Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (5): 47-58.DOI: 10.13745/j.esf.sf.2021.8.6
Previous Articles Next Articles
ZHU Dongdong1,2,3(), Jill N.SUTTON3, Aude LEYNAERT3, Paul J.TREGUER3, LIU Sumei1,2,*(
)
Received:
2020-07-30
Revised:
2021-03-11
Online:
2022-09-25
Published:
2022-08-24
Contact:
LIU Sumei
CLC Number:
ZHU Dongdong, Jill N.SUTTON, Aude LEYNAERT, Paul J.TREGUER, LIU Sumei. The global marine silicon cycle and its major challenges[J]. Earth Science Frontiers, 2022, 29(5): 47-58.
[1] |
ISSON T T, PLANAVSKY N J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate[J]. Nature, 2018, 560 (7719): 471-475.
DOI URL |
[2] |
HARRISON K G. Role of increased marine silica input on paleo-p CO2 levels[J]. Paleoceanography, 2000, 15(3): 292-298.
DOI URL |
[3] |
RAGUENEAU O, TRÉGUER P, LEYNAERT A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365.
DOI URL |
[4] | RAGUENEAU O, SCHULTES S, BIDLE K, et al. Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump[J]. Global Biogeochemical Cycles, 2006, 20(4): GB4S02. |
[5] |
CONLEY D J, CAREY J C. Silica cycling over geologic time[J]. Nature Geoscience, 2015, 8(6): 431-432.
DOI URL |
[6] |
TRÉGUER P, BOWLER C, MORICEAU B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11(1): 27-37.
DOI URL |
[7] |
NELSON D M, TRÉGUER P, BRZEZINSKI M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
DOI URL |
[8] |
BLATTMANN T M, LIU Z, ZHANG Y, et al. Mineralogical control on the fate of continentally derived organic matter in the ocean[J]. Science, 2019, 366(6466): 742-745.
DOI URL |
[9] |
SUTTON J N, ANDRÉ L, CARDINAL D, et al. A review of the stable isotope bio-geochemistry of the global silicon cycle and its associated trace elements[J]. Frontiers in Earth Science, 2018, 5: 112.
DOI URL |
[10] |
TRÉGUER P J, DE LA ROCHA C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5: 477-501.
DOI URL |
[11] | LLOPIS MONFERRER N L, BOLTOVSKOY D, TRÉGUER P, et al. Estimating biogenic silica production of rhizaria in the global ocean[J]. Global Biogeochemical Cycles, 2020, 34(3): e2019GB006286. |
[12] |
CONLEY D J, FRINGS P J, FONTORBE G, et al. Biosilicification drives a decline of dissolved Si in the oceans through geologic time[J]. Frontiers in Marine Science, 2017, 4: 397.
DOI URL |
[13] |
HENDRY K R, MARRON A O, VINCENT F, et al. Competition between silicifiers and non-silicifiers in the past and present ocean and its evolutionary impacts[J]. Frontiers in Marine Science, 2018, 5: 22.
DOI URL |
[14] |
LAUFKÖTTER C, VOGT M, GRUBER N, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models[J]. Biogeosciences, 2015, 12(23), 6955-6984.
DOI URL |
[15] |
DUTKIEWICZ S, HICKMAN A E, JAHN O, et al. Ocean colour signature of climate change[J]. Nature Communications, 2019, 10: 578.
DOI URL |
[16] | DEMASTER D J. Measuring biogenic silica in marine sediments and suspended matter[M]// HURD D C, SPENSERD W. Marine particles:analysis and characterization. Washington D C: American Geophysical Union, 2013: 363-367. |
[17] |
TRÉGUER P J, SUTTON J N, BRZEZINSKI M, et al. Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean[J]. Biogeosciences, 2021, 18(4):1269-1289.
DOI URL |
[18] |
MALDONADO M, LÓPEZ-ACOSTA M, SITJÀ C, et al. Sponge skeletons as an important sink of silicon in the global oceans[J]. Nature Geoscience, 2019, 12: 815-822.
DOI URL |
[19] |
DUTKIEWICZ A, MÜLLER R D, O'CALLAGHAN S, et al. Census of seafloor sediments in the World's ocean[J]. Geology, 2015, 43(9): 795-798.
DOI URL |
[20] |
PONDAVEN P, RAGUENEAU O, TRÉGUER P, et al. Resolving the “opal paradox” in the southern ocean[J]. Nature, 2000, 405(6783): 168-172.
DOI URL |
[21] |
DEMASTER D J. The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(16): 3155-3167.
DOI URL |
[22] |
WU B, LIU S M. Dissolution kinetics of biogenic silica and the recalculated silicon balance of the East China Sea[J]. Science of the Total Environment, 2020, 743: 140552.
DOI URL |
[23] | ALLER R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]// Treatise on geochemistry. Amsterdam: Elsevier, 2014: 293-334. |
[24] |
MACKENZIE F T, GARRELS R M, BRICKER O P, et al. Silica in sea water: control by silica minerals[J]. Science, 1967, 155(3768): 1404-1405.
DOI URL |
[25] |
MACKENZIE F T, KUMP L R. Reverse weathering, clay mineral formation, and oceanic element cycles[J]. Science, 1995, 270(5236): 586.
DOI URL |
[26] |
MICHALOPOULOS P, ALLER R C, REEDER R J. Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J]. Geology, 2000, 28(12): 1095.
DOI URL |
[27] |
RAHMAN S, ALLER R C, COCHRAN J K. Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: major deltaic sinks in the silica cycle[J]. Geophysical Research Letters, 2016, 43(13): 7124-7132.
DOI URL |
[28] |
RAHMAN S, ALLER R C, COCHRAN J K. The missing silica sink: revisiting the marine sedimentary Si cycle using cosmogenic 32Si[J]. Global Biogeochemical Cycles, 2017, 31(10): 1559-1578.
DOI URL |
[29] |
TRÉGUER P, NELSON D M, VAN BENNEKOM A J, et al. The silica balance in the World ocean: a reestimate[J]. Science, 1995, 268(5209): 375-379.
DOI URL |
[30] |
RAHMAN S, TAMBORSKI J J, CHARETTE M A, et al. Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget[J]. Marine Chemistry, 2019, 208: 29-42.
DOI URL |
[31] |
FABRE S, JEANDEL C, ZAMBARDI T, et al. An overlooked silica source of the modern oceans: are sandy beaches the key?[J]. Frontiers in Earth Science, 2019, 7: 231.
DOI URL |
[32] |
DÜRR H H, MEYBECK M, HARTMANN J, et al. Global spatial distribution of natural riverine silica inputs to the coastal zone[J]. Biogeosciences, 2011, 8(3): 597-620.
DOI URL |
[33] |
RAN X B, XU B C, LIU J, et al. Biogenic silica composition and δ13C abundance in the Changjiang (Yangtze) and Huanghe (Yellow) Rivers with implications for the silicon cycle[J]. Science of the Total Environment, 2017, 579:1541-1549.
DOI URL |
[34] |
RAN X B, LIU J, LIU S, et al. The biogenic silica composition, behavior and budget in the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2018, 37(1): 60-72.
DOI URL |
[35] |
SACCONE L, CONLEY D J, KONING E, et al. Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems[J]. European Journal of Soil Science, 2007, 58(6): 1446-1459.
DOI URL |
[36] | 臧家业, 王昊, 刘军, 等. 生物硅组成及对硅循环影响的研究进展[J]. 海洋科学进展, 2020, 38(1): 11-20. |
[37] |
RAN X B, LIU J, ZHANG J, Yet al. Export and dissolution of biogenic silica in the Yellow River (Huanghe) and implications for the estuarine ecosystem[J]. Marine Chemistry, 2018, 200: 14-21.
DOI URL |
[38] |
FRINGS P J, CLYMANS W, FONTORBE G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36.
DOI URL |
[39] |
HAWKINGS J R, WADHAM J L, BENNING L G, et al. Ice sheets as a missing source of silica to the polar oceans[J]. Nature Communications, 2017, 8:14198.
DOI URL |
[40] |
HAWKINGS J R, HATTON J E, HENDRY K R, et al. The silicon cycle impacted by past ice sheets[J]. Nature Communications, 2018, 9: 3210.
DOI URL |
[41] |
KIM G, RYU J W, YANG H S, et al. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 156-166.
DOI URL |
[42] |
CHO H M, KIM G, KWON E Y, et al. Radium tracing nutrient inputs through submarine groundwater discharge in the global ocean[J]. Scientific Reports, 2018, 8: 2439.
DOI URL |
[43] |
WHEAT C G, MCMANUS J. The potential role of ridge-flank hydrothermal systems on oceanic germanium and silicon balances[J]. Geochimica et Cosmochimica Acta, 2005, 69(8): 2021-2029.
DOI URL |
[44] |
ELDERFIELD H, SCHULTZ A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224.
DOI URL |
[45] |
KIM J H, TORRES M E, BRIAN A H, et al. Marine silicate weathering in the anoxic sediment of the Ulleung Basin: evidence and consequences[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3437-3453.
DOI URL |
[46] | JEANDEL C. Overview of the mechanisms that could explain the “Boundary Exchange” at the land-ocean contact[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2081): 20150287. |
[47] |
JEANDEL C, OELKERS E H. The influence of terrigenous particulate material dissolution on ocean chemistry and global element cycles[J]. Chemical Geology, 2015, 395: 50-66.
DOI URL |
[48] |
VAN CAPPELLEN P, QIU L Q. Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44(5): 1109-1128.
DOI URL |
[49] |
VAN CAPPELLEN P. Reactive surface area control of the dissolution kinetics of biogenic silica in deep-sea sediments[J]. Chemical Geology, 1996, 132(1/2/3/4): 125-130.
DOI URL |
[50] |
LUIJENDIJK A, HAGENAARS G, RANASINGHE R, et al. The state of the World's beaches[J]. Scientific Reports, 2018, 8: 6641.
DOI URL |
[51] | RODELLAS V, GARCIA-ORELLANA J, MASQUÉ P, et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): 3926-3930. |
[52] |
LI D D, DONG M F, LIU S M, et al. Distribution and budget of biogenic silica in the Yangtze Estuary and its adjacent sea[J]. Science of the Total Environment, 2019, 669: 590-599.
DOI URL |
[53] | HAYES C T, COSTA K M, ANDERSON R F, et al. Global ocean sediment composition and burial flux in the deep sea[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006769. |
[54] |
MALDONADO M, NAVARRO L, GRASA A, et al. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins[J]. Scientific Reports, 2011, 1:30.
DOI URL |
[55] |
ZHANG L L, WANG R J, CHEN M H, et al. Biogenic silica in surface sediments of the South China Sea: controlling factors and paleoenvironmental implications[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122:142-152.
DOI URL |
[56] |
MACKENZIE F T, GARRELS R M. Chemical mass balance between rivers and oceans[J]. American Journal of Science, 1966, 264(7): 507-525.
DOI URL |
[57] |
MICHALOPOULOS P, ALLER R C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270(5236): 614-617.
DOI URL |
[58] |
PRESTI M, MICHALOPOULOS P. Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J]. Continental Shelf Research, 2008, 28(6): 823-838.
DOI URL |
[59] |
BAINES S B, TWINING B S, BRZEZINSKI M A, et al. Significant silicon accumulation by marine picocyanobacteria[J]. Nature Geoscience, 2012, 5(12): 886-891.
DOI URL |
[60] |
LEYNAERT A, TRÉGUER P, LANCELOT C, et al. Silicon limitation of biogenic silica production in the Equatorial Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(3): 639-660.
DOI URL |
[61] | TAN S C, SHI G Y, SHI J H, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G2): G02029. |
[62] |
WU N, LIU S M, ZHANG G L, et al. Anthropogenic impacts on nutrient variability in the lower Yellow River[J]. Science of the Total Environment, 2021, 755: 142488.
DOI URL |
[63] |
LIU J, ZANG J Y, WANG H, et al. Changes in the distribution and preservation of silica in the Bohai Sea due to changing terrestrial inputs[J]. Continental Shelf Research, 2018, 166: 1-9.
DOI URL |
[64] |
ZHANG A Y, ZHANG J, LIU S M. Spatial and temporal variations of dissolved silicon isotope compositions in a large dammed river system[J]. Chemical Geology, 2020, 545: 119645.
DOI URL |
[65] | PHILLIPS A K. Modelling riverine dissolved silica on different spatial and temporal scales using statistical and machine learning methods[D]. Toronto: University of Toronto, 2020: 52-64. |
[66] | 陈敏, 陈淳, 兰彬斌, 等. 渤海、黄海近岸海域表层沉积硅藻分布特征[J]. 海洋湖沼通报, 2014(2): 183-190. |
[67] |
LIU S M, YE X W, ZHANG J, et al. The silicon balance in Jiaozhou Bay, North China[J]. Journal of Marine Systems, 2008, 74(1/2): 639-648.
DOI URL |
[68] |
LEYNAERT A, LONGPHUIRT S N, AN S, et al. Tidal variability in benthic silicic acid fluxes and microphytobenthos uptake in intertidal sediment[J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 59-66.
DOI URL |
[69] |
WU B, LU C, LIU S M. Dynamics of biogenic silica dissolution in Jiaozhou Bay, western Yellow Sea[J]. Marine Chemistry, 2015, 174: 58-66.
DOI URL |
[70] |
LIU S M, ZHANG J, LI R X. Ecological significance of biogenic silica in the East China Sea[J]. Marine Ecology Progress Series, 2005, 290: 15-26.
DOI URL |
[71] |
LIU S M, YE X W, ZHANG J, et al. Problems with biogenic silica measurement in marginal seas[J]. Marine Geology, 2002, 192(4): 383-392.
DOI URL |
[72] | GOLDBERG E. Determination of opal in marine sediments[J]. Journal of Marine Research, 1958, 17: 178-182. |
[73] |
LEINEN M. Techniques for determining opal in deep-sea sediments: a comparison of radiolarian counts and X-ray diffraction data[J]. Marine Micropaleontology, 1985, 9(5): 375-383.
DOI URL |
[74] |
MORTLOCK R A, FROELICH P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1989, 36(9): 1415-1426.
DOI URL |
[75] |
KONING E, EPPING E, RAAPHORST W. Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions[J]. Aquatic Geochemistry, 2002, 8(1): 37-67.
DOI URL |
[76] |
DEMASTER D J. The supply and accumulation of silica in the marine environment[J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732.
DOI URL |
[77] |
VOGEL H, MEYER-JACOB C, THÖLE L, et al. Quantification of biogenic silica by means of Fourier transform infrared spectroscopy (FTIRS) in marine sediments[J]. Limnology and Oceanography: Methods, 2016, 14(12): 828-838.
DOI URL |
[78] |
MELUCCI D, ZAPPI A, POGGIOLI F, et al. ATR-FTIR spectroscopy, a new non-destructive approach for the quantitative determination of biogenic silica in marine sediments[J]. Molecules (Basel, Switzerland), 2019, 24(21): 3927.
DOI URL |
[79] | BREMNER J M. Physical parameters of the diatomaceous mud belt off South West Africa[J]. Marine Geology, 1980, 34(3/4): M67-M76. |
[80] |
BOSTRÖM K, KRAEMER T, GARTNER S. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments[J]. Chemical Geology, 1973, 11(2): 123-148.
DOI URL |
[81] |
CONLEY D J. An interlaboratory comparison for the measurement of biogenic silica in sediments[J]. Marine Chemistry, 1998, 63(1/2): 39-48.
DOI URL |
[82] |
MEYER-JACOB C, VOGEL H, BOXBERG F, et al. Independent measurement of biogenic silica in sediments by FTIR spectroscopy and PLS regression[J]. Journal of Paleolimnology, 2014, 52(3): 245-255.
DOI URL |
[83] |
EHLERT C, DOERING K, WALLMANN K, et al. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation[J]. Geochimica et Cosmochimica Acta, 2016, 191: 102-117.
DOI URL |
[84] | PICKERING R A, CASSARINO L, HENDRY K R, et al. Using stable isotopes to disentangle marine sedimentary signals in reactive silicon pools[J]. Geophysical Research Letters, 2020, 47(15): e2020GL087877. |
[85] |
BARONAS J J, HAMMOND D E, ROUXEL O J, et al. A first look at dissolved Ge isotopes in marine sediments[J]. Frontiers in Earth Science, 2019, 7: 162.
DOI URL |
[86] |
BARONAS J J, HAMMOND D E, MCMANUS J, et al. A global Ge isotope budget[J]. Geochimica et Cosmochimica Acta, 2017, 203: 265-283.
DOI URL |
[87] |
BARÃO L, VANDEVENNE F, CLYMANS W, et al. Alkaline-extractable silicon from land to ocean: a challenge for biogenic silicon determination[J]. Limnology and Oceanography: Methods, 2015, 13(7): 329-344.
DOI URL |
[88] |
WANG Y N, LIU D Y, DI B P, et al. Distribution of diatoms and silicoflagellates in surface sediments of the Yellow Sea and offshore from the Changjiang River, China[J]. Chinese Journal of Oceanology and Limnology, 2016, 34(1): 44-58.
DOI URL |
[89] |
ZONG Y Q, KEMP A C, YU F L, et al. Diatoms from the Pearl River Estuary, China and their suitability as water salinity indicators for coastal environments[J]. Marine Micropaleontology, 2010, 75(1/2/3/4): 38-49.
DOI URL |
[90] |
LIU D Y, LIU L X, DI B P, et al. Paleoenvironmental analyses of surface sediments from the Bohai Sea, China, using diatoms and silicoflagellates[J]. Marine Micropaleontology, 2015, 114: 46-54.
DOI URL |
[1] | ZHANG Lanlan, QIU Zhuoya, XIANG Rong, YANG Yiping, CHENG Muhong. Productivity evolution in the southeastern Bay of Bengal since the last glaciation: Insight from biogenic silica records [J]. Earth Science Frontiers, 2022, 29(4): 136-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||