

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 432-443.DOI: 10.13745/j.esf.sf.2025.10.25
Previous Articles Next Articles
HU Litang1,2(
), GAN Lin1,2, SUN Jianchong1,2,3, LIU Hongbo1,2, TIAN Lei1,2, SHEN Qi1,2
Received:2025-08-30
Revised:2025-10-20
Online:2026-11-25
Published:2025-11-10
CLC Number:
HU Litang, GAN Lin, SUN Jianchong, LIU Hongbo, TIAN Lei, SHEN Qi. Error correction method for groundwater numerical models considering parameter uncertainty[J]. Earth Science Frontiers, 2026, 33(1): 432-443.
| 序号 | 名称 | 统计值 | 真实介质条件 | 概念模型介质条件 | ||
|---|---|---|---|---|---|---|
| 1 | 中等非均质 | 平均值(m/d) | 0.5 | 模型模拟值作为 观测值 | 0.5 | 模型模拟值将 用于校正前、 校正后比较 |
| 方差(m2/d2) | 1.0 | 0.0 | ||||
| 2 | 强非均质 | 平均值(m/d) | 0.5 | 0.5 | ||
| 方差(m2/d2) | 2.0 | 0.0 | ||||
| 3 | 弱非均质 | 平均值(m/d) | 5.0 | 5.0 | ||
| 方差(m2/d2) | 0.5 | 0.0 | ||||
Table 1 Statistical parameters of hydraulic conductivities for real sites and model conceptualization
| 序号 | 名称 | 统计值 | 真实介质条件 | 概念模型介质条件 | ||
|---|---|---|---|---|---|---|
| 1 | 中等非均质 | 平均值(m/d) | 0.5 | 模型模拟值作为 观测值 | 0.5 | 模型模拟值将 用于校正前、 校正后比较 |
| 方差(m2/d2) | 1.0 | 0.0 | ||||
| 2 | 强非均质 | 平均值(m/d) | 0.5 | 0.5 | ||
| 方差(m2/d2) | 2.0 | 0.0 | ||||
| 3 | 弱非均质 | 平均值(m/d) | 5.0 | 5.0 | ||
| 方差(m2/d2) | 0.5 | 0.0 | ||||
Fig.2 Schematic figures of grid code (a), grid discretization (b),plan view (c), and vertical water balance calculation (d) in groundwater numerical model
Fig.7 Scatter-density distributions between simulated and observed hydraulic head values after error correction under strong (a) and weak (b) heterogeneity conditions
Fig.9 Changes of hydraulic head at observation well O1 under moderate (a), strong (b), and weak (c) heterogeneity conditions during variable-rate single-well pumping
Fig.10 Spatial distribution maps of hydraulic head and error values under variable-rate multi-well pumping and injection conditions with different heterogeneity levels: true hydraulic head (a), error before (b) and after (c) correction under moderate heterogeneity, true hydraulic head (d), error before (e) and after (f) correction under strong heterogeneity, true hydraulic head (g), error before (h) and after (i) correction under weak heterogeneity
Fig.12 Scatter-density distributions between simulated and observed hydraulic head values before (a) and after (b) error correction under strong heterogeneity during variable-rate single-well pumping conditions
Fig.13 Comparison of absolute errors in simulated hydraulic head at observation wells (a) and absolute errors in regional hydraulic head after 2 days (b) under different numbers of calibration points
Fig.14 Hydraulic head variation curves for observation wells O1 (a) and O4 (b) simulated by model under multi-well variable flow extraction conditions in strongly heterogeneous media
| [1] |
GORELICK S M, ZHENG C M. Global change and the groundwater management challenge[J]. Water Resources Research, 2015, 51(5): 3031-3051.
DOI URL |
| [2] | 舒乐乐, 陈昊, 孟宪红, 等. 地表-地下过程耦合的数值水文模型综述[J]. 中国科学: 地球科学, 2024, 54(5): 484-1505. |
| [3] | 王浩, 陆垂裕, 秦大庸, 等. 地下水数值计算与应用研究进展综述[J]. 地学前缘, 2010, 17(6): 1-12. |
| [4] |
李洁祥, 许亚东, 蔺文静. 传统水化学地热温度计的适用性分析[J]. 地学前缘, 2024, 31(6): 145-157.
DOI |
| [5] |
弓耀奇, 岳甫均, 刘鑫, 等. 基于流域系统水文水环境耦合模型的氮循环研究进展[J]. 地学前缘, 2025, 32(3): 183-195.
DOI |
| [6] | 陈崇希. “防止模拟失真,提高仿真性”是数值模拟的核心[J]. 水文地质工程地质, 2003, 30(2): 1-5. |
| [7] | CONDON L E, KOLLET S, BIERKENS M, et al. Global groundwater modeling and monitoring: opportunities and challenges[J]. Water Resources Research, 2021, 57(12): e2020WR029500. |
| [8] |
SUN J C, HU L T, LI D D, et al. Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management[J]. Journal of Hydrology, 2022, 608: 127630.
DOI URL |
| [9] | 龚莉, 史浙明, 张宗文, 等. 基于多元分析的某地区垃圾填埋场地下水生态环境风险定量评价[J]. 现代地质, 2024, 38(3): 734-743. |
| [10] | 张天宇, 徐从超, 张钦, 等. 2019—2022年潮白河流域地下水位动态变化及影响因素分析[J]. 现代地质, 2025, 39(4): 1119-1128. |
| [11] |
褚宴佳, 何宝南, 陈珍, 等. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468.
DOI |
| [12] | VANCE T C, HUANG T, BUTLER K A. Big data in Earth science: emerging practice and promise[J]. Science, 2024, 383(6688): eadh9607. |
| [13] | KUANG X X, LIU J G, SCANLON B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383(6686): f630. |
| [14] |
欧阳恺皋, 蒋小伟, 杜亚楠, 等. 华北“23·7”强降雨事件对不同埋深地下水的补给机理:以雄安新区为例[J]. 地学前缘, 2025, 32(1): 432-439.
DOI |
| [15] |
陈喜, 高满, 董建志, 等. 京津冀地区水资源供需演变面临挑战问题及研究途径[J]. 地学前缘, 2025, 32(3): 436-444.
DOI |
| [16] |
谌宏伟, 朱智超, 李正最, 等. 极端气候下洞庭湖河水-地下水相互作用:以资江洞庭湖河段为例[J]. 地学前缘, 2025, 32(2): 445-455.
DOI |
| [17] |
张学航, 何宝南, 何江涛, 等. 永定河回补区地下水污染风险演化研究[J]. 地学前缘, 2025, 32(4): 523-536.
DOI |
| [18] | 孙玉芳, 金晓媚, 雪彦宏, 等. 宁夏平原鸣翠湖地表水与地下水转化关系[J]. 现代地质, 2024, 38(3): 744-754. |
| [19] | 莫绍星. 基于深度学习的地下水模拟高维不确定性分析和反演[D]. 南京: 南京大学, 2019. |
| [20] |
POETER E. All models are wrong, how do we know which are useful[J]. Groundwater, 2007, 45(4): 390-391.
DOI URL |
| [21] |
GAN L, HU L T, WANG Z J, et al. Decoding the nexus of surface water and groundwater in Northwestern China: insights from long-term irrigation activities and numerical modeling[J]. Journal of Hydrology, 2025, 654: 132825.
DOI URL |
| [22] |
杨轶群, 李燊琰, 戴君一, 等. 滦河口河岸砂质潜水含水层渗透系数尺度效应分析研究[J]. 地学前缘, 2025, 32(3): 425-435.
DOI |
| [23] |
LIU H H. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations[J]. Hydrogeology Journal, 2014, 22(7):1525-1534.
DOI URL |
| [24] |
HUANG S Q, HU L T, LI B H, et al. Assessing geological structure uncertainties in groundwater models using transition probability-based realizations[J]. Journal of Hydrology, 2025, 651: 132598.
DOI URL |
| [25] |
崔迪, 杨冰, 郭华明, 等. 砂岩含水介质中铀的吸附和迁移行为研究[J]. 地学前缘, 2022, 29(3): 217-226.
DOI |
| [26] |
WANG W C, ZHAO Y W, XU D M, et al. Error correction method based on deep learning for improving the accuracy of conceptual rainfall-runoff model[J]. Journal of Hydrology, 2024, 643: 131992.
DOI URL |
| [27] |
PAN Z D, LU W X, BAI Y K. Groundwater contaminated source estimation based on adaptive correction iterative ensemble smoother with an auto lightgbm surrogate[J]. Journal of Hydrology, 2023, 620: 129502.
DOI URL |
| [28] | SHI W, WAN X, ZHAO F, et al. A dual-model framework combining nonlinear autoregressive with exogenous inputs (NARX) and LSTM networks for enhanced daily runoff prediction and error correction[J]. Environmental Modelling & Software, 2025, 192: 106570. |
| [29] |
SUN J C, HU L T, Cao X Y, et al. A dynamical downscaling method of groundwater storage changes using GRACE data[J]. Journal of Hydrology: Regional Studies, 2023, 50: 101558.
DOI URL |
| [30] |
SUN J C, HU L T, CHEN F, et al. Downscaling simulation of groundwater storage in the Beijing, Tianjin, and Hebei regions of China based on GRACE data[J]. Remote Sensing, 2023, 15: 1490.
DOI URL |
| [31] | JOHNSON R A, WICHERN D W. Applied multivariate statistical analysis[M]. 6th Edition. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2007. |
| [1] | DONG Shu-Ning, DAI Zhen-Hua, LI Jing-Sheng. The scale dependence of dispersivity in multifacies heterogeneous sediments. [J]. Earth Science Frontiers, 2010, 17(3): 276-280. |
| [2] | SHU Liang-Feng TUN Shen-Cai BO Shen. Theory of accuracy assessment and methods for error correction in 3D geological structure models. [J]. Earth Science Frontiers, 2009, 16(4): 363-371. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||