Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (1): 281-295.DOI: 10.13745/j.esf.sf.2022.8.33-en
Special Issue: Research Articles (English)
LU Shuangfang1,2,3(), WANG Jun3, LI Wenbiao1,2,*(
), CAO Yixin3, CHEN Fangwen3, LI Jijun3, XUE Haitao3, WANG Min3
Received:
2022-07-10
Revised:
2022-07-30
Online:
2023-01-25
Published:
2022-10-20
Contact:
LI Wenbiao
About author:
LU Shuangfang, professor, doctoral supervisor; research on unconventional oil and gas geology and oil and gas geochemistry. E-mail: lushuangfang@qq.com
Supported by:
LU Shuangfang, WANG Jun, LI Wenbiao, CAO Yixin, CHEN Fangwen, LI Jijun, XUE Haitao, WANG Min. Economic feasibility and efficiency enhancement approaches for in situ upgrading of low-maturity organic-rich shale from an energy consumption ratio perspective[J]. Earth Science Frontiers, 2023, 30(1): 281-295.
Molecular formula and bond type | Number of bonds | ||
---|---|---|---|
Source kerogen | Residual kerogen | Light oil molecule | |
Molecular formula | C1439H2360O86.3N4.3S1.4 | C305H253O4N0.92S0.92 | C8H15.4O0.026N0.03S0.015 |
C-C | 1251 | 109 | 5.975 |
Benzene-C | 40 | 20 | |
C=C | 4 | 0.7 | |
C-C triple bond | 0.3 | ||
Aromatics | 96 | 42 | |
C-N | 12 | 2 | 0.03 |
C-O | 263 | 8 | 0.03 |
C=O | 78 | 0.01 | |
C-S | 2 | 2 | 0.0015 |
Phenolic hydroxyl C-O | 20 | ||
C-H | 1770 | 210 | 15.32 |
Benzene-H | 80 | 42 | |
N-H | 1 | 0.06 | |
Disulfide bond | 1 | ||
O-H | 65 | 0.01 | |
S-H | 0.0015 | ||
Phenol hydroxyl O-H | 20 | ||
Total molecular bond energy (kJ/mol) | 1604190.18 | 241314.86 | 9120.35 |
Molecular formula and bond type | Number of bonds | ||
---|---|---|---|
Source kerogen | Residual kerogen | Light oil molecule | |
Molecular formula | C1439H2360O86.3N4.3S1.4 | C305H253O4N0.92S0.92 | C8H15.4O0.026N0.03S0.015 |
C-C | 1251 | 109 | 5.975 |
Benzene-C | 40 | 20 | |
C=C | 4 | 0.7 | |
C-C triple bond | 0.3 | ||
Aromatics | 96 | 42 | |
C-N | 12 | 2 | 0.03 |
C-O | 263 | 8 | 0.03 |
C=O | 78 | 0.01 | |
C-S | 2 | 2 | 0.0015 |
Phenolic hydroxyl C-O | 20 | ||
C-H | 1770 | 210 | 15.32 |
Benzene-H | 80 | 42 | |
N-H | 1 | 0.06 | |
Disulfide bond | 1 | ||
O-H | 65 | 0.01 | |
S-H | 0.0015 | ||
Phenol hydroxyl O-H | 20 | ||
Total molecular bond energy (kJ/mol) | 1604190.18 | 241314.86 | 9120.35 |
Molecule type | Proportion(%) | Number of C-C | Number of C-H | Total molecular bond energy (kJ/mol) |
---|---|---|---|---|
Methane | 70 | 4 | 1652.60 | |
Ethane | 20 | 1 | 6 | 2816.38 |
Propane | 7 | 2 | 8 | 3980.16 |
Butane | 2 | 3 | 10 | 5143.94 |
Pentane | 1 | 4 | 12 | 6307.72 |
Total molecular bond energy of wet gas (kJ/mol) | 2164.66 |
Molecule type | Proportion(%) | Number of C-C | Number of C-H | Total molecular bond energy (kJ/mol) |
---|---|---|---|---|
Methane | 70 | 4 | 1652.60 | |
Ethane | 20 | 1 | 6 | 2816.38 |
Propane | 7 | 2 | 8 | 3980.16 |
Butane | 2 | 3 | 10 | 5143.94 |
Pentane | 1 | 4 | 12 | 6307.72 |
Total molecular bond energy of wet gas (kJ/mol) | 2164.66 |
Bond type | Carbon dioxide | Oxygen | Nitrogen |
---|---|---|---|
O=O | 1 | ||
C=O | 2 | ||
N-N triple bond | 1 | ||
Total molecular bond energy (kJ/mol) | 1448.38 | 498.00 | 946 |
Bond type | Carbon dioxide | Oxygen | Nitrogen |
---|---|---|---|
O=O | 1 | ||
C=O | 2 | ||
N-N triple bond | 1 | ||
Total molecular bond energy (kJ/mol) | 1448.38 | 498.00 | 946 |
Bond type | Dissociation energy (kJ/mol) |
---|---|
C-C | 337.48 |
Benzene-C | 380.62 |
C=C | 614.5 |
C-C triple bond | 962.7 |
Aromatics | 2060 |
C-N | 292 |
C-O | 349.58 |
C=O | 723.87 |
C-S | 272 |
Phenolic hydroxyl C-O | 427.6 |
C-H | 413.15 |
Benzene-H | 460 |
N-H | 391 |
Disulfide bond | 268 |
O-H | 463 |
S-H | 339 |
Phenol hydroxyl O-H | 356 |
Bond type | Dissociation energy (kJ/mol) |
---|---|
C-C | 337.48 |
Benzene-C | 380.62 |
C=C | 614.5 |
C-C triple bond | 962.7 |
Aromatics | 2060 |
C-N | 292 |
C-O | 349.58 |
C=O | 723.87 |
C-S | 272 |
Phenolic hydroxyl C-O | 427.6 |
C-H | 413.15 |
Benzene-H | 460 |
N-H | 391 |
Disulfide bond | 268 |
O-H | 463 |
S-H | 339 |
Phenol hydroxyl O-H | 356 |
Model parameter | Parameter value | Model parameter | Parameter value |
---|---|---|---|
Shale/sandstone length (m) | Sufficient | Shale thermal conductivity (W/(m·K)) | 1.0-2.4 (1.21) |
Shale thickness (m) | 30 | Surrounding rock thermal conductivity (W/(m·K)) | 2.1-3.5 (3) |
Sandstone thickness (m) | 500 | Shale specific heat (J/(kg·K)) | 1100-2000 (1141) |
Wellbore radius (m) | 0.02/0.05/0.1/0.2/0.5 | Specific heat of surrounding rock (J/(kg·K)) | 762-1071.8 (890) |
Well spacing (m) | 5/10/15/20/25 | Shale density (kg/m3) | 2100-2800 (2450) |
Burial depth of the bottom of shale layer (m) | 1800 | Density of surrounding rock (kg/m3) | 1800-2800 (2470) |
Ground surface temperature (℃) | 20 | Heating well temperature (℃) | 500/600/700/800/900 |
TOC (%) | 1-20 (5) | Production well temperature (℃) | 200/250/300/350/400 |
HI (mgHC/gTOC) | 800 | Geothermal gradient (℃/m) | 0.033 |
Model parameter | Parameter value | Model parameter | Parameter value |
---|---|---|---|
Shale/sandstone length (m) | Sufficient | Shale thermal conductivity (W/(m·K)) | 1.0-2.4 (1.21) |
Shale thickness (m) | 30 | Surrounding rock thermal conductivity (W/(m·K)) | 2.1-3.5 (3) |
Sandstone thickness (m) | 500 | Shale specific heat (J/(kg·K)) | 1100-2000 (1141) |
Wellbore radius (m) | 0.02/0.05/0.1/0.2/0.5 | Specific heat of surrounding rock (J/(kg·K)) | 762-1071.8 (890) |
Well spacing (m) | 5/10/15/20/25 | Shale density (kg/m3) | 2100-2800 (2450) |
Burial depth of the bottom of shale layer (m) | 1800 | Density of surrounding rock (kg/m3) | 1800-2800 (2470) |
Ground surface temperature (℃) | 20 | Heating well temperature (℃) | 500/600/700/800/900 |
TOC (%) | 1-20 (5) | Production well temperature (℃) | 200/250/300/350/400 |
HI (mgHC/gTOC) | 800 | Geothermal gradient (℃/m) | 0.033 |
[4] | LU S F, HUANG W B, CHEN F W, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-255. |
[5] |
LU S F, XUE H T, WANG M. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322.
DOI |
[6] | LU S F, XUE H T. Formation conditions, occurrence mechanism and enrichment distribution of shale oil[M]. Beijing: Petroleum Industry Press, 2021. |
[7] | CHEN X, WANG M, YAN Y X, et al. Continental shale oil exploration[M]. Beijing: Petroleum Industry Press, 2015. |
[8] | LIU B, LV Y F, MENG Y L, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: a case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607. |
[9] | ZHAO X Z, ZHOU L H, PU X G, et al. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. |
[10] | ZHI D M, TANG Y, YANG Z F, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. |
[11] |
FU J H, LIU X Y, LI S X, et al. Discovery and resource potential of shale oil of Chang 7 member, Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2021, 26(5): 1-11.
DOI |
[12] | HE W Y, MENG Q A, FENG Z H, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(1): 1-14. |
[13] | ZHANG Y Q. “Small Targets” for natural gas[ J]. Energy Review, 2017(2): 1. |
[14] | LIU Z J, LIU R. Oil shale resource state and evaluating system[J]. Earth Science Frontiers, 2005(3): 315-323. |
[15] | LI S Y, TANG X, HE J L, et al. Global oil shale development and utilization today: two oil shale symposiums held in 2012[J]. Sino-Global Energy, 2013, 18(1): 3-11. |
[16] | CUI J W, ZHU R K, HOU L H, et al. Shale in-situ mining technology status quo of challenges and opportunities[J]. Unconventional Oil & Gas, 2018, 5(6): 103-114. |
[17] | YANG Z, ZOU C N, FU J H, et al. Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale: a case study of Yanchang-7 member in Ordos Basin[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(3): 221-228. |
[18] | WALL E T.Method and apparatus for recovering carbon products from oil shale: US[P]. 1983. |
[19] | BARTIS J T, LATOURRETTE T, DIXON L, et al. Oil shale development in the United States: prospects and policy issues[R]. Santa Monica, CA: The RAND Corporation, 2005. |
[20] | HAROLD. Harold Vinegar Shell’s in-situ conversion process[R]. Colorado:26th Oil Shale Symposium, 2006. |
[21] | FOWLER T D, VINEGAR H J. Oil shale ICP - Colorado field pilots[R]. San Jose: SPE Western Regional Meeting, 2009. |
[22] | LEVERETTE H M. Status and plans for the U.S. department of interior program for development of oil shale and oil sands[R]. Colorado:31st Oil Shale Symposium, 2011. |
[23] | TANAKA P L, YEAKEL J D, SYMINGTON W A, et al. Plan to test ExxonMobil’s in situ oil shale technology on a propose RD&A lease[R]. Colorado:31st Oil Shale Symposium, 2011. |
[24] | MARK D L. Chevron’s plans for rubblization of Green River Formation oil shale (Gros) for chemical conversion[R]. Colorado:31st Oil Shale Symposium, 2011. |
[25] | ALAN B. Initial results from the AMOSO RD&D pilot test program[R]. Colorado:32nd Oil Shale Symposium, 2012. |
[26] | WANG Y P, WANG Y W, MENG X L, et al. Enlightenment of American’s oil shale in-situ retorting technology[J]. Oil Drilling & Production Technology, 2013, 35(6): 55-59. |
[27] |
KANG Z Q, ZHAO Y S, YANG D, et al. Physical principle and numerical analysis of oil shale development using in-situ conversion process technology[J]. Acta Petrolei Sinica, 2008(4): 592-595.
DOI |
[28] | YANG D, ZHAO J, KANG Z Q, et al. Technology and numerical analysis of in-situ electrical heating on oil shale[J]. Journal of Liaoning Technical University (Natural Science), 2010, 29(3): 365-368. |
[29] | WANG Q W. Experimental on thermal and electrical physical properties of oil shale in Jilin Huadian area[D]. Changchun: Jilin University, 2011. |
[30] |
WANG Q, ZHANG L, BAI J R, et al. The influence of microwave drying on physicochemical properties of Liushuhe oil shale[J]. Oil Shale, 2011, 28: 29-41.
DOI URL |
[31] |
WANG Q, GU Z Y, BAI J R, et al. Comparative study of the characteristics of oil shale with hot air drying and microwave drying[J]. Energy Procedia, 2012, 17: 884-891.
DOI URL |
[32] | ZHAO L. Experimental study on in-situ mining based overheat steam convection heating oil shale[D]. Taiyuan: Taiyuan University of Technology, 2015. |
[33] | XIA T. Research on in-situ electrical heating development of oil shale reservoir by numerical simulation[D]. Qingdao: China University of Petroleum (East China), 2015. |
[34] | XUE J X, LIU Z H. Numerical simulation of the temperature field distribution of oil shale under in-situ process by the electricity heating method[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 669-672. |
[35] |
WANG Y D, WANG X Y, XING Y F, et al. Three-dimensional numerical simulation of enhancing shale gas desorption by electrical heating with horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 94-106.
DOI URL |
[36] | WU Y B, WANG H Z, JIANG Y W. Well pattern optimization for in-situ conversion process in shale oil reservoirs[C]. IFEDC-20182137, Xi’an: Shaanxi Petroleum Society, 2018: 955-963. |
[37] | ZHANG B, YU C, CUI J W. Kinetic simulation of hydrocarbon generation and its application to in-situ conversion of shale oil[J]. Petroleum Exploration and Development, 2019, 46(6): 1212-1219. |
[38] | Haibei Energy. 15 E&P technologies affecting the future of the oil and gas industry[EB/OL]. https:∥mp.weixin.qq.com/s/jYp8ikVYo4DtSTeIoUr66A,2019-1-18. |
[39] |
BEHAR F, VANDENBROUCKE M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.
DOI URL |
[40] | FU J M, QIN K Z. Kerogen geochemistry[M]. Guangdong: Guangdong Science and Technology Press, 1995: 373-436. |
[41] | LU S F, ZHANG M. Oil and gas geochemistry[M]. Beijing: Petroleum Industry Press, 2018: 1-316. |
[42] |
UNGERER P. State of the art of research in kinetic modelling of oil formation and expulsion[J]. Organic Geochemistry, 1990, 16(1): 1-25.
DOI URL |
[43] | LU S F. Theory and Application of hydrocarbon formation kinetics of organic matter[M]. Beijing: Petroleum Industry Press, 1996: 1-199. |
[44] |
LU S F, LI D, WANG Y W, et al. Resource evaluation method for generating condensate oil and light oil from sapropelic organic matter and its application[J]. Acta Petrolei Sinica, 2007, 28(5): 63-67.
DOI |
[45] | XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry (I)[M]. Beijing: Higher Education Press, 2005: 1-598. |
[46] | WANG Q, ZHANG Y, CHI M S. Pyrolysis properties of kerogen and the determination of aliphatic content of chain[J]. Acta Petrolei Sinica (Petroleum processing section), 2017, 33(4): 771-776. |
[47] | WANG T F, LU S X, ZHU Y J. Study on the thermal properties of Chinese oil shale Ⅱ. The measurement of specific heat of oil shale, char and spent shale[J]. Journal of Fuel Chemistry and Technology, 1987(4): 311-316. |
[48] | ZHOU K, SUN Y H, LI Q, et al. Experimental research about thermogravimetric analysis and thermal physical properties of Nong’an oil shale[J]. Global Geology, 2016, 35(4): 1178-1184. |
[49] | CUI J W, HOU L H, ZHU R K, et al. Thermal conductivity properties of rocks in the Chang 7 SHALE STRATA in the Ordos Basin and its implications for shale oil in-situ development[J]. Petroleum Geology & Experiment, 2019, 41(2): 280-288. |
[50] | Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China. GB 50366-2005 Technical code for ground-source heat pump system[S]. Beijing: China Construction Industry Press, 2009: 11-30. |
[51] | SNEDDON IN. Fourier transforms[M]. Princeton: Princeton University Press, 1950: 1-542. |
[52] | WANG S P, LIU D X, WANG H H, et al. Current situation and development potential of electric heating process of in-situ oil shale conversion[J]. Natural Gas Industry, 2011, 31(2): 114-118. |
[53] | LIU D X, WANG H Y, ZHENG D W, et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry, 2009, 29(5): 128-132. |
[1] | ZOU C N, TAO S Z, HOU L H. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014. |
[2] | JIA C Z, ZOU C N, YANG Z. Significant progress of continental petroleum geology theory in basins of Central and Western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560. |
[3] | ZHAI W Z, HU S Y, HOU L H, et al. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. |
[54] |
NETO A, THOMAS S, BOND G, et al. The oil shale transformation in the presence of an acidic BEA zeolite under microwave irradiation[J]. Energy & Fuels, 2014, 28(4): 2365-2377.
DOI URL |
[55] | WU M. The study of electric heating on hydrocarbon generation and pores evolution of shale in North Songliao Basin[D]. Qingdao: China University of Petroleum (East China), 2020. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||