Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 150-164.DOI: 10.13745/j.esf.sf.2024.12.87
Previous Articles Next Articles
MEI Mingxiang1,2(), WANG Hua1,*(
), QIN Yinglun3, HUANG Wenfang4
Received:
2024-04-04
Revised:
2024-12-23
Online:
2025-09-25
Published:
2025-10-14
Contact:
WANG Hua
CLC Number:
MEI Mingxiang, WANG Hua, QIN Yinglun, HUANG Wenfang. The ocean’s biological carbon pump of the Phanerozoic: Another accumulation mechanism of organic matter[J]. Earth Science Frontiers, 2025, 32(5): 150-164.
Fig.1 Distribution of sedimentary basins from the Devonian to the Middle Triassic in the western-central part of the South-China plate. Adapted from [28].
Fig.2 A sedimentary succession of deep-basin organic-rich shales under the sequence-stratigraphic framework of the Devonian at the Tonggong section in Nandan County of Guangxi
Fig.3 Images showing the fundamentally microscopic and macroscopic features of organic-rich shales of the Devonian, an example from the Yilan Fm. of the Lower Devonian at the Tonggong section in Nandan County
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ5海侵期 | 盆地相黑色页岩 | TD-1 | 3.69 |
2 | SQ5海侵期 | 盆地相黑色页岩 | TD-2 | 2.76 |
3 | SQ5海侵期 | 盆地相黑色页岩 | TD-3 | 4.14 |
4 | SQ5海侵期 | 盆地相黑色页岩 | TD-4 | 4.69 |
5 | SQ5海侵期 | 盆地相黑色页岩 | TD-5 | 2.60 |
6 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-1 | 3.53 |
7 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-2 | 2.34 |
8 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-3 | 3.94 |
9 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 4.01 |
10 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-2 | 2.75 |
11 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 3.24 |
12 | SQ5海退期 | 陆棚相暗色页岩 | TD-6 | 0.21 |
Table 1 TOC values of samples from the Yilan and Tangding Formations of the Lower Devonian at the Tonggong section in Nandan County. Adapted from [25].
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ5海侵期 | 盆地相黑色页岩 | TD-1 | 3.69 |
2 | SQ5海侵期 | 盆地相黑色页岩 | TD-2 | 2.76 |
3 | SQ5海侵期 | 盆地相黑色页岩 | TD-3 | 4.14 |
4 | SQ5海侵期 | 盆地相黑色页岩 | TD-4 | 4.69 |
5 | SQ5海侵期 | 盆地相黑色页岩 | TD-5 | 2.60 |
6 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-1 | 3.53 |
7 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-2 | 2.34 |
8 | SQ5海侵期 | 盆地相黑色页岩 | TG-TD-3 | 3.94 |
9 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 4.01 |
10 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-2 | 2.75 |
11 | SQ5海侵期 | 盆地相黑色页岩 | TG-YL-1 | 3.24 |
12 | SQ5海退期 | 陆棚相暗色页岩 | TD-6 | 0.21 |
Fig.4 A sedimentary succession of deep-basin organic-rich shales under the sequence-stratigraphic framework of the Lower Carboniferous at the Tonggong section in Nandan County of Guangxi
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-1 | 6.97 |
2 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-2 | 4.13 |
3 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-3 | 3.72 |
4 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-1 | 0.28 |
5 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-2 | 0.58 |
6 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-3 | 1.45 |
7 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-4 | 1.59 |
8 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5 | 3.78 |
9 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5(1) | 5.80 |
10 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-6 | 4.68 |
11 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-7 | 5.19 |
12 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-8 | 4.05 |
13 | SQ2海退期 | 陆棚相暗色页岩 | TGLZ-9 | 1.86 |
Table 2 TOC values of samples from the Luzhai Formation of the Lower Carboniferous at the Tonggong section in Nandan County. Adapted from [26].
序号 | 层序归属 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|---|
1 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-1 | 6.97 |
2 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-2 | 4.13 |
3 | SQ1海侵期 | 盆地相黑色页岩 | TG-LZ-3 | 3.72 |
4 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-1 | 0.28 |
5 | SQ1海退期 | 陆棚相暗色页岩 | TGLZ-2 | 0.58 |
6 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-3 | 1.45 |
7 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-4 | 1.59 |
8 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5 | 3.78 |
9 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-5(1) | 5.80 |
10 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-6 | 4.68 |
11 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-7 | 5.19 |
12 | SQ2海侵期 | 盆地相黑色页岩 | TGLZ-8 | 4.05 |
13 | SQ2海退期 | 陆棚相暗色页岩 | TGLZ-9 | 1.86 |
Fig.5 Images showing the fundamental distribution and outputting features for organic-matter-rich shale beds of the Luocheng Formation at the Xiaochangan section in Luocheng County of Guangxi
序号 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|
1 | 陆棚相灰黑色页岩 | QT-LC-1 | 3.37 |
2 | 陆棚相灰黑色页岩 | QT-LC-2 | 4.14 |
3 | 陆棚相灰黑色页岩 | QT-LC-3 | 3.47 |
4 | 陆棚相灰黑色页岩 | QT-LC-4 | 3.64 |
5 | 陆棚相灰黑色页岩 | QT-LC-5 | 0.82 |
6 | 陆棚相灰黑色页岩 | QT-LC-6 | 2.43 |
7 | 陆棚相灰黑色页岩 | QT-LC-7 | 0.76 |
8 | 陆棚相灰黑色页岩 | QT-LC-8 | 1.16 |
9 | 陆棚相灰黑色页岩 | QT-LC-9 | 1.35 |
Table 3 TOC values of samples from the organic-matter-rich shales of the shelf facies interbedded with the limestones of the shallow ramp facies within the Luocheng Formation of the Lower Carboniferous at the Xiaochangan section in Luocheng County of Guangxi. Adapted from [26].
序号 | 岩性 | 样品编号 | TOC值/% |
---|---|---|---|
1 | 陆棚相灰黑色页岩 | QT-LC-1 | 3.37 |
2 | 陆棚相灰黑色页岩 | QT-LC-2 | 4.14 |
3 | 陆棚相灰黑色页岩 | QT-LC-3 | 3.47 |
4 | 陆棚相灰黑色页岩 | QT-LC-4 | 3.64 |
5 | 陆棚相灰黑色页岩 | QT-LC-5 | 0.82 |
6 | 陆棚相灰黑色页岩 | QT-LC-6 | 2.43 |
7 | 陆棚相灰黑色页岩 | QT-LC-7 | 0.76 |
8 | 陆棚相灰黑色页岩 | QT-LC-8 | 1.16 |
9 | 陆棚相灰黑色页岩 | QT-LC-9 | 1.35 |
[1] | MIKHAIL S, FURI E. On the origin(s) and evolution of earth’s carbon[J]. Elements, 2019, 15: 307-312. |
[2] | 蔡进功, 曾翔, 韦海伦, 等. 从水体到沉积物: 探寻有机质的沉积过程及其意义[J]. 古地理学报, 2019, 21(1): 49-66. |
[3] | JARVIE D M. Shale resource systems for oil and gas: Part 2[M]//BREYER J A. Shale-oil resource systems: shale reservoirs: giant resources for the 21st century. American Association of Petroleum Geologists, 2012: 89-119. |
[4] | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
[5] | 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016, 23(1): 29-43. |
[6] | 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. |
[7] | 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182. |
[8] | NEGRI A, FERRETTI A, WAGNER T, et al. Organic-carbon-rich sediments through the Phanerozoic: processes, progress, and perspectives[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273: 213-217. |
[9] | 张金川, 杨超, 陈前, 等. 中国潜质页岩形成和分布[J]. 地学前缘, 2016, 23(1): 74-86. |
[10] | DONG T, HARRIS N, AYRANCI K. Relative sea-level cycles and organic matter accumulation in shales of the Middle and Upper Devonian Horn River Group, northeastern British Columbia, Canada: insights into sediment flux, redox conditions, and bioproductivity[J]. The Geological Society of America Bulletin, 2018, 30: 859-880. |
[11] | ZOU C N, ZHU R K, CHEN Z Q, et al. Organic-matter-rich shales of China[J]. Earth-Science Reviews, 2019, 189: 51-78. |
[12] | PEDERSEN T F, CALVERT S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? (1)[J]. AAPG Bulletin, 1990, 74: 454-466. |
[13] | TYSON R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. |
[14] | SAGEMAN B B, MURPHY A E, WERNE J P, et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273. |
[15] | ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. |
[16] | ARTHUR M. Marine shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 22: 499-551. |
[17] | HETZEL A, BÖTTCHER M E, WORTMANN U G, et al. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 302-328. |
[18] | CHEN L, JIANG S, CHEN P, et al. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China[J]. Marine and Petroleum Geology, 2021, 124: 104809. |
[19] | CHEVROT V, GOTTARDI R. Heterogeneity of the transgressive systems tract of the eagle ford formation, Val Verde County, Texas[J]. AAPG Bulletin, 2022, 106(8): 1581-1603. |
[20] | ZHANG Y J, CEN W P, HUANG W F, et al. Sequence stratigraphic analysis of Devonian organic-rich shales in northern Guangxi[J]. Marine and Petroleum Geology, 2023, 156: 106450. |
[21] | ZHANG Y J, CEN W P, CHAI K Q, et al. Sequence stratigraphic analysis and distribution features of Lower Carboniferous organic-rich shales in northern Guangxi[J]. Marine and Petroleum Geology, 2024, 162:106727. |
[22] | TURNER J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130: 205-248. |
[23] | 张水昌, 王华建, 王晓梅, 等. 中元古代海洋生物碳泵: 有机质来源、降解与富集[J]. 科学通报, 2022, 67(15): 1624-1643. |
[24] | 谢树成, 焦念志, 罗根明, 等. 海洋生物碳泵的地质演化: 微生物的碳汇作用[J]. 科学通报, 2022, 67(15): 1715-1726. |
[25] | 梅冥相, 岑文攀, RIAZ M. 黔桂地区泥盆纪富有机质竹节石页岩: 一个重要的潜在性页岩其勘探目的层[J]. 地质学报, 2025, 99(4): 1332-1352. |
[26] | 梅冥相, 陈基瑜, 张英杰. 黔桂地区下石炭统富有机质页岩的页岩气勘探意义[J]. 地质学报, 2024, 98(7): 2193-2215. |
[27] | POHL A, DONNADIEU Y, LEHIR G, et al. The climatic significance of Late Ordovician - Early Silurian black shales[J]. Paleoceanography, 2017, 32(4): 397-423. |
[28] | 赵自强, 丁启秀. 中南区区域地层[M]. 武汉: 中国地质大学出版社, 1996. |
[29] | 梅冥相, 马永生, 邓军, 等. 加里东运动构造古地理及滇黔桂盆地的形成: 兼论滇黔桂盆地深层油气勘探潜力[J]. 地学前缘, 2005, 12(3): 227-236. |
[30] | MEI M X, MA Y S, DENG J, et al. Late Paleozoic sequence-stratigraphic frameworks and sea level changes in Dianqiangui Basin and its adjacent areas with systematic revision of regional unconformities[J]. Journal of China University of Geosciences, 2004, 15(1): 55-69. |
[31] | 梅冥相. 层序地层学发展历程中的三个误判[J]. 地学前缘, 2014, 21(2): 67-80. |
[32] | CATUNEANU O. Model-independent sequence stratigraphy[J]. Earth-Science Reviews, 2019, 188: 312-388. |
[33] | SLOSS L L. Sequences in the cratonic interior of North America[J]. Geological Society of America Bulletin, 1963, 74(2): 93. |
[34] | MEYERS S R, PETERS S E. A 56 million year rhythm in North American sedimentation during the Phanerozoic[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 174-180. |
[35] | CATUNEANU O. Sequence stratigraphy of deep-water systems[J]. Marine and Petroleum Geology, 2020, 114: 104238. |
[36] | STANLEY S M, LUCZAJ J A. Earth system history[M]. 4th ed. New York: W H Freeman and Company, 2015: 329-355. |
[37] | SCOTESE C R. An atlas of Phanerozoic paleogeographic maps: the seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728. |
[38] | SCOTESE C R, SONG H J, MILLS B J W, et al. Phanerozoic paleotemperatures: the Earth’s changing climate during the last 540 million years[J]. Earth-Science Reviews, 2021, 215: 103503. |
[39] | BECKER R T, MARSHALL J E A, DASILVA A C, et al. The Devonian Period[M]//Geologic time scale 2020. Amsterdam: Elsevier, 2020: 733-810. |
[40] | HUNT D, TUCKER M E. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall[J]. Sedimentary Geology, 1992, 81(1/2): 1-9. |
[41] | SCHLAGER W, WARRLICH G. Record of sea-level fall in tropical carbonates[J]. Basin Research, 2009, 21(2): 209-224. |
[42] | 阮亦萍, 穆道成. 竹节石[M]. 北京: 科学出版社, 1987: 5-116. |
[43] | 钟铿, 吴诒, 殷保安, 等. 广西的泥盆系: 广西地层之一[M]. 武汉: 中国地质大学出版社, 1992: 1-370. |
[44] | 魏凡, 龚一鸣. 竹节石研究进展与展望[J]. 古生物学报, 2011, 50(1): 48-63. |
[45] | KIM J H, BUSCAIL R, BOURRIN F, et al. Transport and depositional process of soil organic matter during wet and dry storms on the Têt inner shelf (NW Mediterranean)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 228-238. |
[46] | 邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组-龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. |
[47] | 杨惠民, 刘炳温, 邓宗淮, 等. 滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择[M]. 贵阳: 贵州科技出版社, 1999: 4-63. |
[48] | 黄羚, 徐政语, 王鹏万, 等. 桂中坳陷上古生界页岩气资源潜力分析[J]. 中国地质, 2012, 39(2): 497-506. |
[49] | BOUCOT A J. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate[M]. Tulsa, Okla.: Society for Sedimentary Geology, 2013. |
[50] | BEAULIEU S. Accumulation and fate of phytodetritus on the sea floor[M]//Oceanography and marine biology, an annual review, volume 40. Boca Raton: CRC Press, 2002: 171-232. |
[51] | OSLEGER D. Subtidal carbonate cycles: implications for allocyclic vs. autocyclic controls[J]. Geology, 1991, 19: 917-920. |
[52] | MEI M X, XU D B, ZHOU H R. Genetic types of meter-scale sequences and fabric natures of facies succession[J]. Journal of China University of Geosciences, 2000, 11(4): 375-382. |
[53] | 梅冥相. 从旋回的有序叠加形式到层序的识别和划分: 层序地层学进展之三[J]. 古地理学报, 2011, 13(1): 37-54. |
[54] | SCHWARZACHER W. Cyclostratigraphy and the Milankovitch theory[M]. London: Elsevier, 1993: 1-196. |
[55] | 周瑞琦, 张聪, 魏洪刚, 等. 紫云-罗甸地区下石炭统打屋坝组页岩气保存条件分析[J]. 科技通报, 2018, 34(8): 28-34. |
[56] | HOFFMAN P F, KAUFMAN A J, HALVERSON G P, et al. A Neoproterozoic snowball earth[J]. Science, 1998, 281(5381): 1342-1346. |
[57] | RIDGWELL A. Evolution of the ocean’s “biological pump”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(40): 16485-16486. |
[58] | TZIPERMAN E, HALEVY I, JOHNSTON D T, et al. Biologically induced initiation of Neoproterozoic snowball-Earth events[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15091-15096. |
[59] | CARON D A. The rise of rhizaria[J]. Nature, 2016, 532(7600): 444-445. |
[60] | BIARD T, STEMMANN L, PICHERAL M, et al. In situ imaging reveals the biomass of giant protists in the global ocean[J]. Nature, 2016, 532(7600): 504-507. |
[61] | GUIDI L, CHAFFRON S, BITTNER L, et al. Plankton networks driving carbon export in the oligotrophic ocean[J]. Nature, 2016, 532(7600): 465-470. |
[62] | 蔡进功. 泥质沉积物和泥岩中有机黏土复合体[M]. 北京: 科学出版社, 2004. |
[63] | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984. |
[64] | ADAM P, SCHMID J C, MYCKE B, et al. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3395-3419. |
[65] | SALMON V, DERENNE S, LALLIER-VERGÈS E, et al. Protection of organic matter by mineral matrix in a Cenomanian black shale[J]. Organic Geochemistry, 2000, 31(5): 463-474. |
[66] | 蔡进功, 包于进, 杨守业, 等. 泥质沉积物和泥岩中有机质的赋存形式与富集机制[J]. 中国科学D辑: 地球科学, 2007, 37(2): 234-243. |
[67] | 蔡进功, 徐金鲤, 杨守业, 等. 泥质沉积物颗粒分级及其有机质富集的差异性[J]. 高校地质学报, 2006, 12(2): 234-241. |
[68] | 冯晓萍, 蔡进功. 沉积物的颗粒大小与所含有机质关系的研究进展[J]. 海洋地质与第四纪地质, 2010, 30(6): 141-148. |
[69] | LENTON T M, DAHL T W, DAINES S J, et al. Earliest land plants created modern levels of atmospheric oxygen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9704-9709. |
[70] | BUESSELER K O, BOYD P W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean[J]. Limnology and Oceanography, 2009, 54(4): 1210-1232. |
[71] | LEGENDRE L, RIVKIN R B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes[J]. Marine Ecology Progress Series, 2002, 242: 95-109. |
[72] | MONTAÑEZ I P. A Late Paleozoic climate window of opportunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2334-2336. |
[73] | 孙军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21. |
[74] | ARETZ M, HERBIG H G, WANG X D. The Carboniferous Period (Chapter 23)[M]//GRADSTEIN F M, OGG J G, SCHMITZ M D, et al. The geologic time scale 2020. Amsterdam: Elsevier, 2020, 811-893. |
[75] | CHALMERS G R, BUSTIN R M, POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J]. AAPG Bulletin, 2012, 96(6): 1099-1119. |
[76] | 王淑芳, 董大忠, 王玉满, 等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学, 2015, 26(9): 1666-1678. |
[77] | 张君峰, 周志, 宋腾, 等. 中美页岩气勘探开发历程、地质特征和开发利用条件对比及启示[J]. 石油学报, 2022, 43(12): 1687-1701. |
[78] | 窦立荣, 黄文松, 孔祥文, 等. 西加拿大盆地都沃内(Duvernay)海相页岩油气富集机制研究[J]. 地学前缘, 2024, 31(4): 191-205. |
[79] | 郭彤楼. 多旋回盆地叠合复合控藏在常规非常规天然气勘探中的实践[J]. 地学前缘, 2022, 29(6): 109-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||