Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (4): 245-259.DOI: 10.13745/j.esf.sf.2023.6.1
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 8) • Previous Articles Next Articles
DU Lintao1(), BI Wenjun2,*(
), LI Yalin3, ZHANG Jiawei4, ZHANG Shaowen1, YIN Xuwei1, WANG Chengxiu1
Received:
2023-05-22
Revised:
2023-06-07
Online:
2023-07-25
Published:
2023-07-07
CLC Number:
DU Lintao, BI Wenjun, LI Yalin, ZHANG Jiawei, ZHANG Shaowen, YIN Xuwei, WANG Chengxiu. Sedimentary environment, provenance analysis and tectonic significance of the Upper-Cretaceous Abushan Formation in 114 Daoban, Anduo area, Qiangtang Basin[J]. Earth Science Frontiers, 2023, 30(4): 245-259.
砾石统计点 | Mz/cm | σ | SK1 | 峰度 | d/cm | F | ψ | H/km |
---|---|---|---|---|---|---|---|---|
点1 | 13.1 | -1.5 | -1.8 | -0.38 | 4.6 | 1.8 | 0.73 | 34.9 |
点2 | 9.6 | 3.3 | -4.4 | -0.17 | 4.9 | 2.0 | 0.68 | 39.9 |
点3 | 17.0 | 8.2 | -1.9 | -0.57 | 4.0 | 1.8 | 0.72 | 39.9 |
Table 1 Physical properties of gravel from the Abushan Formation in 114 Daoban
砾石统计点 | Mz/cm | σ | SK1 | 峰度 | d/cm | F | ψ | H/km |
---|---|---|---|---|---|---|---|---|
点1 | 13.1 | -1.5 | -1.8 | -0.38 | 4.6 | 1.8 | 0.73 | 34.9 |
点2 | 9.6 | 3.3 | -4.4 | -0.17 | 4.9 | 2.0 | 0.68 | 39.9 |
点3 | 17.0 | 8.2 | -1.9 | -0.57 | 4.0 | 1.8 | 0.72 | 39.9 |
指数 | 重矿物组合 | 重矿物指数 |
---|---|---|
ATi | 磷灰石-电气石 | 100×磷灰石/(磷灰石+电气石) |
GZi | 石榴石-锆石 | 100×石榴石/(石榴石+锆石) |
MZi | 独居石-锆石 | 100×独居石/(独居石+锆石) |
RuZi | 金红石-锆石 | 100×金红石/(金红石+锆石) |
ZTR | 锆石-电气石-金红石 | 锆石+电气石+金红石 |
Table 2 Heavy mineral indices used in this study
指数 | 重矿物组合 | 重矿物指数 |
---|---|---|
ATi | 磷灰石-电气石 | 100×磷灰石/(磷灰石+电气石) |
GZi | 石榴石-锆石 | 100×石榴石/(石榴石+锆石) |
MZi | 独居石-锆石 | 100×独居石/(独居石+锆石) |
RuZi | 金红石-锆石 | 100×金红石/(金红石+锆石) |
ZTR | 锆石-电气石-金红石 | 锆石+电气石+金红石 |
层位 | wB/% | ZTR | RuZi | GZi | ATi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
锆石 | 金红石 | 电气石 | 磷灰石 | 石榴子石 | 锐钛矿 | 白钛石 | 辉铜矿 | 黄铁矿 | 重晶石 | 辉石 | 绿帘石 | |||||
4BA-04 | 63.3 | 10.7 | 4.1 | 1.9 | 11.1 | 2.4 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 75.7 | 14.4 | 15 | 31.1 |
4BA-06 | 25.5 | 6.9 | 8.3 | 0.2 | 30.3 | 0.5 | 27.4 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 62.6 | 21.4 | 54.3 | 2.1 |
4BA-08 | 50.0 | 5.0 | 15.4 | 2.3 | 14.0 | 1.3 | 1.7 | 0.0 | 4.6 | 0.0 | 4.2 | 1.4 | 64.0 | 9.2 | 21.9 | 13.1 |
4BA-11 | 41.1 | 3.3 | 8.4 | 0.6 | 32.3 | 0.0 | 0.4 | 0.0 | 0.2 | 13.6 | 0.0 | 0.0 | 39.5 | 7.5 | 44 | 6.9 |
Table 3 Relative percentage of heavy minerals in and heavy mineral index values for rock samples from the Abushan Formation in 114 daoban area
层位 | wB/% | ZTR | RuZi | GZi | ATi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
锆石 | 金红石 | 电气石 | 磷灰石 | 石榴子石 | 锐钛矿 | 白钛石 | 辉铜矿 | 黄铁矿 | 重晶石 | 辉石 | 绿帘石 | |||||
4BA-04 | 63.3 | 10.7 | 4.1 | 1.9 | 11.1 | 2.4 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 75.7 | 14.4 | 15 | 31.1 |
4BA-06 | 25.5 | 6.9 | 8.3 | 0.2 | 30.3 | 0.5 | 27.4 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 | 62.6 | 21.4 | 54.3 | 2.1 |
4BA-08 | 50.0 | 5.0 | 15.4 | 2.3 | 14.0 | 1.3 | 1.7 | 0.0 | 4.6 | 0.0 | 4.2 | 1.4 | 64.0 | 9.2 | 21.9 | 13.1 |
4BA-11 | 41.1 | 3.3 | 8.4 | 0.6 | 32.3 | 0.0 | 0.4 | 0.0 | 0.2 | 13.6 | 0.0 | 0.0 | 39.5 | 7.5 | 44 | 6.9 |
[1] |
DECELLES P G, QUADE J, KAPP P, et al. High and dry in central Tibet during the Late Oligocene[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 389-401.
DOI URL |
[2] |
LIU Z F, WANG C S. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil Basin, northern Tibet[J]. Sedimentary Geology, 2001, 140(3/4): 251-270.
DOI URL |
[3] |
ALLEGRE C J, COURTILLOT V, TAPPONNIER P. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307(5946): 17-22.
DOI |
[4] |
MOLNAR P, ENGLAND P, MARTIOND J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
DOI URL |
[5] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(28): 211-280.
DOI URL |
[6] | KAPP P, DECELLES P, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 19(7/8): 917-932. |
[7] | KAPP P, YIN A, HAARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Tectonics, 2005, 117: 865-878. |
[8] |
LI Y L, HE J, WANG C S, et al. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 2013, 160/161: 1-13.
DOI URL |
[9] |
LI Y L, HE J, WANG C S, et al. Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong-Nujiang Ocean?[J]. Journal of Asian Earth Sciences, 2015, 104: 69-83.
DOI URL |
[37] | MCLANE M. Sedimentology[M]. New York: Oxford University Press, 1995: 12-46. |
[38] | 万静萍, 马立祥, 周宗良. 恢复酒西地区白垩系变形盆地原始沉积边界的方法探讨[J]. 石油实验地质, 1989, 11(3): 245-249. |
[39] | 王成善, 李祥辉. 沉积盆地分析原理与方法[M]. 北京: 高等教育出版社, 2003: 6-35. |
[40] | DICKINSON W R. Interpreting provenance relations from detrital modes of sandstones[J]. Provenance of Arenites, 1985(29): 333-361. |
[41] | INGERSOLL R V, BULLARD T F, FORD R L, et al. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method[J]. Journal of Sedimentary Research, 1984, 54(1): 103-116. |
[42] |
MORTON A C, HALLSWORTH C R. Identifying Provenance-Specific Features of Detrital Heavy Mineral Assemblages in Sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
DOI URL |
[43] | MORTON A C, HALLSWORTH C R. Chapter 7 stability of detrital heavy minerals during burial diagenesis[J]. Developments in Sedimentology, 2007, 58: 215-245. |
[44] |
ZHANG C K, LI X H, MATTERN F, et al. Deposystem architectures and lithofacies of a sub Marine fan-dominated deep sea succession in an orogen: a case study from the Upper Triassic Langjiexue Group of southern Tibet[J]. Journal Asian Earth Science, 2015, 111(1): 222-243.
DOI URL |
[45] | 曾庆高, 李祥辉, 夏斌, 等. 西藏仁布地区上三叠统重矿物组合与物源分析[J]. 地质通报, 2009, 28(1): 38-44. |
[46] |
ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
DOI URL |
[10] |
LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review[J]. Earth Science Reviews, 2015, 143: 36-61.
DOI URL |
[11] |
HE H Y, LI Y L, WANG C S, et al. Late Cretaceous (ca.95? Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: petrogenetic and tectonic implications[J]. Lithos, 2018, 302/303: 389-404.
DOI URL |
[12] |
LI Y L, HE J, WANG C S, et al. Early Cretaceous (ca.100 Ma) magmatism in the southern Qiangtang subterrane, central Tibet: product of slab break-off?[J]. International Journal of Earth Sciences, 2017, 106: 1289-1310.
DOI URL |
[13] |
LI Y L, HE J, WANG C S, et al. Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong-Nujiang Ocean?[J]. Journal of Asian Earth Sciences, 2015, 104: 69-83.
DOI URL |
[14] | 杜林涛, 李亚林, 刘洋. 西藏羌塘地体中生代中—晚期不整合事件及其构造意义[J]. 地质科技通报, 2021, 40(4): 61-71. |
[15] |
CHEN S S, FAN W M, SHI R D, et al. Removal of deep lithosphere in ancient continental collisional orogens: a case study from central Tibet, China[J]. Geochemistry Geophysics Geosystems, 2017, 18(3): 1225-1243.
DOI URL |
[16] | LIU D L, SHI R D, DING L, et al. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: new volcanic constraints from central Tibet[J]. lithos, 2017, 296: 452-470. |
[17] | 杜林涛, 李亚林. 北羌塘托纳木地区上白垩统阿布山组沉积特征、物源分析及其构造意义[J]. 地球学报, 2022, 43(4): 555-568. |
[18] | MA A L, HU X M, GARZANTI E, et al. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research, 2017, 122: 4790-4813. |
[47] | LUDWIG K. Isoplot 4.1. A geochronological toolkit for Microsoft Excel[M]. San Francisco: Berkeley Geochronology Center Special Publication, 2009, 4: 76-77. |
[48] | GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5): TC5016. |
[49] |
WANG Z W, WANG J, FU X G, et al. Provenance and tectonic setting of the Quemoco sandstones in the North Qiangtang Basin, North Tibet: evidence from geochemistry and detrital zircon geochronology[J]. Geological Journal, 2018, 53(4): 1465-1481.
DOI URL |
[50] | Zhang J W, Li Y L, Zhang H, et al. Provenance of Middle Jurassic sequences in the Northern Qiangtang: implications for Mesozoic exhumation of the Central Tibetan Mountain Range[J]. International Geology Review, 2020(1): 1-21. |
[51] | 钱信禹. 北羌塘盆地与中央隆起带晚三叠世以来剥露历史的低温热年代学约束[D]. 北京: 中国地质大学(北京), 2020: 51-56. |
[52] |
DONG C Y, LI C, WAN Y S, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: constraint on tectonic affinity and source regions[J]. Science China-Earth Sciences, 2011, 54(7): 1034-1042.
DOI URL |
[53] |
PULLEN A, KAPP P, GEHRELS G E, et al. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4): 585-600.
DOI URL |
[54] |
ZHAO Z B, BONS P D, WANG G H, et al. Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet[J]. Tectonophysics, 2014, 623: 52-66.
DOI URL |
[55] |
FAN J J, LI C, WANG M, et al. Features, provenance, and tectonic significance of Carboniferous-Permian glacial marine diamictites in the Southern Qiangtang-Baoshan block, Tibetan Plateau[J]. Gondwana Research, 2016, 28(4): 1530-1542.
DOI URL |
[56] |
MA A L, HU X M, PAUL K et al. The disappearance of a late Jurassic remnant sea in the southern Qiangtang block (shamuluo formation, najiangco area): implications for the tectonic uplift of central tibet[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2018, 506: 30-47.
DOI URL |
[19] | 金纬. 青藏高原腹地晚白垩—古近纪高原隆升的沉积响应与油气后期保存[D]. 成都: 成都理工大学, 2007: 47-95. |
[20] | 王志龙, 胡西冲, 石晓龙, 等. 西藏窝若巴勒白龙地区阿布山组沉积岩石、 地球化学特征及碎屑锆石对物源信息的指示意义[J]. 地质通报, 2017, 36(06): 1188-1203. |
[21] |
ZHANG J W, SINCLAIR H D, LI Y L, et al. Subsidence and exhumation of the Mesozoic Qiangtang Basin: implications for the growth of the Tibetan plateau[J]. Basin Research, 2019, 31: 754-781.
DOI URL |
[22] | 黄继钧. 羌塘盆地基底构造特征[J]. 地质学报, 2001, 75(3): 333-337. |
[23] |
KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22.
DOI URL |
[24] | 李才, 翟庆国, 陈文, 等. 青藏高原龙木错—双湖板块缝合带闭合的年代学证据: 来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J]. 岩石学报, 2007, 23(5): 911-918. |
[25] |
王根厚, 李典, 梁晓. 南羌塘印支期增生造山带组成、 结构及演化[J]. 地学前缘, 2023, 30(3): 242-261.
DOI |
[26] |
ZHANG J W, SINCLAIR H D, LI Y L, et al. Subsidence and exhumation of the Mesozoic Qiangtang Basin: implications for the growth of the Tibetan plateau[J]. Basin Research, 2019, 31(4): 754-781.
DOI URL |
[27] | 李亚林. 羌塘盆地托纳木地区石油地质特征与资源潜力[M]. 北京: 地质出版社, 2011: 15-75. |
[28] | 曾胜强. 羌塘盆地白垩系海相油页岩的发现及其石油地质意义[D]. 北京: 中国地质科学院, 2013: 25-28. |
[57] |
LI S, GUILMETTE C, DING L, et al. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: implications for the age of the initial Lhasa-Qiangtang collision[J]. Journal of Asian Earth Sciences, 2017, 147: 469-484.
DOI URL |
[58] | 白志达, 徐德斌, 张绪教, 等. 西藏安多县幅1∶25万区域地质调查[R]. 北京: 中国地质大学(北京), 2005: 8-138. |
[59] | 陈杰, HEENNANCE R V, BRUBANK D W, 等. 中国西南天山西域砾岩的磁性地层年代与地质意义[J]. 第四纪研究, 2007, 27(4): 576-587. |
[60] |
ZHANG P Z, MOLNAR P, DOWNS W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410: 891-897.
DOI URL |
[61] | 孙立新. 班公湖—怒江缝合带中段晚侏罗世—白垩纪碰撞作用的沉积响应[D]. 北京: 中国地质大学(北京), 2005: 34-112. |
[62] |
WANG J G, HU X M, GARZANTI E, et al. Early Cretaceous topographic growth of the Lhasaplano, Tibetan Plateau: constraints from the Damxung Conglomerate[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 5748-5765.
DOI URL |
[63] | MA A L, HU X M, GARZANTI E, et al. Mid-cretaceous exhumation of the central Qiangtang Mountain Range metamorphic rocks as evidenced by the Abushan continental redbeds[J]. Tectonics, 2023, 42(3): e2022TC007520. |
[64] | 吴珍汉, 刘志伟, 赵珍, 等. 羌塘盆地隆鄂尼-昂达尔错古油藏逆冲推覆构造隆升[J]. 地质学报, 2016, 90(4): 615-627. |
[65] | KAPP P, MURPHY M A, YIN A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1-17. |
[66] |
BI W J, HAN Z P, LI Y L, et al. Deformation and cooling history of the central Qiangtang terrane, Tibetan Plateau and its tectonic implications[J]. International Geology Review, 2020, 63(15): 1821-1837.
DOI URL |
[29] | 白志达, 徐德斌, 陈梦军, 等. 西藏安多地区粗面岩的特征及其锆石SHRIMP U-Pb定年[J]. 地质通报, 2009, 28(9): 1229-1235. |
[30] | 陈文彬, 贺永忠, 占王忠, 等. 藏北南羌塘安多县鄂斯玛地区早白垩世孢粉化石Dicheiropollis的发现及其地质意义[J]. 地质通报, 2012, 31(10): 1602-1607. |
[31] |
HE H Y, LI Y L, WANG C S, et al. Petrogenesis and tectonic implications of Late Cretaceous highly fractionated I-type granites from the Qiangtang block, central Tibet[J]. Journal of Asian Earth Sciences, 2019, 176: 337-352.
DOI URL |
[32] | HE H Y, LI Y L, NING Z J, et al. Transition from oceanic subduction to continental collision in central Tibet: evidence from the Cretaceous magmatism in Qiangtang block[J]. 2020, 64(4): 545-563. |
[33] | 吴瑞忠, 胡承祖, 王成善, 等. 藏北羌塘地区地层系统[J]. 青藏高原地质文集, 1985(9): 1-32. |
[34] | 吴珍汉, 高锐, 卢占武, 等. 羌塘盆地结构构造与油气勘探方向[J]. 地质学报, 2014, 88(6): 1130-1144. |
[35] |
FORK R L, WARD W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
DOI URL |
[36] |
FORK R L. A review of grain-size parameters[J]. Sedimentology, 1966, 6(2): 73-93.
DOI URL |
[67] |
ZHAO Z B, BONS P D, STUBNER K, et al. Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet[J]. Terra Nova, 2017, 29(6): 382-391.
DOI URL |
[68] | 许明. 西藏羌塘盆地结构与构造变形特征[D]. 北京: 中国地质大学(北京), 2017: 86-98. |
[69] | XUE W W, NAJMAN Y, HU X M, et al. Late Cretaceous to Late Eocene exhumation in the Nima area, central Tibet: implications for development of low relief topography of the Tibetan Plateau[J]. Tectonics, 2022, 41: e2021TC006989. |
[70] | BI W J, LI Y L, KAMP P J J, et al. Cretaceous-Cenozoic cooling history of the Qiangtang terrane and implications for Central Tibet formation[J]. Geological Society of America Bulletin, 2023, 135(516): 1587-1601. |
[71] |
毕文军, 张佳伟, 李亚林, 等. 西藏中部羌塘地体白垩纪以来隆升剥露过程[J]. 地学前缘, 2023, 30(2): 18-34.
DOI |
[72] |
赵珍, 陆露, 吴珍汉. 羌塘盆地中央隆起带的抬升演化: 构造-热年代学约束[J]. 地学前缘, 2019, 26(2): 249-263.
DOI |
[73] | 刘少峰, 林成发, 刘晓波, 等. 冀北张家口地区同构造沉积过程及其与褶皱-逆冲作用耦合[J]. 中国科学: 地球科学, 2019, 48(6): 705-731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||