B | 44°35.1587'N | 0 | 31.5 | I | 深绿灰色含钙质超微化石黏土和粉砂质黏土 |
125°8.9455'W | 31.5 | 76.0 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 | |
(869.7) | 76.0 | 183.0 | IIIA | 深绿灰色富含超微化石、富含硅藻黏土以及粉砂质黏土,与粉砂互层 | |
183.0 | 212.7 | IIIB | 深绿灰色粉砂质黏土和富含超微化石粉砂质黏土,与粉砂互层 | ||
212.7 | 320.0 | IVA | 深绿灰色至深灰色富含生物组分的粉砂质泥岩 | ||
320.0 | 419.3 | IVB | 深绿灰色至深灰色泥岩和粉砂质泥岩 | ||
419.3 | 472.9 | V | 深绿灰色泥岩和粉砂质泥岩 |
Table 1 Positional information of ODP Holes 1020B and 1245B and major lithology of the studied sediment intervals. Adapted from [41,43].
ODP钻孔 | 位置 (水深/m) | 岩心深度/m | 岩性 单元 | 主要岩性 | |
---|---|---|---|---|---|
顶部 | 底部 | ||||
1020B | 41°0.051'N | 0 | 121.8 | IA | 灰色至浅橄榄色黏土和超微化石黏土互层 |
126°26.064'W | 121.8 | 228.5 | IB | 浅灰橄榄色至深灰色黏土和硅藻黏土 | |
(3 038.4) | 228.5 | 278.8 | II | 浅黄灰至橄榄灰色超微化石软泥与浅灰橄榄色超微化石黏土厚层互层 | |
1245B | 44°35.1587'N | 0 | 31.5 | I | 深绿灰色含钙质超微化石黏土和粉砂质黏土 |
125°8.9455'W | 31.5 | 76.0 | II | 深绿灰色含硅藻黏土和粉砂质黏土,与细砂互层 | |
(869.7) | 76.0 | 183.0 | IIIA | 深绿灰色富含超微化石、富含硅藻黏土以及粉砂质黏土,与粉砂互层 | |
183.0 | 212.7 | IIIB | 深绿灰色粉砂质黏土和富含超微化石粉砂质黏土,与粉砂互层 | ||
212.7 | 320.0 | IVA | 深绿灰色至深灰色富含生物组分的粉砂质泥岩 | ||
320.0 | 419.3 | IVB | 深绿灰色至深灰色泥岩和粉砂质泥岩 | ||
419.3 | 472.9 | V | 深绿灰色泥岩和粉砂质泥岩 |
年龄/Ma | 生物或古地磁事件 | 平均深度/mcd | 备注 |
---|---|---|---|
0.44 | T Pseudoemiliania lacunosa | 51.30 | 钙质超微化石 |
0.773 | B Brunhes | 84.83 | 古地磁 |
1.008 | T Jaramillo | 100.68 | 古地磁 |
1.076 | B Jaramillo | 108.81 | 古地磁 |
1.24 | T large Gephyrocapsa spp. | 125.01 | 钙质超微化石 |
1.62 | B large Gephyrocapsa spp. | 144.69 | 钙质超微化石 |
Table 2 Depth and age control points for Hole 1020B in this paper. Adapted from [41].
年龄/Ma | 生物或古地磁事件 | 平均深度/mcd | 备注 |
---|---|---|---|
0.44 | T Pseudoemiliania lacunosa | 51.30 | 钙质超微化石 |
0.773 | B Brunhes | 84.83 | 古地磁 |
1.008 | T Jaramillo | 100.68 | 古地磁 |
1.076 | B Jaramillo | 108.81 | 古地磁 |
1.24 | T large Gephyrocapsa spp. | 125.01 | 钙质超微化石 |
1.62 | B large Gephyrocapsa spp. | 144.69 | 钙质超微化石 |
年龄/Ma | 生物事件 | 平均深度/mbsf | 备注 |
---|---|---|---|
0.29 | FO Emiliania huxleyi | 60.96 | 钙质超微化石 |
0.44 | LO Pseudoemiliania lacunosa | 80.47 | 钙质超微化石 |
1.02 | LO small Gephyrocapsa spp.Acme | 150.77 | 钙质超微化石 |
1.24 | FO small Gephyrocapsa spp.Acme | 276.13 | 钙质超微化石 |
1.60 | FO Calcidiscus macintyrei | 517.52 | 钙质超微化石 |
Table 3 Depth and age control points for Hole 1245B in this paper. Adapted from [43].
年龄/Ma | 生物事件 | 平均深度/mbsf | 备注 |
---|---|---|---|
0.29 | FO Emiliania huxleyi | 60.96 | 钙质超微化石 |
0.44 | LO Pseudoemiliania lacunosa | 80.47 | 钙质超微化石 |
1.02 | LO small Gephyrocapsa spp.Acme | 150.77 | 钙质超微化石 |
1.24 | FO small Gephyrocapsa spp.Acme | 276.13 | 钙质超微化石 |
1.60 | FO Calcidiscus macintyrei | 517.52 | 钙质超微化石 |
Fig.3 From 2nd Left to Right: Pleistocene records of grain size, diatom fossils, nannofossils, CaCO3, TOC and abnormal events (adapted from [28]) in Hole 1020B with correlation to LR04 δ18O data (adapted from [54]).
Fig.4 From 2nd Left to Right: Pleistocene records of grain size, diatom fossils, nannofossils, CaCO3, TOC and seismic horizons (adapted from [43]) in Hole 1245B with correlation to LR04 δ18O data (adapted from [54]).
[1] | REBSTOCK G A. Long-term change and stability in the California Current System: lessons from CalCOFI and other long-term data sets[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2003, 50(14/15/16): 2583-2594. |
[2] |
KING J R, AGOSTINI V N, HARVEY C J, et al. Climate forcing and the California Current ecosystem[J]. ICES Journal of Marine Science, 2011, 68(6): 1199-1216.
DOI URL |
[3] | KÄMPF J, CHAPMAN P. Upwelling Systems of the World[M]. Switzerland: Springer International Publishing, 2016. |
[4] | LYNN R J. Seasonal variation of temperature and salinity at 10 meters in the California Current[J]. California Cooperative oceanic Fisheries Investigations, 1966, 11(6): 157-186. |
[5] |
HICKEY B M. The California current system: hypotheses and facts[J]. Progress in Oceanography, 1979, 8(4): 191-279.
DOI URL |
[6] |
EMERY W J, HAMILTON K. Atmospheric forcing of interannual variability in the northeast Pacific Ocean: connections with El Niño[J]. Journal of Geophysical Research, 1985, 90(C1): 857-868.
DOI URL |
[7] |
LYNN R J, SIMPSO J J. The California Current system: the seasonal variability of its physical characteristics[J]. Journal of Geophysical Research, 1987, 92(C12): 12947-13193.
DOI URL |
[8] |
ZHANG Y, WALLACE J M, BATTISTI D S. ENSO-like interdecadal variability: 1900-93[J]. Journal of Climate, 1997, 10(5): 1004-1020.
DOI URL |
[9] |
MANTUA N J, HARE S R. The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58(1): 35-44.
DOI URL |
[10] |
MANTUA N J, HARE S R, ZHANG Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1069-1079.
DOI URL |
[11] |
NEWMAN M, COMPO G P, ALEXANDER M A. ENSO-forced variability of the Pacific Decadal Oscillation[J]. Journal of Climate, 2003, 16(23): 3853-3857.
DOI URL |
[12] |
WU L, LIU Z, GALLIMORE R, et al. Pacific decadal variability: the tropical Pacific mode and the North Pacific mode[J]. Journal of Climate, 2003, 16(8): 1101-1120.
DOI URL |
[13] |
YEH S W, KANG Y J, NOH Y, et al. The North Pacific climate transitions of the winters of 1976/77 and 1988/89[J]. Journal of Climate, 2011, 24(4): 1170-1183.
DOI URL |
[14] |
NEWMAN M, ALEXANDER M A, AULT T R, et al. The Pacific Decadal Oscillation, revisited[J]. Journal of Climate, 2016, 29(12): 4399-4427.
DOI URL |
[15] |
WILLS R C J, BATTISTI D S, HARTMANN D L, et al. Ocean circulation signatures of North Pacific decadal variability[J]. Geophysical Research Letters, 2019, 46(3): 1690-1701.
DOI URL |
[16] | JOHNSON Z F, CHIKAMOTO Y, WANG S Y S, et al. Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans[J]. Climate Dynamics, 2020(1): 1-23. |
[17] | DI LORENZO E, SCHNEIDER N, COBB K M, et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8): L08607. |
[18] | CHENILLAT F, RIVIÈRE P, CAPET X, et al. North Pacific Gyre Oscillation modulates seasonal timing and ecosystem functioning in the California Current upwelling system[J]. Geophysical Research Letters, 2012, 39(1): L01606. |
[19] |
CEBALLOS L I, DI LORENZO E, HOYOS C D, et al. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J]. Journal of Climate, 2009, 22(19): 5163-5174.
DOI URL |
[20] |
MOORE J K, LINDSAY K, DONEY S C, et al. Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1(BGC)]: comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios[J]. Journal of Climate, 2013, 26(23): 9291-9312.
DOI URL |
[21] | LYLE M, KOIZUMI I, RICHTER C. Neogene evolution of the California Current System[EB/OL]. [2020-05-19]. http://odplegacy.org/PDF/Outreach/Brochures/Greatest_Hits/Rhythms/Lyle.pdf. |
[22] |
ANDERSON R Y, HEMPHILL-HALEY E, GARDNER J V. Persistent late Pleistocene-Holocene seasonal upwelling and varves off the coast of California[J]. Quaternary Research, 1987, 28(2): 307-313.
DOI URL |
[23] |
ANDERSON R Y, LINSLEY B K, GARDNER J V. Expression of seasonal and ENSO forcing in climatic variability at lower than ENSO frequencies: evidence from Pleistocene marine varves off California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78(3/4): 287-300.
DOI URL |
[24] |
ARNDT S, LANGE C B, BERGER W H. Climatically controlled marker layers in Santa Barbara Basin sediments and fine-scale core-to-core correlation[J]. Limnology and Oceanography, 1990, 35(1): 165-173.
DOI URL |
[25] |
SANCETTA C. Diatoms in the Gulf of California: seasonal flux patterns and the sediment record for the last 15,000 years[J]. Paleoceanography, 1995, 10(1): 67-84.
DOI URL |
[26] |
BEAUFORT L, GRELAUD M. A 2700-year record of ENSO and PDO variability from the Californian margin based on coccolithophore assemblages and calcification[J]. Progress in Earth and Planetary Science, 2017, 4(1): 1-13.
DOI URL |
[27] |
YAMAMOTOA M, YAMAMUROB M, TANAKA Y. The California current system during the last 136,000 years: response of the North Pacific High to precessional forcing[J]. Quaternary Science Reviews, 2007, 26(3/4): 405-414.
DOI URL |
[28] |
LYLE M, HEUSSER L, HERBERT T, et al. Interglacial theme and variations: 500 k.y. of orbital forcing and associated responses from the terrestrial and marine biosphere, U.S. Pacific Northwest[J]. Geology, 2001, 29(12): 1115-1118.
DOI URL |
[29] | TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 204 [C]. Bridgeport: ScholarWorks, 2003. |
[30] | THOMSON R E, KRASSOVSKI M V. Poleward reach of the California Undercurrent extension[J]. Journal of Geophysical Research, 2010, 115(C9): C09027. |
[31] | COLLINS C A, IVANOV L M, MELNICHENKO O V, et al. California Undercurrent variability and eddy transport estimated from RAFOS float observations[J]. Journal of Geophysical Research, 2004, 109(C5): C05028. |
[32] |
MEINVIELLE M, JOHNSON G C. Decadal water-property trends in the California Undercurrent, with implications for ocean acidification[J]. Journal of Geophysical Research: Oceans, 2013, 118(12): 6687-6703.
DOI URL |
[33] |
BOGRAD S J, SCHROEDER I D, JACOX M G. A water mass history of the Southern California current system[J]. Geophysical Research Letters, 2019, 46(12): 6690-6698.
DOI URL |
[34] | WHEELER P A, HUYER A, FLEISCHBEIN J. increased nutrients and Cold halocline, increased nutrients and higher chlorophyll off Oregon in 2002[J]. Geophysical Research Letters, 2003, 30(15): 10.1029/2003GL017395. |
[35] |
MAZZINI P L F, RISIEN C M, BARTH J A, et al. Anomalous near-surface low-salinity pulses off the Central Oregon Coast[J]. Scientific Reports, 2015, 5(1): 17145.
DOI URL |
[36] |
CHECKLEY D M, BARTH J A. Patterns and processes in the California Current System[J]. Progress in Oceanography, 2009, 83(1/2/3/4): 49-64.
DOI URL |
[37] |
CHHAK K, DI LORENZO E. Decadal variations in the California Current upwelling cells[J]. Geophysical Research Letters, 2007, 34(14): L14604.
DOI URL |
[38] |
YOON J H, WANG S Y S, GILLIES R R, et al. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming[J]. Nature Communications, 2015, 6: 8657.
DOI URL |
[39] |
DI LORENZO E, COMBES V, KEISTER J, et al. Synjournal of Pacific Ocean climate and ecosystem dynamics[J]. Oceanography, 2013, 26(4): 68-81.
DOI URL |
[40] |
YI D L, GAN B, WU L, et al. The North Pacific Gyre Oscillation and mechanisms of its decadal variability in CMIP5 models[J]. Journal of Climate, 2018, 31(6): 2487-2509.
DOI URL |
[41] | SHIPBOARD SCIENTIFIC PARTY. Site 1020 [C]//LYLE M, KOIZUMI I, RICHTER C, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 167. Bridgeport: ScholarWorks, 1997: 389-429. |
[42] |
HICKEY B M, BANAS N S. Why is the northern end of the California Current System so productive?[J]. Oceanography, 2008, 21(4): 90-107.
DOI URL |
[43] | SHIPBOARD SCIENTIFIC PARTY. Site 1245 [C]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 204. Bridgeport: ScholarWorks, 2003: 1-131. |
[44] | SU X. Development of late Tertiary and Quaternary coccolith assemblages in the northeast Atlantic[J]. GEOMAR Report, 1996, 48: 10.3289/GEOMAR Report_48_1996. |
[45] | MAZZULLO J M, MEYER A, KIDD R B. New Sediment Classification Scheme for the Ocean Drilling Program[M]//MAZZULLO J, GRAHAM A G. Handbook for shipboard sedimentologists. College Station: Texas A&M University, 1988, 8: 45-67. |
[46] | SHIPBOARD SCIENTIFIC PARTY. Explanatory notes [C]//LYLE M, KOIZUMI I, RICHTER C, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 167. Bridgeport: ScholarWorks, 1997: 15-39. |
[47] | SHIPBOARD SCIENTIFIC PARTY. Explanatory notes [C]//TRÉHU A M, BOHRMANN G, RACK F R, et al. Proceedings of the Ocean Drilling Program, Initial Reports, 204. Bridgeport: ScholarWorks, 2003: 1-102. |
[48] | TERRY R D, CHILINGAR G V. Summary of “Concerning some additional aids in studying sedimentary formations” by M.S. Shvetsov[J]. Journal of SedimentaryResearch, 1955, 25(3): 229-234. |
[49] | ROTHWELL R G. The Smear Slide Method[M]//ROTHWELL.Minerals and Mineraloids in Marine Sediments. Dordrecht:Springer, 1989: 21-24. |
[50] |
MÄRZ C, STRATMANN A, MATTHIESSEN J, et al. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7668-7687.
DOI URL |
[51] |
FOERSTER V, JUNGINGER A, LANGKAMP O, et al. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45000 years[J]. Quaternary International, 2012, 274: 25-37.
DOI URL |
[52] | GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. The Geological Time Scale[M]. Oxford: United Kingdom (Elsevier), 2012. |
[53] | OGG J G, OGG G, GRADSTEIN F M. A Concise Geologic Time Scale[M]. Boston: Elsevier, 2016. |
[54] | LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records[J]. Paleoceanography, 2005, 20(1): PA1003. |
[55] | FORD H L, SOSDIAN S M, ROSENTHAL Y, et al. Gradual and abrupt changes during the Mid-Pleistocene Transition[J]. Quaternary Science Reviews, 2016, 149: 222-233. |
[56] |
KENNETT J P, INGRAM B L. A 20000-year record of ocean circulation and climate change from the Santa Barbara basin[J]. Nature, 1995, 377(6549): 510-514.
DOI URL |
[57] | LYLE M, KOIZUMI I, DELANEY M L, et al. Sedimentary record of the California Current system, middle Miocene to Holocene: a synthesis of Leg 167 results [C]//LYLE M, KOIZUMI I, DELANEY M L. Proceedings of the Ocean Drilling Program, Initial Reports, 167. Bridgeport: ScholarWorks, 2000: 341-376. |
[58] |
STOTT L, POULSEN C, LUND S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579): 222-226.
DOI URL |
[59] |
WATANABE T, SUZUKI A, MINOBE S, et al. Permanent El Niño during the Pliocene warm period not supported by coral evidence[J]. Nature, 2011, 471(7337): 209-211.
DOI URL |
[60] |
MOLNAR P, CANE M A. Early Pliocene (pre-Ice Age) El Niño-like global climate: which El Niño?[J]. Geosphere, 2007, 3(5): 337-365.
DOI URL |
[61] | BOPP O, AUMONT P, CADULE S, et al. Response of diatoms distribution to global warming and potential implications: a global model study[J]. Geophysical Research Letters, 2005, 32(19): L19606. |
[62] |
HISASHI E, HIROYUKI O, KOJI S. Contrasting biogeography and diversity patterns between diatoms and haptophytes in the central Pacific Ocean[J]. Scientific Reports, 2018, 8(1): 10916.
DOI URL |
[63] |
KRUMHARDTA K M, LOVENDUSKIB N S, RODRIGUEZC M D I, et al. Coccolithophore growth and calcification in a changing ocean[J]. Progress in Oceanography, 2017, 159: 276-295.
DOI URL |
[64] |
ARMBRUST E. The life of diatoms in the world’s oceans[J]. Nature, 2009, 459: 185-192.
DOI URL |
[65] |
ABRANTES F, CERMENO P, LOPES C, et al. Diatoms Si uptake capacity drives carbon export in coastal upwelling systems[J]. Biogeosciences, 2016, 13(14): 4099-4109.
DOI URL |
[66] | ALIN S R, FEELY R A, DICKSON A G, et al. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005-2011)[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05033. |
[67] |
TURI G, ALEXANDER M, LOVENDUSKI N S, et al. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model[J]. Ocean Science, 2018, 14(1): 69-86.
DOI URL |
[68] |
SIEDLECKI S A, KAPLAN I C, HERMANN A J, et al. Experiments with seasonal forecasts of ocean conditions for the northern region of the California current upwelling system[J]. Scientific Reports, 2016, 6: 27203.
DOI URL |
[69] |
CHHAK K C.DI LORENZO E, SCHNEIDER N, et al. Forcing of low-frequency ocean variability in the northeast Pacific[J]. Journal of Climate, 2009, 22(5): 1255-1276.
DOI URL |
[70] |
DI LORENZO E, COMBES V, KEISTER J E, et al. Synjournal of Pacific Ocean climate and ecosystem dynamics[J]. Oceanography, 2013, 26(4): 68-81.
DOI URL |
[71] |
MACIAS D, LANDRY M R, GERSHUNOV A, et al. Climatic control of upwelling variability along the western North-American Coast[J]. PLoS One, 2012, 7(1): e30436.
DOI URL |
[72] |
JACOX M G, MOORE A M, EDWARDS C A, et al. Spatially resolved upwelling in the California Current System and its connections to climate variability[J]. Geophysical Research Letters, 2014, 41(9): 3189-3196
DOI URL |
[73] |
BARRON J A, BUKRY D, FIELD D B, et al. Response of diatoms and silicoflagellates to climate change and warming in the California Current during the past 250 years and the recent rise of the toxic diatom Pseudo-nitzschia australis[J]. Quaternary International, 2013, 310: 140-154.
DOI URL |
[74] |
SMITH J, CONNELL P, EVANS R H, et al. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California[J]. Harmful Algae, 2018, 79: 87-104.
DOI URL |
[75] |
LATIF M, BARNETT T P. Causes of decadal climate variability over the North Pacific and North America[J]. Science, 1994, 266(5185): 634-637.
DOI URL |
[76] |
SHNEIDER N, CORNUELLE B D. The forcing of the Pacific decadal oscillation[J]. Journal of Climate, 2005, 18(21): 4355-4373.
DOI URL |
[77] |
SCREEN J A, FRANCIS J A. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability[J]. Nature Climate Change, 2016, 6(9): 856-860.
DOI URL |
[78] |
DI LORENZO E, COBB K M, FURTADO J C, et al. Central Pacific El Niño and decadal climate change in the North Pacific Ocean[J]. Nature Geoscience, 2010, 3(11): 762-765.
DOI URL |
[79] | KIM S T, YU J Y. The two types of ENSO in CMIP5 models[J]. Geophysical Research Letters, 2012, 39(11): L11704. |
[80] | YUAN C X, YAMAGATA T. California Niño/Niña[J]. Scientific Reports, 2014, 4(1): 1-7. |
[81] | TALLEY L D, PICKARD G L, EMERY W J, et al. Climate and the oceans[M]//Descriptive physical oceanography. 6th ed. London: Academic Press, 2011: 1-36. |
[82] |
ORTLIEB L, DIAZ A, GUZMAN N. A warm interglacial episode during oxygen isotope stage 11 in northern Chile[J]. Quaternary Science Reviews, 1996, 15(8/9): 857-871.
DOI URL |
[83] |
MCCLYMONTA E L, SOSDIANB S M, ROSELL-MELÉC A, et al. Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition[J]. Earth-Science Reviews, 2013, 123: 173-193.
DOI URL |
[84] | IRVALI N, GALAASENA E V, NINNEMANNA U S, et al. A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 190-195. |
[85] |
FORD H L, RAYMO M E. Regional and global signals in seawater δ 18O records across the mid-Pleistocene transition[J]. Geology, 2019, 48(2): 113-117.
DOI URL |
[86] |
WORNE S, KENDER S, SWANN G E A, et al. Reduced upwelling of nutrient and carbon-rich water in the subarctic Pacific during the Mid-Pleistocene Transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 555. DOI: 10.1016/j.palaeo.2020.109845.
DOI |
[87] |
WARE D M, THOMSON R E. Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific[J]. Science, 2005, 308(5726): 1280-1284.
DOI URL |
[88] |
XIU P, CHAI F, CURCGUTSER E N, et al., Future changes in coastal upwelling ecosystems with global warming: the case of the California Current System[J]. Scientific Reports, 2018, 8(1): 2866.
DOI URL |
[1] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[2] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[3] | SHAO Ji'an, ZHOU Xinhua, ZHANG Lüqiao. Phanerozoic multiple underplatings beneath the north margin of the North China Craton and the implications for tectono-magmatism and deep dynamics [J]. Earth Science Frontiers, 2020, 27(4): 124-134. |
[4] | MAO Shengyi,ZHU Xiaowei,JIA Guodong,WU Nengyou. Application of longchain diol and its index as environmental indicators of coastal upwelling regions along eastern Guangdong in the northern South China Sea. [J]. Earth Science Frontiers, 2018, 25(4): 285-298. |
[5] | LI Xi-Guang YAN Xiao-Min LIANG Ji. Nanning Cenozoic asthenosphere upwelling plume and its influence on the shallow surface structure. [J]. Earth Science Frontiers, 2009, 16(4): 261-. |
[6] | GENG Ji-Shan YANG Wei-Ran GENG Zuo-Yun LIU Jian-Hua SHAO Jian-She. Mesozoic asthenosphere upwelling of Eastern China and its effects on structuremagma mineralizationconcentrated region. [J]. Earth Science Frontiers, 2009, 16(4): 225-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||