Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 381-404.DOI: 10.13745/j.esf.sf.2024.7.1
Previous Articles Next Articles
XU Changgui1(), GAO Yangdong2, LIU Jun3,4, PENG Guangrong3,4,*(
), CHEN Zhaoming3,4, LI Hongbo3,4, CAI Junjie3,4, MA Qingyou3,4
Received:
2024-03-06
Revised:
2024-07-01
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
XU Changgui, GAO Yangdong, LIU Jun, PENG Guangrong, CHEN Zhaoming, LI Hongbo, CAI Junjie, MA Qingyou. Discovery of “detachment-core complex type” basins offshore the northern South China Sea and their oil and gas geological conditions:A case study of the Kaiping sag in the northern South China Sea[J]. Earth Science Frontiers, 2024, 31(6): 381-404.
井名 | 钻遇层位 | 厚度/m | 干酪根类型 | TOC含量/% | 氢指数HI/(mg·g-1) | 沉积相 | 综合评价 |
---|---|---|---|---|---|---|---|
A7 | 文三段 | 91 | Ⅱ1—Ⅱ2型 | 0.6~4.2(2.6) | 162~378(264) | 浅湖—半深湖 | 好 |
文四段 | 145 | Ⅱ1—Ⅱ2型 | 1.3~9.6(5.4) | 134~377(266) | 半深湖—深湖 | 好—很好 | |
A9 | 文三段 | 13 | Ⅱ2型 | 0.3~0.76(0.5) | 134~253(207) | 辫状河三角洲前缘 | 较差 |
文四段 | 182 | Ⅱ1型 | 2.1~4.8(3.4) | 347~589(437) | 半深湖—深湖 | 好—很好 | |
B4 | 文三段 | ||||||
文四段 | 84 | Ⅱ1型 | 0.9~7.0(2.5) | 146~506(305) | 半深湖—深湖 | 好—很好 |
Table 1 Comparison and analysis of typical drilling source rock characteristics in Kaiping Depression
井名 | 钻遇层位 | 厚度/m | 干酪根类型 | TOC含量/% | 氢指数HI/(mg·g-1) | 沉积相 | 综合评价 |
---|---|---|---|---|---|---|---|
A7 | 文三段 | 91 | Ⅱ1—Ⅱ2型 | 0.6~4.2(2.6) | 162~378(264) | 浅湖—半深湖 | 好 |
文四段 | 145 | Ⅱ1—Ⅱ2型 | 1.3~9.6(5.4) | 134~377(266) | 半深湖—深湖 | 好—很好 | |
A9 | 文三段 | 13 | Ⅱ2型 | 0.3~0.76(0.5) | 134~253(207) | 辫状河三角洲前缘 | 较差 |
文四段 | 182 | Ⅱ1型 | 2.1~4.8(3.4) | 347~589(437) | 半深湖—深湖 | 好—很好 | |
B4 | 文三段 | ||||||
文四段 | 84 | Ⅱ1型 | 0.9~7.0(2.5) | 146~506(305) | 半深湖—深湖 | 好—很好 |
Fig.13 Sedimentary facies map of the main strata of the Paleogene in the Kaiping Depression (a, lower section of the Enping Formation; b, upper section of the Wensi Formation)
[1] | DAVIS G H, CONEY P J. Geologic development of the Cordilleran metamorphic core complexes[J]. Geology, 1979, 7(3): 120-124. |
[2] | 宋鸿林. 变质核杂岩研究进展、 基本特征及成因探讨[J]. 地学前缘, 1995, 2(1): 103-111. |
[3] | CONEY P J, HARMS T A. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression[J]. Geology, 1984, 12(9): 550-554. |
[4] | WHITNEY D L, TEYSSIER C, REY P, et al. Continental and oceanic core complexes[J]. Geological Society of America Bulletin, 2013, 125(3/4): 273-298. |
[5] | RING U. Metamorphic core complexes[M]//HARFF J, MESCHEDE M, PETERSEN S. Encyclopedia of marine geosciences. Dordrecht: Springer, 2014: 146-167. |
[6] | BRUN J P, SOKOUTIS D, TIREL C, et al. Crustal versus mantle core complexes[J]. Tectonophysics, 2018, 746: 22-45. |
[7] | ARCA M S, KAPP P, JOHNSON R A. Cenozoic crustal extension in southeastern Arizona and implications for models of core-complex development[J]. Tectonophysics, 2010, 488(1/2/3/4): 174-190. |
[8] | 朱志澄. 变质核杂岩和伸展构造研究述评[J]. 地质科技情报, 1994, 13(3): 1-9. |
[9] | CANNAT M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4163-4172. |
[10] | CANNAT M, LAGABRIELLE Y, BOUGAULT H, et al. Ultramafic and gabbroic exposures at the mid-Atlantic ridge: geological mapping in the 15°N region[J]. Tectonophysics, 1997, 279(1/2/3/4): 193-213. |
[11] | MUÑOZ-BARRERA J M, ROTEVATN A, GAWTHORPE R L, et al. The role of structural inheritance in the development of high-displacement crustal faults in the necking domain of rifted margins: the Klakk Fault complex, Frøya high, offshore mid-Norway[J]. Journal of Structural Geology, 2020, 140: 104163. |
[12] | YE Q, MEI L F, JIANG D P, et al. 3-D structure and development of a metamorphic core complex in the northern South China Sea rifted margin[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): 1-16. |
[13] | GRESSETH J L S, OSMUNDSEN P T, PÉRON-PINVIDIC G. 3D evolution of detachment fault systems in necking domains: insights from the Klakk Fault complex and the Frøya high, Mid-Norwegian rifted margin[J]. Tectonics, 2023, 42(3): e2022TC007600. |
[14] | LITTLE T A, WEBBER S M, MIZERA M, et al. Evolution of a rapidly slipping, active low-angle normal fault, Suckling—Dayman metamorphic core complex, SE Papua New Guinea[J]. GSA Bulletin, 2019, 131(7/8): 1333-1363. |
[15] | 刘和甫. 沉积盆地地球动力学分类及构造样式分析[J]. 地球科学: 中国地质大学学报, 1993, 18(6): 699-724, 814. |
[16] | 刘和甫, 李小军, 刘立群. 地球动力学与盆地层序及油气系统分析[J]. 现代地质, 2003, 17(1): 80-86. |
[17] | 任建业, 罗盼, 高圆圆, 等. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、 沉积和岩浆作用记录[J]. 地球科学, 2022, 47(7): 2287-2302. |
[18] |
刘池洋, 王建强, 赵红格, 等. 沉积盆地类型划分及其相关问题讨论[J]. 地学前缘, 2015, 22(3): 1-26.
DOI |
[19] | ALLEN P A, ARMITAGE J J, CARTER A, et al. The Qs problem: sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. |
[20] | 刘德民. 中国变质核杂岩的基本特征[J]. 现代地质, 2003, 17(2): 125-130. |
[21] | 王新社, 郑亚东, 张进江. 呼和浩特变质核杂岩伸展运动学特征及剪切作用类型[J]. 地质通报, 2002, 21(5): 238-245. |
[22] | LUNDIN E R, DORE A G. A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: Early Cretaceous to break-up[J]. Journal of the Geological Society, 1997. 154(3): 545-550. |
[23] | OSMUNDSEN P T, EBBING J. Styles of extension offshore mid-Norway and implications for mechanisms of crustal thinning at passive margins[J]. Tectonics, 2008, 27(6): 286-310. |
[24] | GRESSETH J L S, BRAATHEN A, SERCK C S, et al. Late Paleozoic supradetachment basin configuration in the southwestern Barents Sea: intrabasement seismic facies of the fingerdjupet subbasin[J]. Basin Research, 2022, 34(2): 570-589. |
[25] | KOEHL J B P, BERGH S G, HENNINGSEN T, et al. Middle to Late Devonian—Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp Basin, SW Barents Sea[J]. Solid Earth, 2018, 9(2): 341-372. |
[26] | GARTRELL A P. Rheological controls on extensional styles and the structural evolution of the Northern Carnarvon Basin, North West Shelf, Australia[J]. Australian Journal of Earth Sciences, 2000, 47(2): 231-244. |
[27] | GARTRELL A, KEEP M, VAN DER RIET C, et al. Hyperextension and polyphase rifting: impact on inversion tectonics and stratigraphic architecture of the North West Shelf, Australia[J]. Marine and Petroleum Geology, 2022, 139: 105594. |
[28] | 陆建林, 左宗鑫, 李瑞磊, 等. 松辽盆地长岭断陷变质核杂岩带的发现及其控油气作用研究[J]. 石油实验地质, 2018, 40(6): 771-777. |
[29] | ZHENG Y D, ZHANG Q. The yagan metamorphic core complex and extensional detachment fault in Inner Mongolia[J]. Acta Geologica Sinica, 1993, 67(4): 301-309. |
[30] | PLATT J P, BEHR W M, COOPER F J. Metamorphic core complexes: windows into the mechanics and rheology of the crust[J]. Journal of the Geological Society, 2015, 172(1): 9-27. |
[31] | YANG X B, WANG H Y, LI Z Y, et al. Tectonic-sedimentary evolution of a continental rift basin: a case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2021, 128: 105068. |
[32] | TARI G C, GJERAZI I, GRASEMANN B. Interpretation of vintage 2D seismic reflection data along the Austrian-Hungarian border: subsurface expression of the rechnitz metamorphic core complex[J]. Interpretation, 2020, 8(4): SQ73-SQ91. |
[33] | HORVÁTH F, TARI G. IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration[J]. Geological Society, London, Special Publications, 1999, 156(1): 195-213. |
[34] | HAGSET A, GRUNDVÅG S A, BADICS B, et al. Deposition of cenomanian-turonian organic-rich units on the Mid-Norwegian margin: controlling factors and regional implications[J]. Marine and Petroleum Geology, 2023, 149: 106102. |
[35] | MUÑOZ-BARRERA J M, ROTEVATN A, GAWTHORPE R L, et al. Supradetachment basins in necking domains of rifted margins: insights from the Norwegian Sea[J]. Basin Research, 2022, 34(3): 991-1019. |
[36] | 徐长贵, 范彩伟. 南海西部近海大中型油气田勘探新进展与思考[J]. 中国海上油气, 2021, 33(2): 13-25. |
[37] | 任建业. 中国近海海域新生代成盆动力机制分析[J]. 地球科学, 2018, 43(10): 3337-3361. |
[38] | YE Q, MEI L F, SHI H S, et al. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin[J]. Tectonics, 2020, 39(3): e2019TC005845. |
[39] | 李林, 王彬, 雷超, 等. 西沙海域盆地构造格局及其差异演化过程分析[J]. 地球科学, 2021, 46(9): 3321-3337. |
[40] | LEI Z L, ZENG G, LIU J Q, et al. Melt-lithosphere interaction controlled compositional variations in mafic dikes from Fujian Province, southeastern China[J]. Journal of Earth Science, 2021, 32(6): 1445-1453. |
[41] | HALL R. Hydrocarbon basins in SE Asia: understanding why they are there[J]. Petroleum Geoscience, 2009, 15(2): 131-146. |
[42] | BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. |
[43] | SIBUET J C, YEH Y C, LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692: 98-119. |
[44] | CHEN H, XIE X N, MAO K N, et al. Depositional characteristics and formation mechanisms of deep-water canyon systems along the northern South China Sea margin[J]. Journal of Earth Science, 2020, 31(4): 808-819. |
[45] | CULLEN A, REEMST P, HENSTRA G, et al. Rifting of the South China Sea: new perspectives[J]. Petroleum Geoscience, 2010, 16(3): 273-282. |
[46] |
DENG H D, REN J Y, PANG X, et al. South China Sea documents the transition from wide continental rift to continental break up[J]. Nature Communications, 2020, 11: 4583.
DOI PMID |
[47] | MALAVIEILLE J. Late orogenic extension in mountain belts: insights from the basin and range and the Late Paleozoic variscan belt[J]. Tectonics, 1993, 12(5): 1115-1130. |
[48] |
任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水—超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901-4920.
DOI |
[49] |
任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102-114.
DOI |
[50] | 郑金云, 高阳东, 张向涛, 等. 珠江口盆地构造演化旋回及其新生代沉积环境变迁[J]. 地球科学, 2022, 47(7): 2374-2390. |
[51] | 王嘉, 栾锡武, 何兵寿, 等. 南海北部珠江口盆地西南段断裂特征与成因讨论[J]. 地球科学, 2021, 46(3): 916-928. |
[52] | ESCARTÍN J, MÉVEL C, PETERSEN S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. |
[53] | PARNELL-TURNER R, ESCARTÍN J, OLIVE J A, et al. Genesis of corrugated fault surfaces by strain localization recorded at oceanic detachments[J]. Earth and Planetary Science Letters, 2018, 498: 116-128. |
[54] | PERON-PINVIDIC G, OSMUNDSEN P T. Architecture of the distal and outer domains of the Mid-Norwegian rifted margin: insights from the Rån-Gjallar ridges system[J]. Marine and Petroleum Geology, 2016, 77: 280-299. |
[55] | SUTRA E, MANATSCHAL G, MOHN G, et al. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2575-2597. |
[56] | DAVIS G A, 郑亚东. 变质核杂岩的定义、 类型及构造背景[J]. 地质通报, 2002, 21(4): 185-192. |
[57] | FRIEDMANN S J, BURBANK D W. Rift basins and supradetachment basins: intracontinental extensional end-members[J]. Basin Research, 1995, 7(2): 109-127. |
[58] | JONGEPIER K, CECILIE J, GRUE K. Triassic to early cretaceous stratigraphic and structural development of the northeastern Møre Basin margin, off Mid-Norway[J]. Norsk Geologisk Tidsskrift, 1996, 76, 199-214. |
[59] | RIBES C, GHIENNE J F, MANATSCHAL G, et al. Long-lived mega fault-scarps and related breccias at distal rifted margins: insights from present-day and fossil analogues[J]. Journal of the Geological Society, 2019, 176(5): 801-816. |
[60] | VETTI V V, FOSSEN H. Origin of contrasting Devonian supradetachment basin types in the Scandinavian Caledonides[J]. Geology, 2012, 40(6): 571-574. |
[61] | 彭光荣, 张丽丽, 许新明, 等. 珠江口盆地开平凹陷核杂岩拆离结构及其动力学成因[J]. 地球科学, 2024, 49(9): 3306-3317. |
[62] | 颜丹平. 变质核杂岩研究的新进展[J]. 地质科技情报, 1997, 16(3): 13-19. |
[63] | TIREL C, BRUN J P, BUROV E. Dynamics and structural development of metamorphic core complexes[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B4): B04403. |
[64] | ZHANG X D, YU Q, CHEN F J, et al. Structural characteristics, origin and evolution of metamorphic core complex in central basement uplift and Xujiaweizi Faulted Depression in Songliao Basin, Northeast China[J]. Earth Science Frontiers, 2000, 7(4): 411-419. |
[65] | 纪沫, 胡玲, 刘俊来, 等. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因[J]. 地质科学, 2008, 43(1): 12-22. |
[66] | SEYFERT C K. Cordilleran metamorphic core complexes[M]//SEYFERT C K. Encyclopedia of structural geology and plate tectonics. New York: Van Nortrand Reinhold Company, 1987: 113-130. |
[67] |
施和生, 杜家元, 梅廉夫, 等. 珠江口盆地惠州运动及其意义[J]. 石油勘探与开发, 2020, 47(3): 447-461.
DOI |
[68] |
张向涛, 彭光荣, 王光增, 等. 珠江口盆地惠州运动的断裂响应研究: 以阳江东凹为例[J]. 地学前缘, 2022, 29(5): 161-175.
DOI |
[69] | 高翔, 刘杰, 牛胜利, 等. 珠江口盆地惠北地区文昌期构造—沉积响应及对优质烃源岩的控制[J]. 海相油气地质, 2022, 27(4): 348-359. |
[70] | 李三忠, 吕海青, 侯方辉, 等. 海洋核杂岩[J]. 海洋地质与第四纪地质, 2006, 26(1): 47-52. |
[71] | JOLIVET L, BRUN J P. Cenozoic geodynamic evolution of the Aegean[J]. International Journal of Earth Sciences, 2010, 99(1): 109-138. |
[72] | TAMAKI K, HONZA E. Global tectionics and formation of marginal basins: role of the western Pacific[J]. Episodes, 1991, 14(3): 224-230. |
[73] | GIANELLI G, MANZELLA A, PUXEDDU M. Crustal models of the geothermal areas of southern Tuscany (Italy)[J]. Tectonophysics, 1997, 281(3/4): 221-239. |
[74] |
庞雄, 任建业, 郑金云, 等. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例[J]. 石油勘探与开发, 2018, 45(1): 27-39.
DOI |
[75] | KARLSEN D A, NYLAND B, FLOOD B, et al. Petroleum geochemistry of the Haltenbanken, Norwegian continental shelf[J]. Geological Society, London, Special Publications, 1995, 86(1): 203-256. |
[76] | 范玉海, 屈红军, 张功成, 等. 世界主要深水含油气盆地烃源岩特征[J]. 海相油气地质, 2011, 16(2): 27-33. |
[77] | MØRK A, ELVEBAKK G, FORSBERG A W, et al. The type section of the Vikinghøgda Formation: a new Lower Triassic unit in central and eastern Svalbard[J]. Polar Research, 1999, 18(1): 51-82. |
[78] | ZHOU Z C, MEI L F, LIU J, et al. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea[J]. Tectonophysics, 2018, 726: 121-136. |
[79] | CLARINGBOULD J S, BELL R E, JACKSON C A L, et al. Pre-existing normal faults have limited control on the rift geometry of the northern North Sea[J]. Earth and Planetary Science Letters, 2017, 475: 190-206. |
[80] | HENSTRA G A, ROTEVATN A, GAWTHORPE R L, et al. Evolution of a major segmented normal fault during multiphase rifting: the origin of plan-view zigzag geometry[J]. Journal of Structural Geology, 2015, 74: 45-63. |
[81] | MIZERA M, LITTLE T A, BIEMILLER J, et al. Structural and geomorphic evidence for rolling-hinge style deformation of an active continental low-angle normal fault, SE Papua new Guinea[J]. Tectonics, 2019, 38(5): 1556-1583. |
[82] | NYÍRI D, TÖKÉS L, ZADRAVECZ C, et al. Early post-rift confined turbidite systems in a supra-detachment basin: implications for the Early to Middle Miocene Basin evolution and hydrocarbon exploration of the Pannonian Basin[J]. Global and Planetary Change, 2021, 203: 103500. |
[83] | CARACCIOLO L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review, application and future development[J]. Earth-Science Reviews, 2020, 209: 103226. |
[84] | FILLMORE R P, WALKER J D, BARTLEY J M, et al. Development of three genetically related basins associated with detachment-style faulting: predicted characteristics and an example from the central Mojave Desert, California[J]. Geology, 1994, 22(12): 1087-1090. |
[1] | XU Tianwu, ZHANG Hong’an. Analysis of oil and gas distribution and exploration potential in oil-rich depression: Taking Dongpu Depression as an example [J]. Earth Science Frontiers, 2024, 31(6): 368-380. |
[2] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[3] | SUO Yanhui, JIANG Zhaoxia, LI Sanzhong, WU Lixin. Ocean-floor hydrogen accumulation model and global distribution [J]. Earth Science Frontiers, 2024, 31(4): 175-182. |
[4] | CHEN Fei, ZENG Weite, TONG Changliang, ZHANG Congwei, FU Biao, CHEN Yang, CHEN Bo. Quaternary sequence framework and sedimentary evolution of Qiongzhou Straits [J]. Earth Science Frontiers, 2024, 31(3): 100-112. |
[5] | HAN Haiying, GUO Rui, WANG Jun, QIN Guosheng, SUN Xiaowei, YU Yichang, SU Haiyang, GAO Yang. Sequence stratigraphic framework and sedimentary evolution of the Cretaceous in southern Iraq [J]. Earth Science Frontiers, 2023, 30(2): 122-138. |
[6] | FU Jinhua. Accumulation characteristics and exploration potential of tight limestone gas in the Taiyuan Formation of the Ordos Basin [J]. Earth Science Frontiers, 2023, 30(1): 20-29. |
[7] | YANG Xuewen, WANG Qinghua, LI Yong, LÜ Xiuxiang, XIE Huiwen, WU Chao, WANG Cuili, WANG Xiang, MO Tao, WANG Rui. Formation mechanism of the Bozi-Dabei trillion cubic natural gas field, Kuqa foreland thrust belt [J]. Earth Science Frontiers, 2022, 29(6): 175-187. |
[8] | YANG Hongyu, ZHANG Bing, FANG Chaohe, YANG Kai, CAO Qian, ZHANG Saimin, LIN Xiaoyang. Sedimentary evolution of deep marine potassium/lithium-rich brine reservoirs in the Sichuan Basin and a comprehensive response model for the brine storage layer [J]. Earth Science Frontiers, 2021, 28(6): 95-104. |
[9] | ZHANG Yina, CAI Wenjie, YANG Songling, ZHANG Ke, CHEN Jingyang. Sedimentary characteristics of the Jurassic shelf-edge delta and oil and gas exploration in the Papuan Basin [J]. Earth Science Frontiers, 2021, 28(1): 167-176. |
[10] | WANG Chu-Li, ZHENG Mian-Beng, ZHANG Shen, SU Kui. Carbon and oxygen isotopic compositions of Cambrian marine carbonates in Sichuan Basin, China: Implications for sedimentary evolution and potash finding. [J]. Earth Science Frontiers, 2016, 23(5): 202-220. |
[11] | CHENG Ri-Hui, WANG Guo-Dong, WANG Pu-Jun, GAO Wei-Feng. Uppermost Cretaceous sediments: Sedimentary microfacies and sedimentary environment evolution of Sifangtai Formation and Mingshui Formation in SKⅠ(n). [J]. Earth Science Frontiers, 2009, 16(6): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||