Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 67-94.DOI: 10.13745/j.esf.sf.2024.10.25
Previous Articles Next Articles
KANG Fengxin1,2(), ZHENG Tingting3, SHI Meng4, SUI Haibo5, XU Meng6, JIANG Haiyang6, ZHONG Zhennan7, QIN Peng8, ZHANG Baojian9,*(
), ZHAO Jichu2,10,*(
), MA Zhemin3, CUI Yang5, LI Jialong1,2, DUAN Xiaofei2,10, BAI Tong2,10, ZHANG Pingping2,11, YAO Song5, LIU Xiao3, SHI Qipeng3, WANG Xuepeng2,10, YANG Haitao1,2, CHEN Jingpeng2,10, LIU Beibei6
Received:
2024-03-06
Revised:
2024-09-16
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
KANG Fengxin, ZHENG Tingting, SHI Meng, SUI Haibo, XU Meng, JIANG Haiyang, ZHONG Zhennan, QIN Peng, ZHANG Baojian, ZHAO Jichu, MA Zhemin, CUI Yang, LI Jialong, DUAN Xiaofei, BAI Tong, ZHANG Pingping, YAO Song, LIU Xiao, SHI Qipeng, WANG Xuepeng, YANG Haitao, CHEN Jingpeng, LIU Beibei. Occurrence rules and enrichment mechanism of geothermal resources in Shandong Province[J]. Earth Science Frontiers, 2024, 31(6): 67-94.
Fig.1 Geodynamic control on geothermal activity in Shandong. The destruction of the North China Craton causes crustal and lithospheric thinning in the eastern crust, which lead to magmatic intrusion along the Tanlu fault and Qiguang fault zone and the occurrence of geothermal water.
Fig.3 Temperature logging and geothermal gradient curves of boreholes D1/Z5 in Dongtang and D1/D2 in Hongshuilantang geothermal fields in Jiaobei uplift of east Shandong geothermal area
Fig.4 Water/heat sources and enrichment mechanism of Dongtang hot spring open geothermal system in Jiaobei uplift of east Shandong geothermal area. Modified after [5].
Fig.16 Genetic mechanisms and heat/water acumulation model of weakly operconvection conduction-banded stratified karst geothemal svstem. Modified after [14]
[1] | 康凤新. 山东省地热清洁能源综合评价[M]. 北京: 科学出版社, 2018. |
[2] | ZHU R X, CHEN L, WU F Y, et al. Timing, scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences, 2011, 54(6): 789-797. |
[3] | KUSKY T M, WINDLEY B F, WANG L, et al. Flat slab subduction, trench suction, and craton destruction: comparison of the North China, Wyoming, and Brazilian cratons[J]. Tectonophysics, 2014, 630: 208-221. |
[4] | 钟振楠, 康凤新, 宋明忠, 等. 鲁东招远地热田地热通量及地热成因研究[J]. 地质论评, 2021, 67(3): 828-840. |
[5] | ZHENG T T, STEFÁNSSON A, KANG F X, et al. Geochemical and isotope constraints on the hydrogeology and geochemistry of the geothermal waters in the Shandong Peninsula, China[J]. Geothermics, 2023, 108: 102628. |
[6] | 安梦岺. 招远地热勘察报告[R]. 济南: 山东省革命委员会地质局水文地质队, 1973: 7-26. |
[7] | 钱文珏. 山东省胶东半岛矿泉动态观测报告[R]. 济南: 山东省地质局801队, 1965: 10-26. |
[8] | 孙德新, 王璨, 王有智, 等. 山东省招远市东汤地热田地热资源储量核实报告[R]. 烟台: 山东省地质矿产勘查开发局第三地质大队, 2011: 25-32. |
[9] | 柳贡海, 迟义宾, 荆永渠, 等. 山东省招远市地热田勘察报告[R]. 招远: 山东省第六地质矿产勘查院, 2002: 24-52. |
[10] | 李三忠, 郑祺亮, 李玺瑶, 等. 中国东部苏鲁造山带的印支期俯冲极性及其造山过程[J]. 海洋地质与第四纪地质, 2017, 37(4): 18-32. |
[11] |
李洪奎, 禚传源, 耿科, 等. 郯—庐断裂带陆内伸展构造: 以沂沭断裂带的表现特征为例[J]. 地学前缘, 2017, 24(2): 73-84.
DOI |
[12] | 张尚坤, 罗文强, 于学峰, 等. 基于深反射地震剖面的沂沭断裂带岩石圈精细结构[J]. 地质学报, 2021, 95(11): 3192-3204. |
[13] | 魏东, 佟光玉, 张勇, 等. 山东省沂南县铜井地热田(陶然温泉度假村)详查报告[R]. 济南: 山东省地矿建设工程集团有限公司, 2004: 51-89. |
[14] | 康凤新, 隋海波, 郑婷婷. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例[J]. 地质学报, 2020, 94(5): 1606-1624. |
[15] | 姚亚辉, 贾小丰, 李胜涛, 等. 雄安新区D01井岩溶热储下伏太古界中热流测定研究[J]. 中国地质, 2022, 49(6): 1723-1731. |
[16] | 康凤新, 史启朋, 马哲民, 等. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例[J]. 地质学报, 2023, 97(1): 221-237. |
[17] | 贾秀梅. 华北平原深部岩溶和岩溶水[J]. 中国地质科学院水文地质环境地质所所刊, 1993(9): 118-129. |
[18] | 康凤新, 赵季初, 黄迅, 等. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力[J]. 地球科学, 2023, 48(3): 1080-1092. |
[19] | 谭志容, 康凤新. 山东省临清坳陷区岩溶热储地热能潜力分析[J]. 中国地质调查, 2018, 5(1): 10-15. |
[20] | ZHAO J C, KANG F X, TAN Z R. Power generation capacity of karst geothermal reservoirs in Meso-Cenozoic Depression Basins: a case study of East Linqing Depression in North China[J]. Acta Geologica Sinica (English Edition), 2019, 93 (supp.2): 382-383. |
[21] | 赵季初, 康凤新. 山东孤岛潜山凸起区裂隙岩溶热储资源综合评价与发电潜力研究[J]. 中国地质调查, 2019, 6(1): 10-16. |
[22] | RYBACH L, MUFFLER L J P. Geothermal systems: principles and case histories[M]. New York: John Wiley, 1981: 3-76. |
[23] | 庞忠和, 胡圣标, 王社教, 等. 地热系统与地热资源[M]//汪集暘. 地热学及其应用. 北京: 科学出版社, 2015: 257-376. |
[24] | WHITE D E, WILLIAMS D L. Assessment of geothermal resources of the United States-1975[R]. Arlington: Branch of Distribution, U.S. Geological Survey, 1975: 1-57. |
[25] | MUFFLER L J P. Assessment of geothermal resources of the United States-1978[R]. Arlington: Branch of Distribution, U.S. Geological Survey, 1979: 156-162. |
[26] | AXELSSON G, GUNNLAUGSSON E. Long-term monitoring of high- and low-enthalpy fields under exploitation[C]//Proceedings of World Geothermal Congress 2000 Short Course (SC-1), Kyushu, Japan: IGA, 2000: 57-65. |
[27] | AXELSSON G, BJÖRNSSON G, QUIJANO J E. Reliability of lumped parameter modelling of pressure changes in geothermal reservoirs[J]. Archivio Di Psicologia Neurologia E Psichiatria, 2005, 11(4): 401-401. |
[28] | AXELSSON G, STEFÁNSSON V, BJÖRNSSON G, et al. Sustainable management of geothermal resources and utilization for 100—300 years[C]//Proceedings World Geothermal Congress 2005, Antalya: IGA, 2005: 24-29. |
[29] |
张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3): 190-198.
DOI |
[30] | 康凤新, 马哲民, 史启朋, 等. 岩溶热储地热水可更新能力及采灌均衡可持续开采量: 以菏泽潜凸起地热田为例[J]. 地球科学, 2023, 48(3): 1118-1137. |
[31] | 康凤新, 隋海波, 李常锁, 等. 岩溶热储古岩溶发育机制与地热水富集模式[J]. 中国石油大学学报(自然科学版), 2024, 48(1): 13-24. |
[32] | 杨询昌, 康凤新, 王学鹏, 等. 砂岩孔隙热储地温场水化学场特征及地热水富集机理: 鲁北馆陶组热储典型案例[J]. 地质学报, 2019, 93(3): 738-750. |
[33] |
张保建, 高宗军, 张凤禹, 等. 华北盆地地下热水的水动力条件及水化学响应[J]. 地学前缘, 2015, 22(6): 217-226.
DOI |
[34] | KANG F X, YANG X C, WANG X P, et al. Hydrothermal features of a sandstone geothermal reservoir in the North Shandong Plain, China[J]. Lithosphere, 2022, 2021(Special 5): 1675798. |
[35] | 熊亮萍, 高维安. 隆起与拗陷地区地温场的特点[J]. 地球物理学报, 1982, 25(5): 448-456. |
[36] | 刘绍文, 王良书, 龚育龄, 等. 济阳坳陷岩石圈热—流变学结构及其地球动力学意义[J]. 中国科学D辑: 地球科学, 2005, 35(3): 203-214. |
[37] | 冯昌格, 刘绍文, 王良书, 等. 塔里木盆地现今地热特征[J]. 地球物理学报, 2009, 52(11): 2752-2762. |
[38] | 饶松, 胡圣标, 朱传庆, 等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770. |
[39] | 李卫卫, 饶松, 唐晓音, 等. 河北雄县地热田钻井地温测量及地温场特征[J]. 地质科学, 2014, 49(3): 850-863. |
[40] |
常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3): 1003-1016.
DOI |
[41] | 王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21. |
[42] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[43] |
张保建, 雷玉德, 赵振, 等. 共和盆地干热岩形成的地球动力学过程与成因机制[J]. 地学前缘, 2023, 30(5): 384-401.
DOI |
[44] | 张保建, 李燕燕, 高俊, 等. 河北省马头营干热岩的成因机制及其示范意义[J]. 地质学报, 2020, 94(7): 2036-2051. |
[45] | ZHANG B J, WANG S Q, KANG F X, et al. Heat accumulation mechanism of the Gaoyang carbonatite geothermal field, Hebei Province, North China[J]. Frontiers in Earth Science, 2022, 10: 858814. |
[1] | ZHANG Jian, HE Yubei, FAN Yanxia. Geophysical analysis of heat source composition in the Fujian coastal geothermal anomaly area [J]. Earth Science Frontiers, 2024, 31(3): 392-401. |
[2] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[3] | LUO Qun, ZHAO Xianzheng, PU Xiugang, JIN Fengming, JIANG Wenya, ZHANG Hongli, QIU Zhaoxuan, WEN Pan. Source-rock reservoirs: Ring structure characteristic, differential accumulation mechanism and ordered distribution pattern [J]. Earth Science Frontiers, 2023, 30(1): 174-186. |
[4] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[5] | NIE Hai-Kuan, ZHANG Pei-Xian, BIAN Rui-Kang, WU Xiao-Ling, DI Chang-Bo. Oil accumulation characteristics of China continental shale. [J]. Earth Science Frontiers, 2016, 23(2): 55-62. |
[6] | GUO Xu-Sheng, HU Dong-Feng, LI Yu-Beng, WEI Xiang-Feng, LIU Re-Bing, LIU Zhu-Jiang, YAN Ji-Gong, WANG Qiang-Bei. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: A case study in shales of Longmaxi Formation and Daanzhai Section of Ziliujing Formation in Sichuan Basin. [J]. Earth Science Frontiers, 2016, 23(2): 18-28. |
[7] | WANG Hua, CHEN Si, GAN Hua-Jun, LIAO Ji-Hua, SUN Ming. Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin [J]. Earth Science Frontiers, 2015, 22(1): 21-34. |
[8] | . Extension order and its deep geological background: Evidence from Western Shandong Rise and Jiyang Depression in the Late MesozoicCenozoic. [J]. Earth Science Frontiers, 2012, 19(5): 255-273. |
[9] | DONG Shu-Xi, GU Xue-Xiang, YANG Yong-Jiang, DI Yu-Sheng, ZHANG Yong-Mei, XIANG Zhong-Lin, LIU Li, HU Gui-Ceng, LI Zhong-Beng. Application of comprehensive geologicalgeophysicalgeochemical methods on metallogenic prediction of crisis mines—A case study in Yinan gold deposit. [J]. Earth Science Frontiers, 2010, 17(2): 198-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||