Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 249-269.DOI: 10.13745/j.esf.sf.2023.5.31
Previous Articles Next Articles
WANG Jian1,2(), YANG Yanchen1,2, LI Ai3, YUAN Haiqi1
Received:
2022-10-28
Revised:
2023-04-24
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
WANG Jian, YANG Yanchen, LI Ai, YUAN Haiqi. Characteristics of mineral chemistry and geochemistry of the Late Triassic Hongqiling mafic-ultramafic intrusions: Implications for Ni-Cu mineralization[J]. Earth Science Frontiers, 2024, 31(2): 249-269.
Fig.3 (a)Regional geologic map for the Hongqiling Ni-Cu deposit, and (b) Detailed distribution of the mafic-ultramafic intrusions in the Hongqiling area. Modified after [8].
Fig.5 Microphotographs of representative rocks from the Hongqiling ore-bearing mafic-ultramafic intrusions Ol—olivine; Opx—orthopyroxene; Cpx— clinopyroxene; Spl— spinel; Pl—plagioclase; Am—amphibole.
Fig.7 (a) Trace and major elements for spinel, and (b) Incompatible element patterns for clinopyroxene in samples from the Hongqiling mafic-ultramafic intrusions
Fig.8 Plots of Ca versus Fo contents in olivine (a), and Wo-En-Fs diagram of pyroxenes (b) (after [44]) for samples from the Hongqiling mafic-ultramafic intrusions
Fig.10 (a) Chondrite normalized REE and (b) Primitive mantle normalized incompatible element patterns for the Hongqiling ore-bearing mafic-ultramafic intrusions
[57] | WANG J, HATTORI K H, KILIAN R, et al. Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fo2 by slab-melt[J]. Contributions to Mineralogy and Petrology, 2007,153:607-624. |
[58] | WANG J, HATTORI K H, STERN C R. Metasomatic origin of garnet orthopyroxenites in the subcontinental lithospheric mantle underlying Pali Aike volcanic field, southern South America[J]. Mineralogy and Petrology, 2008, 94(3): 243-258. |
[59] | ALDANMAZ E, PEARCE J A, THIRLWALL M F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95. |
[60] | 李爱, 王建, 宋樾, 等. 吉林红旗岭镁铁-超镁铁质岩体地球化学特征及其岩石成因意义[J]. 地质学报, 2018, 92(2): 263-277. |
[61] | SONG X Y, KEAYS R R, ZHOU M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424. |
[62] | WANG C Y, ZHOU M F. Genesis of the Permian baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China[J]. Mineralium Deposita, 2006, 41(8): 771-783. |
[63] | NALDREET A J. Foundamentals of magmatic sulfide deposits[J]. Society of Economic Geology, Special Publication, 2011, 17: 1-26. |
[64] | BARNES S J, TANG Z L. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China[J]. Economic Geology, 1999, 94(3): 343-356. |
[65] | KEAYS R R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 1995, 34(1): 1-18. |
[66] | FLEET M E, CHRYSSOULIS S L, STONE W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115(1): 36-44. |
[67] | ZHOU M F, MICHAEL LESHER C, YANG Z X, et al. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian Orogenic Belt[J]. Chemical Geology, 2004, 209(3/4): 233-257. |
[1] | SONG X Y, LI X R. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment[J]. Mineralium Deposita, 2009, 44(3): 303-327. |
[2] | ZHANG Z C, MAO J W, CHAI F M, et al. Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, Northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits[J]. Economic Geology, 2009, 104: 185-203. |
[3] | LI C S, ZHANG M J, FU P E, et al. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China: product of slab window magmatism?[J]. Mineralium Deposita, 2012, 47(1): 51-67. |
[4] | MAO Y J, QIN K Z, LI C S, et al. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 2014, 200: 111-125. |
[5] | HAN B F, JI J Q, SONG B, et al. SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 2004, 49(22): 2424-2429. |
[6] | MAO Y J, QIN K Z, LI C S, et al. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China[J]. Mineralium Deposita, 2015, 50(1): 65-82. |
[7] | PENG R, ZHAI Y, LI C, et al. The erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to boninitic magmatism in an arc setting[J]. Economic Geology, 2013, 108(8): 1879-1888. |
[8] | WU F Y, WILDE S A, ZHANG G L, et al. Geochronology and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China[J]. Journal of Asian Earth Sciences, 2004, 23: 781-797. |
[9] | LÜ L S, MAO J W, LI H B, et al. Pyrrhotite Re-Os andSHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews, 2011, 43(1): 106-119. |
[10] | WEI B, WANG C, LI C S, et al. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No.7 orthopyroxenite intrusion, Central Asian Orogenic Belt, northeastern China[J]. Economic Geology, 2013, 108: 1813-1831. |
[11] | HAO L B, ZHAO X Y, BOORDER H D, et al. Origin of PGE depletion of Triassic magmatic Cu-Ni sulfide deposits in the central-southern area of Jilin Province, NE China[J]. Ore Geology Reviews, 2014b, 63: 226-237. |
[68] | PIRAJNO F, MAO J W, ZHANG Z C, et al. The association of mafic ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China:implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183. |
[69] | LIU Y G, LÜ X B, WU C M, et al. The migration of Tarim plume magma toward the Northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: as suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data[J] Ore Geology Reviews, 2016, 72: 538-545. |
[70] | HAN C M, XIAO W J, ZHAO G C, et al. Re-Os dating of the Kalatongke Cu-Ni deposit, Altay Shan, NW China, and resulting geodynamic implications[J]. Ore Geology Reviews, 2007, 32(1/2): 452-468. |
[71] | XIAO W J, WINDLEY B F, YUAN C, et al. Paleozoic multiple subduction-accretion processes of the southern Altaids[J]. American Journal of Science, 2009, 309(3): 221-270. |
[72] | CAMPBELL I H, GRIFFITHS R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth and Planetary Science Letters, 1990, 99(1/2): 79-93. |
[73] | ERNST R E. Recognizing mantle plumes in the geological record[J]. Annual Review of Earth and Planetary Sciences, 2003, 31(31): 469-523. |
[74] | COFFIN M F, ELDHOLM O. Large igneous provinces:crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1): 1-36. |
[75] | PETTIGREW N T, HATTORI K H. The Quetico intrusions of western superior province: Neo-Archean examples of Alaskan/Ural-type mafic-ultramafic intrusions[J]. Precambrian Research, 2006, 149(1/2): 21-42. |
[76] | THAKURTA J, RIPLEY E M, LI C S. Geochemical constraints on the origin of sulfide mineralization in the Duke Island Complex, southeastern Alaska[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): 1525-2027. |
[77] | HELMY H M, EL MAHALLAWI M M. Gabbro Akarem mafic-ultramafic complex, eastern desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes[J]. Mineralogy and Petrology, 2003, 77(1): 85-108. |
[78] | 彭玉鲸, 齐成栋, 周晓东, 等. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换: 时间标志与全球构造的联系[J]. 地质与资源, 2012, 21(3):261-265. |
[79] | MARTIN R F. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment[J]. Lithos, 2006, 91(1/2/3/4): 125-136. |
[80] | 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因: 质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761. |
[81] | ZHOU M F, ROBINSON P T, BAI W J. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. Mineralium Deposita, 1994, 29(1): 98-101. |
[82] | ZHOU M F, ROBINSON P T, MALPAS J, et al. Podiform chromitites in the Luobusa Ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. |
[12] | HAO L B, WEI Q Q, ZHAO Y Y, et al. Newly identified Middle-Late Permian mafic-ultramafic intrusions in the southeastern margin of the Central Asian Orogenic Belt: petrogenesis and its implications[J]. Geochemical Journal, 2015, 49(2): 157-173. |
[13] | 吕林素, 毛景文, 周振华, 等. 吉林红旗岭1号和7号岩体中含矿超镁铁质岩的矿物化学特征: 对岩浆演化过程以及铜镍硫化物矿床形成机制的约束[J]. 岩石学报, 2012, 28(1): 319-344. |
[14] | JAHN B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Journal of the Geological Society, 2004, 226: 73-100. |
[15] | 冯光英, 刘燊, 冯彩霞, 等. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报, 2011, 27(6): 1594-1606. |
[16] | HAN C M, XIAO W J, ZHAO G C, et al. Re-Os isotopic age of the Hongqiling Cu-Ni sulfide deposit in Jilin Province, NE China and its geological significance[J]. Resource Geology, 2014, 64(3): 247-261. |
[17] | DICK H J B, BULLEN T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76. |
[18] | BARNES S J, ROEDER P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42(12): 2279-2302. |
[19] | DOWNES H, REICHOW M K, MASON P R D, et al. Mantle domains in the lithosphere beneath the French Massif Central: trace element and isotopic evidence from mantle clinopyroxenes[J]. Chemical Geology, 2003, 200(1/2): 71-87. |
[20] | DRIOUCH Y, BÉZIAT D, GRÉGOIRE M, et al. Clinopyroxene trace element compositions of cumulate mafic rocks and basalts from the Hercynian Moroccan Central Meseta: petrogenetic implications[J]. Journal of African Earth Sciences, 2010, 56(2/3): 97-106. |
[21] | LIU Y G, LÜ X B, YANG L, et al. Metallogeny of the Poyi magmatic Cu-Ni deposit: revelation from the contrast of PGE and olivine composition with other Cu-Ni sulfide deposits in the Early Permian, Xinjiang, China[J]. Geosciences Journal, 2015, 19: 613-620. |
[22] | LIU Y G, LI W Y, LÜ X B, et al. Sulfide saturation mechanism of the Poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 2017, 91: 419-431. |
[23] | LIIPO J, VUOLLO J, NYKÄNEN V, et al. Chromites from the Early Proterozoic Outokumpu-Jormua Ophiolite Belt: a comparison with chromites from Mesozoic ophiolites[J]. Lithos, 1995, 36(1): 15-27. |
[24] | ROEDER P L, EMSLIER F. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. |
[25] | 薛胜超, 秦克章, 唐冬梅, 等. 东疆二叠纪镁铁-超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示[J]. 岩石学报, 2015, 31(8): 2175-2192. |
[26] | WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[27] | KRÖNER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. |
[28] | XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. |
[29] | LIU Y J, LI W M, FENG Z Q, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43: 123-148. |
[30] | WU F Y, SUND Y, GE W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. |
[31] | WU F Y, ZHAO G C, SUN D Y, et al. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 542-556. |
[32] | WU F Y, SUN D Y, LI H M, et al. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173. |
[33] | 秦宽. 红旗岭岩浆硫化铜镍矿床地质特征[J]. 吉林地质, 1995, 14(3): 17-30. |
[34] | 郝立波, 孙立吉, 赵玉岩, 等. 吉林红旗岭2号岩体锆石SHRIMP U-Pb定年及其地质意义[J]. 吉林大学学报(地球科学版), 2012, 42(增刊3): 166-178. |
[35] | LIU Y S, HU Z C, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. |
[36] | 李爱. 吉林红旗岭镁铁-超镁铁质岩体矿物、岩石地球化学及成矿作用[D]. 长春: 吉林大学, 2019. |
[37] | PAGE P, BARNES S J. Using trace elements in chromites to constrain the origin of podiform chromitites in the thetford mines ophiolite, Quebec, Canada[J]. Economic Geology, 2009, 104(7): 997-1018. |
[38] | YAO S. Chemical composition of chromites from ultramafc rocks: application to mineral exploration and petrogenesis[D]. Sydney: Macquarie University, 1999. |
[39] | MCDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253. |
[40] | SUN T, QIAN Z Z, DENG Y F, et al. PGE and isotope (Hf-Sr-Nd-Pb) constraints on the origin of the Huangshandong magmatic Ni-Cu sulfide deposit in the Central Asian Orogenic Belt, northwestern China[J]. Economic Geology, 2013, 108(8): 1849-1864. |
[41] | XUE S C, QIN K Z, LI C S, et al. Geochronological, petrological, and geochemical constraints on Ni-Cu sulfide mineralization in the Poyi ultramafic-troctolitic intrusion in the Northeast rim of the Tarim Craton, western China[J]. Economic Geology, 2016, 111(6): 1465-1484. |
[42] | LI C S, THAKURTA J, RIPLEY E M. Low-Ca contents and kink-banded textures are not unique to mantle olivine: evidence from the Duke Island Complex, Alaska[J]. Mineralogy and Petrology, 2012, 104(3): 147-153. |
[43] | SOBOLEV A V, HOFMANN A W, KUZMIN D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823): 412-417. |
[44] | MORIMOTO N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76. |
[45] | SU B X, QIN K Z, SAKYI P A, et al. Occurrence of an Alaskan-type complex in the middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies[J]. International Geology Review, 2012, 54(3): 249-269. |
[46] | KAY S M, SNEDDEN W T, FOSTER B P, et al. Upper mantle and crustal fragments in the Ithaca kimberlites[J]. The Journal of Geology, 1983, 91(3): 277-290. |
[47] | LEAKE B E. Nomenclature of amphiboles[J]. Mineralogical Magazine, 1978, 42(324): 533-563. |
[48] | GODEL B, BARNES S J, MAIER W D. Parental magma composition inferred from trace element in cumulus and intercumulus silicate minerals: an example from the lower and lower critical zones of the Bushveld Complex, South-Africa[J]. Lithos, 2011, 125(1/2): 537-552. |
[49] | RIPLEY E M, LI C S. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis?[J]. Economic Geology, 2013, 108(1): 45-58. |
[50] | HOFMANN A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 297-314. |
[51] | PEARCE J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1): 14-48. |
[52] | PELTONEN P. Petrogenesis of ultramafic rocks in the Vammala nickel belt: implications for crustal evolution of the Early Proterozoic Svecofennian arc terrane[J]. Lithos, 1995, 34(4): 253-274. |
[53] | 孙立吉. 红旗岭铜镍硫化物矿床地质地球化学特征及找矿技术方法研究[D]. 长春: 吉林大学, 2013. |
[54] | FOSTER J G, LAMBERT D D, FRICK L R, et al. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 1996, 382: 703-706. |
[55] | MAUREL C, MAUREL P. Etude experimentale de la distribution de l’aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: teneur en chrome des spinelles[J]. Bulletin de Mineralogie, 1982, 105: 197-202. |
[56] | KELEMEN P B. Reaction between ultramafic rock and fractionating basaltic magma I. phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite[J]. Journal of Petrology, 1990, 31(1): 51-98. |
[1] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[2] | ZHU Xuefeng,CHEN Yanjing,WANG Pin,ZHANG Cheng,CAI Yunlong,DENG Ke,XU Qiangwei,LI Kaiyue. Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia. [J]. Earth Science Frontiers, 2018, 25(5): 119-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||