Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 422-443.DOI: 10.13745/j.esf.sf.2024.5.26
Previous Articles Next Articles
QIN Yang1(), LIU Chiyang1,*(
), PENG Guangrong2, HUANG Lei1, LI Hongbo2, LIANG Chao1, WU Zhe2, YANG Lihua1
Received:
2024-01-31
Revised:
2024-04-15
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
QIN Yang, LIU Chiyang, PENG Guangrong, HUANG Lei, LI Hongbo, LIANG Chao, WU Zhe, YANG Lihua. Formation and evolution of the Yunkai low uplift in the Pearl River Mouth Basin and its structural partition effects[J]. Earth Science Frontiers, 2025, 32(4): 422-443.
Fig. 1 Regional geological background and distribution of typical artificial wells in the Yunkai low uplift and adjacent areas of the Pearl River Mouth Basin. b modified after [27].
Fig.2 Tectonic stratigraphic divisions and the integrated Cenozoic stratigraphic histogram of the Pearl River Mouth Basin. Modified after [12,34,48,52].
对比项目 | 北段 | 中段 | 南段 | |
---|---|---|---|---|
地层结构构造 | 基底埋深 | 低(5 000~7 000 m) | 较高(2 500~4 600 m) | 高(1 750~4 200 m) |
地层分布 | 地层沉积序列相对完整 (缺失文6-5段)、 地层厚度大 | 沉积序列部分缺失 (文6-4段、上文昌组大部)、 地层厚度较小 | 沉积序列不完整(文昌组 缺失严重)、地层厚度小 | |
构造形态 | 断凸结构构造 | 宽缓背斜构造 | 大型断阶构造 | |
生长地层 | 削截、上超、披覆; 上超期次少、披覆厚度大 | 上超、披覆;上超期 次较多、披覆厚度较小 | 上超、披覆;上超期 次多、披覆厚度小 | |
与两侧洼陷接触关系 | 断裂接触 (断裂、断裂-斜坡) | 断裂接触关系不明显 (斜坡、断阶) | 断裂接触 (大型断裂) | |
新生代断裂 | 走向 | NW-NNW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 | |
活动性 | 较弱 | 弱 | 强 | |
晚中生代断裂 | 走向 | NW-NWW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 |
Table 1 A comparison of the associated structural features in different sections of the Yunkai low uplift
对比项目 | 北段 | 中段 | 南段 | |
---|---|---|---|---|
地层结构构造 | 基底埋深 | 低(5 000~7 000 m) | 较高(2 500~4 600 m) | 高(1 750~4 200 m) |
地层分布 | 地层沉积序列相对完整 (缺失文6-5段)、 地层厚度大 | 沉积序列部分缺失 (文6-4段、上文昌组大部)、 地层厚度较小 | 沉积序列不完整(文昌组 缺失严重)、地层厚度小 | |
构造形态 | 断凸结构构造 | 宽缓背斜构造 | 大型断阶构造 | |
生长地层 | 削截、上超、披覆; 上超期次少、披覆厚度大 | 上超、披覆;上超期 次较多、披覆厚度较小 | 上超、披覆;上超期 次多、披覆厚度小 | |
与两侧洼陷接触关系 | 断裂接触 (断裂、断裂-斜坡) | 断裂接触关系不明显 (斜坡、断阶) | 断裂接触 (大型断裂) | |
新生代断裂 | 走向 | NW-NNW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 | |
活动性 | 较弱 | 弱 | 强 | |
晚中生代断裂 | 走向 | NW-NWW | NW-NWW、NEE | NW-NWW、NEE |
延伸长度 | 较小 | 小 | 较大 | |
密度 | 小 | 较小 | 较大 |
Fig.4 Seismic profiles A-A' in the NW direction and B-B'in the near SN direction at different sections of the Yunkai low uplift (see Fig.1c for the location of the profiles)
Fig.5 Relationship between different sections of the Yunkai low uplift and the depressions on either side of the stratigraphic contacts (see Fig.1c for location of profiles;legend as in Fig.4a)
Fig.6 Outline diagrams of Cenozoic faults of different structural layers in the study area (a-f) and the fault strikes of different tectonic units (g-i)
Fig.7 Density of fault development at different structural layers (a), length of extension (b), density of faults in the non-study area (c), percentage of fault development at different structural layers (d), and strike of faults (e-g) at the Yunkai low uplift and its surroundings (for location of faults,see Fig.1c)
Fig.8 Diagrams of paleo-vertical fault throws (a-d, f) and activity rates (e) statistics for basement faults (see Fig.1c for location of faults and line numbers)
Fig.9 Diagram of Late Mesozoic basement pre-existing structures (a), the spatial relationship between the extension directions in different tectonic stages (b) and the direction analysis of the stress field (c) in the study area
Fig.13 Diagram of the Cenozoic tectonic evolution of the Yunkai low uplift and its surrounding different sections (see Fig.1c for locations of original sections)
Fig.14 Diagram of the Late Mesozoic-Cenozoic tectonic evolutionary pattern of the Yunkai low uplift and its periphery. Sedimentary facies modified after [70].
Fig.15 Contour map of polar magnetic anomalies, Moho surface depth and geothermal heat flow in the study area and its neighboring areas. a-b modified after [20,21,47].
[1] | SUN W D. Initiation and evolution of the South China Sea: an overview[J]. Acta Geochimica, 2016, 35(3): 215-225. |
[2] | YE Q, MEI L F, SHI H S, et al. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea riftedmargin[J]. Tectonics, 2020, 39(3): e2019TC005845. |
[3] | MU D L, PENG G R, ZHU D W, et al. Structure and formation mechanism of the Pearl River mouth basin: insights from multi-phase strike-slip motions in the Yangjiang Sag, SE China[J]. Journal of Asian Earth Sciences, 2022, 226: 105081. |
[4] | 庞雄, 陈长民, 朱明, 等. 南海北部陆坡白云深水区油气成藏条件探讨[J]. 中国海上油气, 2006, 18(3): 145-149. |
[5] | 朱俊章, 施和生, 庞雄, 等. 利用流体包裹体方法分析白云凹陷LW3-1-1井油气充注期次和时间[J]. 中国石油勘探, 2010, 15(1): 52-56, 1-2. |
[6] | XIE H W, ZHOU D, LI Y P, et al. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 2009, 615: 182-198. |
[7] |
朱伟林, 吴景富, 张功成, 等. 中国近海新生代盆地构造差异性演化及油气勘探方向[J]. 地学前缘, 2015, 22(1): 88-101.
DOI |
[8] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[9] | NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719-722. |
[10] | TSAI C H, HSU S K, YEH Y C, et al. Crustal thinning of the northern continental margin of the South China Sea[J]. Marine Geophysical Researches, 2004, 25(1): 63-78. |
[11] | ZHOU D, WANG W Y, WANG J L, et al. Mesozoic subduction-accretion zone in northeastern South China Sea inferred from geophysical interpretations[J]. Science in China Series D, 2006, 49(5): 471-482. |
[12] | XIE H, ZHOU D, SHI H C, et al. Lithospheric stretching-style variations and anomalous post-rift subsidence in the deep water sub-basins of the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 131: 105140. |
[13] | FRANKE D, SAVVA D, PUBELLIER M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720. |
[14] | BAI Y L, WU S G, LIU Z, et al. Full-fit reconstruction of the South China Sea conjugate margins[J]. Tectonophysics, 2015, 661: 121-135. |
[15] | SUN Q L, ALVES T, XIE X N, et al. Free gas accumulations in basal shear zones of mass-transport deposits (Pearl River Mouth Basin, South China Sea): an important geohazard on continental slope basins[J]. Marine and Petroleum Geology, 2017, 81: 17-32. |
[16] | NANNI U, PUBELLIER M, CHAN L S, et al. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 136: 110-123. |
[17] | HUANG K, ZHONG G F, HE M, et al. Growth and linkage of a complex oblique-slip fault zone in the Pearl River Mouth Basin, northern South China Sea[J]. Journal of Structural Geology, 2018, 117: 27-43. |
[18] | YE Q, MEI L F, SHI H S, et al. The Late Cretaceous tectonic evolution of the South China Sea area: an overview, and new perspectives from 3D seismic reflection data[J]. Earth-Science Reviews, 2018, 187: 186-204. |
[19] | YE Q, MEI L F, SHI H S, et al. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area[J]. Tectonophysics, 2018, 731: 1-16. |
[20] | LI Y H, ZHU R W, LIU H L, et al. The Cenozoic activities of Yangjiang-yitongdong fault: insights from analysis of the tectonic characteristics and evolution processes in western Zhujiang (pearl) river mouth basin[J]. Acta Oceanologica Sinica, 2019, 38(9): 87-101. |
[21] | HU J, TIAN Y T, LONG Z L, et al. Thermo-rheological structure of the northern margin of the South China Sea: structural and geodynamic implications[J]. Tectonophysics, 2020, 777: 228338. |
[22] | GE J W, ZHU X M, ZHAO X M, et al. Tectono-sedimentary signature of the second rift phase in multiphase rifts: a case study in the Lufeng Depression (38-33.9 Ma), Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2020, 114: 104218. |
[23] | YU Y X, ZHANG T L, ZHANG Z T, et al. Structural characteristics and its significances on hydrocarbon accumulation in the Yunkai low uplift, Pearl River mouth basin[J]. Acta Geologica Sinica - English Edition, 2021, 95(1): 21-29. |
[24] | ZHOU J, LI S Z, SUO Y H, et al. NE-trending transtensional faulting in the Pearl River Mouth basin of the Northern South China Sea margin[J]. Gondwana Research, 2023, 120: 4-19. |
[25] | TANG X, YU Y X, ZHANG X T, et al. Multiphase faults activation in the southwest Huizhou Sag, Pearl River Mouth basin: insights from 3D seismic data[J]. Marine and Petroleum Geology, 2023, 152: 106257. |
[26] | 田立新, 刘杰, 张向涛, 等. 珠江口盆地惠州26-6大中型泛潜山油气田勘探发现及成藏模式[J]. 中国海上油气, 2020, 32(4): 1-11. |
[27] | 蔡国富, 张向涛, 彭光荣, 等. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动[J]. 大地构造与成矿学, 2021, 45(1): 40-52. |
[28] |
鲁宝亮, 王璞珺, 张功成, 等. 南海北部陆缘盆地基底结构及其油气勘探意义[J]. 石油学报, 2011, 32(4): 580-587.
DOI |
[29] | 孙晓猛, 张旭庆, 张功成, 等. 南海北部新生代盆地基底结构及构造属性[J]. 中国科学: 地球科学, 2014, 44(6): 1312-1323. |
[30] |
吕彩丽, 张功成, 杨东升. 珠江口盆地珠二坳陷文昌组构造差异性与动力学成因机制[J]. 地学前缘, 2017, 24(6): 333-341.
DOI |
[31] | 张远泽, 漆家福, 吴景富. 南海北部新生代盆地断裂系统及构造动力学影响因素[J]. 地球科学, 2019, 44(2): 603-625. |
[32] | ZHAO F, ALVES T M, XIA S H, et al. Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures[J]. Earth and Planetary Science Letters, 2020, 530: 115862. |
[33] | ZHU W L, HUANG B J, MI L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea[J]. AAPG Bulletin, 2009, 93(6): 741-761. |
[34] | 施和生, 何敏, 张丽丽, 等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气, 2014, 26(3): 11-22. |
[35] |
柳保军, 庞雄, 颜承志, 等. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义[J]. 石油学报, 2011, 32(2): 234-242.
DOI |
[36] | 米立军, 张向涛, 庞雄, 等. 珠江口盆地形成机制与油气地质[J]. 石油学报, 2019, 40(增刊1): 1-10. |
[37] | 钟锴, 张功成, 侯国伟, 等. 云开低凸起: 南海北部深水区油气勘探新领域[J]. 中国海上油气, 2008, 20(1): 15-17, 27. |
[38] | 龚再升, 李思田. 南海北部大陆边缘盆地油气成藏动力学研究[M]. 北京: 科学出版社, 2004: 9-29. |
[39] | 陈长民. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003: 1-121. |
[40] | SUN Z, ZHOU D, SUN L T, et al. Dynamic analysis on rifting stage of Pearl River Mouth basin through analogue modeling[J]. Journal of Earth Science, 2010, 21(4): 439-454. |
[41] | WANG P C, LI S Z, SUO Y H, et al. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: a synthesis[J]. Earth-Science Reviews, 2021, 216: 103522. |
[42] | GUO X Y, LI C S, GAO R, et al. The India-Eurasia convergence system: late Oligocene to early Miocene passive roof thrusting driven by deep-rooted duplex stacking[J]. Geosystems and Geoenvironment, 2022, 1(1): 100006. |
[43] | YANG F L, ZHOU X F, HU Y Y, et al. Neoproterozoic extensional basins and its control on the distribution of hydrocarbon source rocks in the Yangtze Craton, South China[J]. Geosystems and Geoenvironment, 2022, 1(1): 100015. |
[44] | GUAN W, HUANG L, LIU C Y, et al. Interactions between pre-existing structures and rift faults: implications for basin geometry in the northern South China Sea[J]. Basin Research, 2024, 36(1): e12822. |
[45] | LI F C, SUN Z, YANG H F. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 6215-6235. |
[46] | 鲁宝亮, 王璞珺, 张功成, 等. 南海区域断裂特征及其基底构造格局[J]. 地球物理学进展, 2015, 30(4): 1544-1553. |
[47] | 刘海伦, 梅廉夫, 施和生, 等. 珠江口盆地珠-坳陷裂陷结构: 基底属性与区域应力联合制约[J]. 地球科学, 2018: 1-17. |
[48] | 叶青. 南海北部陆缘晚中生代构造体系: 动力学以及对珠江口盆地新生代构造的制约[D]. 武汉: 中国地质大学(武汉), 2019. |
[49] | LI S Z, SUO Y H, SANTOSH M, et al. Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Craton[J]. Geological Journal, 2013, 48(5): 543-560. |
[50] | 刘雨晴. 南海周缘新生代盆地结构时空差异及其控制因素[D]. 东营: 中国石油大学(华东), 2019. |
[51] | HAN J H, XU G Q, LI Y Y, et al. Evolutionary history and controlling factors of the shelf breaks in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 179-189. |
[52] |
HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
PMID |
[53] | TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611. |
[54] | ZAHIROVIC S, SETON M, MÜLLER R. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth, 2013, 5: 227-273. |
[55] | ZHOU D, RU K, CHEN H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1/2/3/4): 161-177. |
[56] | MORLEY C K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: review and implications for tectonic development[J]. Journal of Asian Earth Sciences, 2016, 120: 62-86. |
[57] |
SHI H S, DU J Y, MEI L F, et al. Huizhou movement and its significance in Pearl River mouth basin, China[J]. Petroleum Exploration and Development, 2020, 47(3): 483-498.
DOI |
[58] | 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气, 1993, 5(6): 11-17. |
[59] | 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145-151. |
[60] | 庞雄, 陈隽, 戴一丁, 等. 珠江口盆地白云西-开平凹陷油气聚集及勘探目标研究[J]. 中国海上油气(地质), 1995, 7(4): 237-245. |
[61] |
JIAN Z M, JIN H Y, KAMINSKI M A, et al. Discovery of the marine Eocene in the northern South China Sea[J]. National Science Review, 2019, 6(5): 881-885.
DOI |
[62] | 陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地中新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52-61. |
[63] | 马兵山. 南海北部珠江口盆地新生代构造特征及其演化[D]. 北京: 中国石油大学(北京), 2020. |
[64] | 何敏, 朱伟林, 吴哲, 等. 珠江口盆地新构造运动特征与油气成藏[J]. 中国海上油气, 2019, 31(5): 9-20. |
[65] | WEI W, FAURE M, CHEN Y, et al. Back-thrusting response of continental collision: early Cretaceous NW-directed thrusting in the Changle-Nan’ao belt (SouthEast China)[J]. Journal of Asian Earth Sciences, 2015, 100: 98-114. |
[66] | HILDE T W C, UYEDA S, KROENKE L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38(1/2): 145-165. |
[67] | MATTHEWS K J, SETON M, MÜLLER R D. A global-scale plate reorganization event at 105-100 Ma[J]. Earth and Planetary Science Letters, 2012, 355: 283-298. |
[68] | MÜLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44: 107-138. |
[69] | 高阳东, 彭光荣, 张向涛, 等. 珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化[J]. 石油与天然气地质, 2023, 44(3): 584-599. |
[70] | 曾智伟. 南海北部珠江口盆地古近纪源-汇系统耦合研究[D]. 武汉: 中国地质大学(武汉), 2020. |
[71] | 王家林, 张新兵, 吴健生, 等. 珠江口盆地基底结构的综合地球物理研究[J]. 热带海洋学报, 2002, 21(2): 13-22. |
[1] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[2] | CHEN Wenlin, ZHENG Qiugen, HUANG Yiming, ZHANG Yi, LIN Changsong. Recover the Liyue Basin position in the southern margin of the South China Sea before seafloor spreading [J]. Earth Science Frontiers, 2023, 30(5): 420-429. |
[3] | ZENG Tao, FAN Rui, XIA Wenqian, ZOU Yutao, SHI Siyu. Formation and evolution of strike-slip fault zones in the eastern Sichuan Basin and identification and characterization of the fault zones: A case study of the Fuling area [J]. Earth Science Frontiers, 2023, 30(3): 366-385. |
[4] | YE Tao, NIU Chengmin, WANG Deying, WANG Qingbin, DAI Liming, CHEN Anqing. Mesozoic tectonic evolution of the southwestern Bohai Sea and its dynamic mechanism: Implications for the destruction of the North China Craton [J]. Earth Science Frontiers, 2022, 29(5): 133-146. |
[5] | ZHANG Xiangtao, PENG Guangrong, WANG Guangzeng, LIU Xinying, ZHAO Li, YANG Yue, ZHAN Huawang, YU Haiyang, MA Xiaoqian, LI Sanzhong. Fault response to the Huizhou Movement in the Pearl River Mouth Basin: Insights from a case study of the Eastern Yangjiang Sag [J]. Earth Science Frontiers, 2022, 29(5): 161-175. |
[6] | DUAN Wei, TIAN Jinqiang, LI Sanzhong, YU Qiang, CHEN Ruixue, LONG Zulie. Crude oil in the uplifts of the Huizhou depression, Pearl River Mouth Basin, South China Sea: Source and formation mechanisms [J]. Earth Science Frontiers, 2022, 29(5): 176-187. |
[7] | ZHAN Cheng, LU Shaoping, FANG Penggao. Multiphase rift and migration mechanism in the Pearl River Mouth Basin [J]. Earth Science Frontiers, 2022, 29(4): 307-318. |
[8] | ZHONG Linglin, ZHONG Kanghui, QIN Qin, YAN Zhao, YANG Xiong, HE Zhiyuan, ZHANG Hongjie, PENG Jie, Johan De GRAVE, Stijn DEWAELE, ZHOU Huiwen, HE Xingjie, HAN Wenwen, GONG Xiaobo, YANG Hairui, DONG Suiliang, CHANG Yupeng, LI Kaizhi, DOU Jie, LI Lin, HE Mingfeng, LIU Yilong. Structural characteristics of the Nima Basin in the Bangong-Nujiang tectonic belt, central Tibet [J]. Earth Science Frontiers, 2022, 29(1): 266-284. |
[9] | GE Jiawang, ZHU Xiaomin, LEI Yongchang, YU Fusheng. Tectono-sedimentary development of multiphase rift basins: An example of the Lufeng Depression [J]. Earth Science Frontiers, 2021, 28(1): 77-89. |
[10] | LIANG Guanghe. Detailed study of the formation of Japanese islands based on tectonic evolution of basins in the East China Sea and Northern South China Sea [J]. Earth Science Frontiers, 2020, 27(1): 244-259. |
[11] | QI Jiafu, WU Jingfu, MA Bingshan, QUAN Zhizhen, NENG Yuan. The structural model and dynamics concerning middle section, Pearl River Mouth Basin in north margin of South China Sea [J]. Earth Science Frontiers, 2019, 26(2): 203-221. |
[12] | WU Kongyou, LI Siyao, TAN Mingyou, LIU Huaqing. Tectonic characteristics, formation and evolution of the Yidong region in the Yihezhuang Uplift, Bohai Bay Basin [J]. Earth Science Frontiers, 2019, 26(2): 194-202. |
[13] | FENG Qiao,FU Suotang,ZHANG Xiaoli,CHEN Yan,WANG Liqun,ZHOU Fei,NI Jinlong. Jurassic prototype basin restoration and hydrocarbon exploration prospect in the Qaidam Basin and its adjacent area [J]. Earth Science Frontiers, 2019, 26(1): 44-58. |
[14] | LI Shubo,WANG Yuejun,WU Shimin. MesoCenozoic tectonothermal pattern of the Pearl River Mouth Basin: constraints from zircon and apatite fission track data [J]. Earth Science Frontiers, 2018, 25(1): 95-107. |
[15] | . Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. [J]. Earth Science Frontiers, 2015, 22(6): 125-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||