Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 151-164.DOI: 10.13745/j.esf.sf.2022.5.39
Previous Articles Next Articles
SHAO Deyong1,2(), LI Yanfang2, ZHANG Liuliu3, LUO Huan3, MENG Kang1, ZHANG Yu1, SONG Hui1, ZHANG Tongwei4,*(
)
Received:
2022-04-06
Revised:
2022-04-30
Online:
2023-05-25
Published:
2023-04-27
CLC Number:
SHAO Deyong, LI Yanfang, ZHANG Liuliu, LUO Huan, MENG Kang, ZHANG Yu, SONG Hui, ZHANG Tongwei. Influence of microscopic fabric on organic matter occurrence and pore development in mudrock: A case study of the Cretaceous Eagle Ford Shale[J]. Earth Science Frontiers, 2023, 30(3): 151-164.
样品 | TOC含量/% | S1/(mg·g-1) | S2/(mg·g-1) | S3/(mg·g-1) | Tmax/℃ | HI | OI | OSI | PI |
---|---|---|---|---|---|---|---|---|---|
抽提前 | 6.34 | 8.50 | 9.02 | 0.75 | 446 | 142 | 3 | 143 | 0.48 |
抽提后 | 4.96 | 0.72 | 5.51 | 0.04 | 459 | 111 | 1 |
Table 1 Geochemical parameters for the Eagle Ford Shale core sample
样品 | TOC含量/% | S1/(mg·g-1) | S2/(mg·g-1) | S3/(mg·g-1) | Tmax/℃ | HI | OI | OSI | PI |
---|---|---|---|---|---|---|---|---|---|
抽提前 | 6.34 | 8.50 | 9.02 | 0.75 | 446 | 142 | 3 | 143 | 0.48 |
抽提后 | 4.96 | 0.72 | 5.51 | 0.04 | 459 | 111 | 1 |
[1] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. |
[2] | 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. |
[3] |
金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10.
DOI |
[4] | 肖贤明, 宋之光, 朱炎铭, 等. 北美页岩气研究及对我国下古生界页岩气开发的启示[J]. 煤炭学报, 2013, 38(5): 721-727. |
[5] | 董大忠, 王玉满, 李新景, 等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1): 19-32. |
[6] | 邵德勇, 张六六, 张亚军, 等. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015. |
[7] | 张同伟, 张亚军, 贾敏, 等. 中国南方寒武系海相页岩含气性主控因素的科学问题[J]. 矿物岩石地球化学通报, 2018, 37(4): 572-579, 794. |
[8] |
ZHANG Q, LITTKE R, ZIEGER L, et al. Ediacaran, Cambrian, Ordovician, Silurian and Permian shales of the Upper Yangtze Platform, South China: deposition, thermal maturity and shale gas potential[J]. International Journal of Coal Geology, 2019, 216: 103281.
DOI URL |
[9] |
WANG Q T, LU H, WANG T L, et al. Pore characterization of Lower Silurian shale gas reservoirs in the Middle Yangtze region, central China[J]. Marine and Petroleum Geology, 2018, 89: 14-26.
DOI URL |
[10] |
WANG Q T, WANG T L, LIU W P, et al. Relationships among composition, porosity and permeability of Longmaxi shale reservoir in the Weiyuan block, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 33-47.
DOI URL |
[11] |
孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25(2): 14-26.
DOI |
[12] |
郭彤楼. 多旋回盆地叠合复合控藏在常规非常规天然气勘探中的实践[J]. 地学前缘, 2022, 29(6): 109-119.
DOI |
[13] |
TIAN H, PAN L, ZHANG T W, et al. Pore characterization of organic-rich Lower Cambrian shales in Qiannan depression of Guizhou Province, southwestern China[J]. Marine and Petroleum Geology, 2015, 62: 28-43.
DOI URL |
[14] |
赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510.
DOI |
[15] |
WU C J, TUO J C, ZHANG L F, et al. Pore characteristics differences between clay-rich and clay-poor shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou area, and insights into shale gas storage mechanisms[J]. International Journal of Coal Geology, 2017, 178: 13-25.
DOI URL |
[16] |
GAI H F, TIAN H, CHENG P, et al. Characteristics of molecular nitrogen generation from overmature black shales in South China: preliminary implications from pyrolysis experiments[J]. Marine and Petroleum Geology, 2020, 120: 104527.
DOI URL |
[17] | 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447. |
[18] | 罗胜元, 刘安, 李海, 等. 中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素[J]. 石油实验地质, 2019, 41(1): 56-67. |
[19] | 刘忠宝, 边瑞康, 高波, 等. 上扬子地区下寒武统页岩有机质孔隙类型及发育特征[J]. 世界地质, 2019, 38(4): 999-1011. |
[20] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology,genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
DOI URL |
[21] |
KO L T, LOUCKS R G, ZHANG T W, et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722.
DOI URL |
[22] |
KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones:insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190: 3-28.
DOI URL |
[23] |
LIU D Y, LI H C, ZHANG C, et al. Experimental investigation of pore development of the Chang 7 member shale in the Ordos Basin under semi-closed high-pressure pyrolysis[J]. Marine and Petroleum Geology, 2019, 99: 17-26.
DOI URL |
[24] |
BERNARD S, WIRTH R, SCHREIBER A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11.
DOI URL |
[25] |
BERNARD S, HORSFIELD B, SCHULZ H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 70-89.
DOI URL |
[26] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
DOI URL |
[27] | LOUCKS R G, REED R M. Scanning-electron-microscope petrographic evidence for distinguishing organic matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J]. Gulf Coast Association of Geological Societies Journal, 2014, 3: 51-60. |
[28] |
REED R M, LOUCKS R G, RUPPEL S C. et al. Comment on“Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)” by Bernard et al. (2012)[J]. International Journal of Coal Geology, 2014, 127: 111-113.
DOI URL |
[29] | 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响: 以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1): 40-53. |
[30] |
ROBISON C R. Hydrocarbon source rock variability within the Austin chalk and Eagle Ford shale (Upper Cretaceous), East Texas,USA[J]. International Journal of Coal Geology, 1997, 34(3/4): 287-305.
DOI URL |
[31] | JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. |
[32] |
ANOVITZ L M, COLE D R, SHEETS J M, et al. Effects of maturation on multiscale (nanometer to millimeter) porosity in the Eagle Ford shale[J]. Interpretation, 2015, 3(3): SU59-SU70.
DOI URL |
[33] |
KO L T, LOUCKS R G, RUPPEL S C, et al. Origin and characterization of Eagle Ford pore networks in the South Texas Upper Cretaceous shelf[J]. AAPG Bulletin, 2017, 101(3): 387-418.
DOI URL |
[34] |
DENNE R A, HINOTE R E, BREYER J A, et al. The Cenomanian-Turonian Eagle Ford Group of South Texas:insights on timing and paleoceanographic conditions from geochemistry and micropaleontologic analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 413: 2-28.
DOI URL |
[35] |
SUN X, ZHANG T W, SUN Y G, et al. Geochemical evidence of organic matter source input and depositional environments in the lower and upper Eagle Ford Formation, South Texas[J]. Organic Geochemistry, 2016, 98: 66-81.
DOI URL |
[36] |
ZHANG T W, SUN X, MILLIKEN K L, et al. Empirical relationship between gas composition and thermal maturity in Eagle Ford shale, South Texas[J]. AAPG Bulletin, 2017, 101(8): 1277-1307.
DOI URL |
[37] | REED R M, SIVIL E, SUN X, et al. Heterogeneity of microscale lithology and pore systems in an Upper Cretaceous Eagle Ford Group horizontal core, South Texas, USA[J]. Gulf Coast Association of Geological Societies Journal, 2019, 8: 22-34. |
[38] |
SHAO D Y, ELLIS G S, LI Y F, et al. Experimental investigation of the role of rock fabric in gas generation and expulsion during thermal maturation: anhydrous closed-system pyrolysis of a bitumen-rich Eagle Ford shale[J]. Organic Geochemistry, 2018, 119: 22-35.
DOI URL |
[39] | SWEENEY J J, BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin, 1990, 74(10): 1559-1570. |
[40] | 张光荣, 聂海宽, 唐玄, 等. 页岩中黄铁矿类型及其对页岩气富集的影响: 以四川盆地及其周缘五峰组-龙马溪组页岩为例[J]. 石油实验地质, 2020, 42(3): 459-466. |
[41] | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer-Verlag, 1984. |
[42] |
MILLIKEN K L, KO L T, POMMER M, et al. SEM petrography of eastern Mediterranean sapropels: analogue data for assessing organic matter in oil and gas shales[J]. Journal of Sedimentary Research, 2014, 84(11): 961-974.
DOI URL |
[43] |
聂海宽, 金之钧, 边瑞康, 等. 四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气“源-盖控藏”富集[J]. 石油学报, 2016, 37(5): 557-571.
DOI |
[44] | 杨金朝, 夏嘉, 王思波, 等. 过成熟页岩孔隙结构变化的石英管热模拟研究[J]. 地球化学, 2016, 45(4): 407-418. |
[45] |
CHEN J, XIAO X M. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
DOI URL |
[46] |
SHAO D Y, ZHANG T W, KO L T, et al. Experimental investigation of oil generation, retention, and expulsion within Type II kerogen-dominated marine shales: insights from gold-tube nonhydrous pyrolysis of Barnett and Woodford shales using miniature core plugs[J]. International Journal of Coal Geology, 2020, 217: 103337.
DOI URL |
[47] | 刘树根, 叶玥豪, 冉波, 等. 差异保存条件下页岩孔隙结构特征演化及其意义[J]. 油气藏评价与开发, 2020, 10(5): 1-11. |
[48] | LEWAN M D. Laboratory simulation of petroleum formation hydrous pyrolysis[M]// ENGEL M H, MACKO S A. Organic geochemistry:principles and applications. New York: Plenum Press, 1993: 419-442. |
[49] |
FRÉBOURG G, RUPPEL S C, LOUCKS R G, et al. Depositional controls on sediment body architecture in the Eagle Ford/Boquillas system: insights from outcrops in West Texas, United States[J]. AAPG Bulletin, 2016, 100(4): 657-682.
DOI URL |
[50] |
MICELI ROMERO A A, NGUYEN T, PHILP R P. Organic geochemistry of the Eagle Ford Group in Texas[J]. AAPG Bulletin, 2018, 102(7): 1379-1412.
DOI URL |
[51] |
FRENCH K L, BIRDWELL J E, WHIDDEN K J. Geochemistry of a thermally immature Eagle Ford Group drill core in central Texas[J]. Organic Geochemistry, 2019, 131: 19-33.
DOI URL |
[52] |
VELDE B. Compaction trends of clay-rich deep sea sediments[J]. Marine Geology, 1996, 133(3/4): 193-201.
DOI URL |
[53] |
PEPPER A S. Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach[J]. Geological Society, London, Special Publications, 1991, 59(1): 9-31.
DOI URL |
[54] |
SANDVIK E I, YOUNG W A, CURRY D J. Expulsion from hydrocarbon sources: the role of organic absorption[J]. Organic Geochemistry, 1992, 19(1/2/3): 77-87.
DOI URL |
[55] | JARVIE D M. Shale resource systems for oil and gas: part 2: shale-oil resource systems[M]// BREYER J A. Shale reservoirs:giant resources for the 21st century. Tulsa: American Association of Petroleum Geologists, 2012: 89-119. |
[56] | SCHIEBER J, LAZAR R, BOHACS K, et al. An SEM study of porosity in the Eagle Ford shale of Texas: pore types and porosity distribution in a depositional and sequence-stratigraphic context[M]// BREYER J A. The Eagle Ford shale: a renaissance in U.S. oil production. Tulsa: American Association of Petroleum Geologists, 2016: 167-186. |
[57] |
HAN Y J, HORSFIELD B, CURRY D J. Control of facies, maturation and primary migration on biomarkers in the Barnett shale sequence in the Marathon 1 Mesquite well, Texas[J]. Marine and Petroleum Geology, 2017, 85: 106-116.
DOI URL |
[1] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||