

Earth Science Frontiers ›› 2026, Vol. 33 ›› Issue (1): 152-162.DOI: 10.13745/j.esf.sf.2025.10.4
Previous Articles Next Articles
Received:2025-01-05
Revised:2025-10-20
Online:2026-11-25
Published:2025-11-10
CLC Number:
ZHAO Yongsheng. Evolution and state assessment of groundwater contamination plumes[J]. Earth Science Frontiers, 2026, 33(1): 152-162.
| 演变阶段 | 污染源状态 | 污染羽 | 主导作用 | 污染物质量 |
|---|---|---|---|---|
| 扩展期 | 泄漏期或停止泄漏初期 | 持续扩展浓度可能升高 | 对流-扩散主导 | 进入量>储存量+降解量 |
| 稳定期 | 停止泄漏 | 扩展不显著浓度分布稳定 | 对流-扩散与自然衰减达到平衡 | 进入量=储存量+降解量 |
| 衰退期 | 停止泄漏 | 稳定或退缩浓度衰减 | 自然衰减主导 | 进入量<储存量+降解量 |
Table 1 Groundwater plume evolution stages and main controlling factors
| 演变阶段 | 污染源状态 | 污染羽 | 主导作用 | 污染物质量 |
|---|---|---|---|---|
| 扩展期 | 泄漏期或停止泄漏初期 | 持续扩展浓度可能升高 | 对流-扩散主导 | 进入量>储存量+降解量 |
| 稳定期 | 停止泄漏 | 扩展不显著浓度分布稳定 | 对流-扩散与自然衰减达到平衡 | 进入量=储存量+降解量 |
| 衰退期 | 停止泄漏 | 稳定或退缩浓度衰减 | 自然衰减主导 | 进入量<储存量+降解量 |
| 地下水污染 羽演变阶段 | 演变阶段和状态评判指标 | 污染羽风险 管理策略 | 预期 效果 | |||
|---|---|---|---|---|---|---|
| 断面通量 变化趋势 | 污染通量比 (α) | 浓度梯度指数 (β) | 污染衰减率 (γ) | |||
| 扩展期 | 增加 | α > 1 | β > 1 (对流主导) | 低(有机污染物),O2耗尽较高(重金属),吸附初期 | 截断输入,主动修复(垂直阻隔、抽取-处理、化学修复) | α和β降低 |
| 稳定期 | 稳定 | α ≈ 1 | β ≈ 1 (基质扩散主导) | 升高(有机物),厌氧菌群活动降低(重金属),接近吸附容量 | 风险评估,增强衰减(生物修复,强化自然衰减) | α降低γ升高 |
| 衰退期 | 减小 | α < 1 | β < 1 (吸附阻滞增强) | 波动(有机物),电子供体限制低(重金属),吸附容量饱和 | 污染监测分析和评估(监测自然衰减) | γ和β升高 |
Table 2 Different stages of groundwater pollution plumes and their risk management strategies
| 地下水污染 羽演变阶段 | 演变阶段和状态评判指标 | 污染羽风险 管理策略 | 预期 效果 | |||
|---|---|---|---|---|---|---|
| 断面通量 变化趋势 | 污染通量比 (α) | 浓度梯度指数 (β) | 污染衰减率 (γ) | |||
| 扩展期 | 增加 | α > 1 | β > 1 (对流主导) | 低(有机污染物),O2耗尽较高(重金属),吸附初期 | 截断输入,主动修复(垂直阻隔、抽取-处理、化学修复) | α和β降低 |
| 稳定期 | 稳定 | α ≈ 1 | β ≈ 1 (基质扩散主导) | 升高(有机物),厌氧菌群活动降低(重金属),接近吸附容量 | 风险评估,增强衰减(生物修复,强化自然衰减) | α降低γ升高 |
| 衰退期 | 减小 | α < 1 | β < 1 (吸附阻滞增强) | 波动(有机物),电子供体限制低(重金属),吸附容量饱和 | 污染监测分析和评估(监测自然衰减) | γ和β升高 |
| [1] | HARTMANN A, JASECHKO S, GLEESON T, et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers[J]. Proceedings of the national academy of sciences of the united states of America, 2021, 118(20): e2024492118. |
| [2] | SUTHERSAN S S, HORST J, SCHNOBRICH M, et al. Remediation engineering: design concepts[M]. Boca Raton: CRC Press, 2017. |
| [3] | GUO J. Practical design calculations for groundwater and soil remediation[M]. 2nd. Boca Raton: CRC Press, 2014. |
| [4] | 赵勇胜. 多孔介质含水层污染与修复[M]. 北京: 科学出版社, 2024. |
| [5] | US EPA. Green remediation best management practices: an overview[R]. 542-F-22-003. Washington D C: U S EPA, 2022. |
| [6] |
HOU D Y. Sustainable remediation in China: elimination, immobilization, or dilution[J]. Environmental Science & Technology, 2021, 55: 15572-15574.
DOI URL |
| [7] |
MEHRAN N R, BERNDTSSON R, AMINIFAR A, et al. DynSus: dynamic sustainability assessment in groundwater remediation practice[J]. Science of the Total Environment, 2022, 832: 154992.
DOI URL |
| [8] | 赵勇胜, 王卓然. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护, 2021, 49(20): 21-26. |
| [9] |
ZHAO Y S, ZHANG J W, CHEN Z, et al. Groundwater contamination risk assessment based on intrinsic vulnerability, pollution source assessment, and groundwater function zoning[J]. Human and Ecological Risk Assessment, 2018, 25(7): 1907-1923.
DOI URL |
| [10] |
COHEN M, SCHWARTZ N, ROSENZWEIG R. Identification of parameter importance for benzene transport in the unsaturated zone using global sensitivity analysis[J]. Hydrology and Earth System Sciences, 2024, 28(7): 1585-1604.
DOI URL |
| [11] |
AUGUSTSSON A, SÖDERBERG T U, FRÖBERG M, et al. Failure of generic risk assessment model framework to predict groundwater pollution risk at hundreds of metal contaminated sites: implications for research needs[J]. Environmental Research, 2020, 185: 109252.
DOI URL |
| [12] |
JIAO J Y, BEFUS K M, ZHANG Y. Soil contaminants pose delayed but pervasive threat to shallow groundwater[J]. Journal of Hydrology, 2024, 634: 130994.
DOI URL |
| [13] |
SUN Y, LIU Y B, YUE G S, et al. Vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone: a microcosm study[J]. Chemosphere, 2023, 336: 139275.
DOI URL |
| [14] |
CECILIA D, PORTA G M, FIONA H.M, et al. Probabilistic indicators for soil and groundwater contamination risk assessment[J]. Ecological Indicators, 2020, 115: 106424.
DOI URL |
| [15] | PAYNE F C, QUINNAN J A, POTTER S T. Remediation hydraulics[M]. Boca Raton: CRC Press, 2008. |
| [16] |
BUGAI D, KIREEV S, HOQUE M A, et al. Natural attenuation processes control groundwater contamination in the Chernobyl exclusion zone: evidence from 35 years of radiological monitoring[J]. Scientific Reports, 2022, 12: 18215.
DOI |
| [17] |
ABIRIGA D, VESTGARDEN L S, KLEMPE H. Groundwater contamination from a municipal landfill: effect of age, landfill closure, and season on groundwater chemistry[J]. Science of the Total Environment, 2020, 737: 140307.
DOI URL |
| [18] | MCHUGH, T E, ADAMSON, D T, ACTKINSON, B W, et al. Determining PFAA plume stability condition quickly and efficiently[J]. Groundwater Monitoring & Remediation, 2025, 45(1): 68-79. |
| [19] | ZHENG C, BENNETT G D. Applied contaminant transport modeling: theory and practice[M]. New York: Van Nostrand Reinhold, 1995. |
| [20] | SELIM H. M. Competitive sorption and transport of heavy metals in soils and geological media[M]. Boca Raton: CRC Press, 2013. |
| [21] | MASOODI R, PILLAI K M. Wicking in porous materials, traditional and modern modeling approaches[M]. Boca Raton: CRC Press, 2013. |
| [22] | BERKOWITZ B, DROR I, YARON B. Contaminant geochemistry: interactions and transport in the subsurface environment[M]. Israel: Springer, Weizmann Institute of Science, 2008. |
| [23] |
LIN Y F, HUANG J Q, CARR E J. A temporally relaxed theory of physically or chemically non-equilibrium solute transport in heterogeneous porous media[J]. Journal of Hydrology, 2023, 620: 129432.
DOI URL |
| [24] | WANG Y J, WANG M Y, LIU R F. Development on surrogate models for predicting plume evolution features of groundwater contamination with natural attenuation[J]. Water, 2024, 16(19), 2861. |
| [25] |
BAUMANN T, TOOPS L, NIESSNER R. Colloid dispersion on the pore scale[J]. Water Research, 2010, 44: 1246-1254.
DOI PMID |
| [26] |
JAKOBSEN R, HERON G, ALBRECHTSEN H J, et al. Characterization of redox conditions in groundwater contaminant plumes[J]. Journal of Contaminant Hydrology, 2020, 45: 165-241.
DOI URL |
| [27] |
POROWSKA D. Carbon and sulfur isotope methods for tracing groundwater contamination: a review of sustainable utilization in reclaimed municipal landfill areas[J]. Sustainability, 2024, 16: 4507.
DOI URL |
| [28] | DENTZ M, COMOLLI A, HAKOUN V, et al. Transport upscaling in highly heterogeneous aquifers and the prediction of tracer dispersion at the MADE site[J]. Geophysical Research Letters, 2020, 47: e2020GL088292. |
| [29] |
HAGGERTY R, SUN J X, YU H F, et al. Application of machine learning in groundwater quality modeling: a comprehensive review[J]. Water Research, 2023, 233: 119745.
DOI URL |
| [30] |
PANNONE M. Theoretical study about ergodicity issues in predicting contaminant plume evolution in aquifers[J]. Water, 2020, 12: 2929.
DOI URL |
| [31] |
XU Z X, SERATA R, WAINWRIGHT H, et al. Reactive transport modeling for supporting climate resilience at groundwater contamination sites[J]. Hydrology and Earth System Sciences, 2022, 26, 755-773.
DOI URL |
| [32] |
BORIS M, VAN BREUKELEN. Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system rayleigh equation[J]. Environmental Science & Technology, 2007, 41(14): 4980-4985.
DOI URL |
| [33] | 赵勇胜. 地下水污染场地的控制与修复[M]. 北京: 科学出版社, 2015. |
| [34] | LEONARD F. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point[J]. Advances in Space Research, 1996, 18(12): 87-95. |
| [35] |
FARHAT S K, NEWELL C J, LEE S A, et al. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds[J]. Journal of Contaminant Hydrology, 2022, 247: 103987.
DOI URL |
| [36] |
KENT R D, JOHNSON R H, LAASE A D, et al. Modeling evaluation of the impact of residual source material on remedial time frame at a former uranium mill site[J]. Journal of Contaminant Hydrology, 2024, 261: 104298.
DOI URL |
| [1] | HE Jianhua, LI Yong, DENG Hucheng, WANG Yuanyuan, MA Ruolong, TANG Jianming. Study on tectonic fracture characteristics and stage evolution of Longmaxi shale reservoir in Yongchuan, southeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(3): 298-311. |
| [2] | PANG Hong, PANG Xiongqi, WU Song, CHEN Junqing, HU Tao, JIANG Fujie, CHEN Dongxia. Hydrocarbon generation, residual hydrocarbon and petroleum expulsion characteristics of Ordovician carbonate source rocks in northern Tarim and its surrounding areas [J]. Earth Science Frontiers, 2023, 30(6): 213-231. |
| [3] | LIU Che-Xiang DIAO Gong-Ge ZHANG Can WANG Jian-Jiang. State Key Laboratory of Continental Dynamics (Northwest University), Institute of Oil and Gas of Northwest University, Xian 710069, China [J]. Earth Science Frontiers, 2009, 16(4): 1-12. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
