Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 231-248.DOI: 10.13745/j.esf.sf.2022.3.30
Special Issue: 印度-欧亚大陆碰撞及其远程效应
Previous Articles Next Articles
LI Dian1(), WANG Genhou2,*(
), LIU Zhengyong1, LI Pengsheng1, FENG Yipeng2, TANG Yu2, LI Chao3, LI Yang1
Received:
2022-02-15
Revised:
2022-03-20
Online:
2022-07-25
Published:
2022-07-28
Contact:
WANG Genhou
CLC Number:
LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Fold-thrust belt of South Qiangtang, Tibet and the double-layer structure of the South Qiangtang accretionary complex[J]. Earth Science Frontiers, 2022, 29(4): 231-248.
[1] | 王根厚, 周详. 喜马拉雅造山带变质杂岩表露机制[J]. 地质力学学报, 1996, 2(3): 27-28. |
[2] | 李才. 龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 吉林大学学报: 地球科学版, 1987, 2: 155-166. |
[3] | 李才, 程立人, 胡克, 等. 西藏龙木错—双湖古特提斯缝合带研究[M]. 北京: 地质出版社, 1995: 6-265. |
[4] | 李才, 翟庆国, 陈文, 等. 青藏高原羌塘中部榴辉岩Ar-Ar定年[J]. 岩石学报, 2006, 22(12): 2843-2849. |
[5] | 李才. 西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J]. 科学通报, 1997, 42(4): 70-74. |
[6] | 邓希光, 丁林, 刘小汉, 等. 青藏高原羌塘中部冈玛日地区蓝闪石片岩及其40Ar/39Ar年代学[J]. 科学通报, 2000, 45(21): 2322-2326. |
[7] | 邓希光, 丁林, 刘小汉, 等. 藏北羌塘中部冈玛日—桃形错蓝片岩的发现[J]. 地质科学, 2000, 35(2): 227-232. |
[8] | 翟庆国, 李才. 藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义[J]. 地质学报, 2007, 81(6): 795-800. |
[9] | LIANG X, WANG G H, YUAN G L, et al. Structural sequence and geochronology of the Qomo Ri accretionary complex, central Qiangtang, Tibet: implications for the Late Triassic subduction of the Paleo-Tethys Ocean[J]. Gondwana Research, 2012, 22(2): 470-481. |
[10] | 王根厚, 韩芳林, 杨运军, 等. 藏北羌塘中部晚古生代增生杂岩的发现及其地质意义[J]. 地质通报, 2009, 28(9): 1181-1187. |
[11] | KAPP P, YIN A, MANNING C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1043. |
[12] | LI C, ZHENG A Z. Paleozoic stratigraphy in the Qiangtang region of Tibet: relations of the Gondwana and Yangtze continents and ocean closure near the end of the carboniferous[J]. International Geology Review, 2010, 35(9): 797-804. |
[13] | ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. |
[14] | 李继亮. 增生型造山带的基本特征[J]. 地质通报, 2004, 23(9/10): 947-951. |
[15] | CAWOOD P A, BUCHAN C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82(3/4): 217-256. |
[16] | CAWOOD P A, KRÖNER A, COLLINS W J, et al. Accretionary orogens through earth history[J]. Geological Society, London, Special Publications, 2009, 318(1): 1-36. |
[17] | 袁四化, 潘桂棠, 王立全, 等. 大陆边缘增生造山作用[J]. 地学前缘, 2009, 16(3): 31-48. |
[18] | XIAO W J, HUANG B C, HAN C M, et al. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18(2/3): 253-273. |
[19] | XIAO W L, WINDLEY B F, SUN S, et al. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. |
[20] | SENGÖR A M C, NATAL’IN B A. Turkic-type orogeny and its role in the making of the continental crust[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 263-337. |
[21] | MARUYAMA S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. Island Arc, 1997, 6(1): 91-120. |
[22] | WINDLEY B F, ALEXEIEV D, XIAO W, et al. Tectonic models for accretion of the central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[23] | ŞENGÖR A M C. Plate tectonics and orogenic research after 25 years: a Tethyan perspective[J]. Earth-Science Reviews, 1990, 27(1/2): 1-201. |
[24] | ZHANG K J, XIA B D, WANG G M, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9/10): 1202-1222. |
[25] | 李才, 翟刚毅, 王立全, 等. 认识青藏高原的重要窗口: 羌塘地区近年来研究进展评述 (代序)[J]. 地质通报, 2009, 28(9): 1169-1177. |
[26] | LI C, ZHAI Q G, DONG Y S, et al. Longmu Co—Shuanghu plate suture and evolution records of paleo-Tethyan oceanic in Qiangtang area, Qinghai-Tibet plateau[J]. Frontiers of Earth Science in China, 2007, 1(3): 257-264. |
[27] | LI C, ZHAI Q G, DONG Y S, et al. High-pressure eclogite-blueschist metamorphic belt and closure of paleo-Tethys Ocean in Central Qiangtang, Qinghai-Tibet plateau[J]. Journal of Earth Science, 2009, 20(2): 209-218. |
[28] | KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22. |
[29] | PULLEN A, KAPP P, GEHRELS G E, et al. Metamorphic rocks in central Tibet: lateral variations and implications for crustal structure[J]. Bulletin, 2011, 123(3/4): 585-600. |
[30] | ZHAO Z B, BONS P D, WANG G H, et al. Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet[J]. Solid Earth, 2015, 6(2): 457-473. |
[31] | ZHAO Z B, BONS P D, WANG G H, et al. Origin and pre-Cenozoic evolution of the south Qiangtang basement, central Tibet[J]. Tectonophysics, 2014, 623: 52-66. |
[32] | 李才, 程立人, 胡克, 等. 西藏龙木错—双湖古特提斯缝合带研究[M]. 北京, 地质出版社, 1995: 1-131. |
[33] | ZHAI Q G, LI C, WANG J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, northern Tibet[J]. Chinese Science Bulletin, 2009, 54(13): 2279-2285. |
[34] | ZHANG Y C, SHEN S Z, SHI G R, et al. Tectonic evolution of the Qiangtang Block, northern Tibet during the Late Cisuralian (Late Early Permian): evidence from fusuline fossil records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350: 139-148. |
[35] | 焦鹏伟, 梁晓, 王根厚, 等. 藏北荣玛乡亚丹地区下二叠统曲地组的厘定及大地构造意义[J]. 地质通报, 2017, 36(2): 181-189. |
[36] | 陈耀飞, 高金汉, 王根厚, 等. 西藏荣玛地区尼俄玛山下二叠统曲地组沉积特征[J]. 古地理学报, 2016, 18(1): 49-63. |
[37] | 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部果干加年山上三叠统望湖岭组的建立及意义[J]. 地质通报, 2007, 26(8): 1003-1008. |
[38] | 李才, 翟庆国, 陈文, 等. 青藏高原龙木错-双湖板块缝合带闭合的年代学证据: 来自果干加年山蛇绿岩与流纹岩Ar-Ar和 SHRIMP 年龄制约[J]. 岩石学报, 2007, 23(5): 911-918. |
[39] | 王剑, 付修根, 陈文西, 等. 藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J]. 沉积学报, 2007, 25(4): 487-494. |
[40] | 王剑, 付修根, 陈文西, 等. 北羌塘沃若山地区火山岩年代学及区域地球化学对比: 对晚三叠世火山-沉积事件的启示[J]. 中国科学: D 辑, 2008, 38(1): 33-43. |
[41] | WU H, LI C, CHEN J, et al. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 2016, 8(2): 141-149. |
[42] | ZHAI Q G, LI C, HUANG X P. Geochemistry of Permian basalt in the Jiaomuri area, central Qiangtang, Tibet, China, and its tectonic significance[J]. Geological Bulletin of China, 2006, 25(12): 1419-1427. |
[43] | ZHAI Q G, LI C. Zircon SHRIMP U-Pb age of volcanic rocks in Nadigangri Formation in Juhuashan area, northern part of the Qiangtang basin, Qinghai-Tibet Plateau, China and its geological significance[J]. Acta Geologica Sinica, 2007, 81(6): 795-800. |
[44] | ZHAI Q G, LI C, HUANG X P. The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: geochemical evidence of metabasites in Guoganjianian[J]. Science in China Series D: Earth Sciences, 2007, 50(9): 1302-1309. |
[45] | ZHAI Q G, JAHN B, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168: 186-199. |
[46] | ZHAI Q G, JAHN B, WANG J, et al. Oldest paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4): 355-373. |
[47] | 翟庆国, 李才, 黄小鹏. 西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J]. 地质通报, 2006, 25(12): 1419-1427. |
[48] | 翟庆国, 王军, 李才, 等. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征[J]. 中国科学: 地球科学, 2010, 40(5): 565-573. |
[49] | 李才, 董永胜, 翟庆国, 等. 青藏高原羌塘高压变质带的特征及其构造意义[J]. 地质通报, 2008, 27(1): 27-35. |
[50] | 李才. 青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119. |
[51] | 王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石 SHRIMP U-Pb 年龄: 兼论原-古特提斯洋的演化[J]. 地质通报, 2008, 27(12): 2045-2056. |
[52] | LI C, ZHAI G Y, WANG L Q, et al. An important window for understanding the Qinghai-Tibet Plateau: a review on research progress in recent years of Qiangtang area, Tibet, China[J]. Geological Bulletin of China, 2009, 28(9): 1169-1177. |
[53] | KIMURA G, YAMAGUCHI A, HOJO M, et al. Tectonic mélange as fault rock of subduction plate boundary[J]. Tectonophysics, 2012, 568: 25-38. |
[54] | LIANG X, SUN X H, WANG G H, et al. Sedimentary evolution and provenance of the late Permian-middle Triassic raggyorcaka deposits in north Qiangtang (Tibet, western China): evidence for a forearc basin of the Longmu Co—Shuanghu Tethys Ocean[J]. Tectonics, 2020, 39(1): e2019TC-005589. |
[55] | 陈文西, 王剑, 汪正江, 等. 藏北羌塘盆地菊花山地区晚三叠世古岩溶不整合面的发现及其意义[J]. 地质论评, 2007, 53(5): 699-703. |
[56] | 付修根, 王剑, 吴滔, 等. 藏北羌塘盆地大规模古风化壳的发现及其意义[J]. 地质通报, 2009, 28(6): 696-700. |
[57] | FU X G, WANG J, TAN F W, et al. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): age and tectonic implications[J]. Gondwana Research, 2010, 17(1): 135-144. |
[58] | FAN J J, LI C, WANG M, et al. Features, provenance, and tectonic significance of Carboniferous-Permian glacial marine diamictites in the southern Qiangtang-Baoshan block, Tibetan Plateau[J]. Gondwana Research, 2015, 28(4): 1530-1542. |
[59] | ZHANG Y C, SHEN S Z, ZHAI Q G, et al. Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt[J]. Geological Magazine, 2016, 153(3): 537-543. |
[60] | 梁定益, 聂泽同, 郭铁鹰, 等. 西藏阿里喀喇昆仑南部的冈瓦纳—特提斯相石炭二叠系[J]. 地球科学: 中国地质大学学报, 1983, 19(1): 9-27. |
[61] | ZHAI Q G, WANG J, LI C, et al. SHRIMP U-Pb dating and Hf isotopic analyses of middle ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau[J]. Science China Earth Sciences, 2010, 53(5): 657-664. |
[62] | LIANG X, WANG G H, YANG B, et al. Stepwise exhumation of the Triassic Lanling high-pressure metamorphic belt in Central Qiangtang, Tibet: insights from a coupled study of metamorphism, deformation, and geochronology[J]. Tectonics, 2017, 36(4): 652-670. |
[63] | ZHAI Q G, ZHANG R Y, JAHN B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China: petrology, geochronology and metamorphic p-T path[J]. Lithos, 2011, 125(1/2): 173-189. |
[64] | PULLEN A, KAPP P. Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: insights from the Qiangtang metamorphic belt, central Tibet[J]. Geological Society of America Special Papers, 2014, 507: 71-87. |
[65] | LI D, WANG G H, BONS P D, et al. Subduction reversal in a divergent double subduction zone drives the exhumation of southern Qiangtang blueschist-bearing mélange, central Tibet[J]. Tectonics, 2020, 39(4): 1-24. |
[66] | 孙霄飞. 西藏荣玛乡中奥陶统—泥盆系沉积相及沉积环境研究[D]. 北京, 中国地质大学 (北京), 2016. |
[67] | 杨耀, 赵中宝, 苑婷媛, 等. 藏北羌塘奥陶纪平行不整合面的厘定及其构造意义[J]. 岩石学报, 2014, 30(8): 2381-2392. |
[68] | ZHANG Y C, WANG Y, ZHANG Y J, et al. Artinskian (Early Permian) fusuline fauna from the Rongma area in northern Tibet: palaeoclimatic and palaeobiogeographic implications[J]. Alcheringa: an Australasian Journal of Palaeontology, 2013, 37(4): 529-546. |
[69] | 王忠宝, 高金汉, 王根厚. 西藏尼玛县荣玛乡二叠系龙格组小有孔虫及地质意义[J]. 地层学杂志, 2017, 41(4): 392-400. |
[70] | 聂泽同, 宋志敏. 西藏阿里地区日土县下二叠统吞龙共巴组的 (虫筳) 类[J]. 地球科学: 中国地质大学学报, 1983, 1: 31-44. |
[71] | WU H, LI C, CHEN J, et al. Late Triassic tectonic framework and evolution of central Qiangtang, Tibet, SW China[J]. Lithosphere, 2016, 8(2): 141-149. |
[72] | ZHANG X Z, DONG Y S, Li C, et al. Silurian high-pressure granulites from Central Qiangtang, Tibet: constraints on early Paleozoic collision along the northeastern margin of Gondwana[J]. Earth and Planetary Science Letters, 2014, 405: 39-51. |
[73] | ZHANG X Z, DONG Y S, WANG Q, et al. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35(7): 1670-1686. |
[74] | DAN W, WANG Q, WHITE W M, et al. Rapid formation of eclogites during a nearly closed ocean: revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477: 112-122. |
[75] | ZHAI Q G, JAHN B M, ZHANG R Y, et al. Triassic subduction of the Paleo-Tethys in northern Tibet, China: evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 2011, 42(6): 1356-1370. |
[76] | FAN J J, LI C, XIE C M, et al. Remnants of late Permian-Middle Triassic ocean islands in northern Tibet: implications for the late-stage evolution of the Paleo-Tethys Ocean[J]. Gondwana Research, 2017, 44: 7-21. |
[77] | LIU D L, SHI R D, DING L, et al. Survived seamount reveals an in situ origin for the central Qiangtang metamorphic belt in the Tibetan Plateau[J]. Journal of Earth Science, 2019, 30(6): 1253-1265. |
[78] | LIU Y M, XIE C M, LI C, et al. Structure and development of the Changliangshan ductile shear zone, north Tibet: implications for the initial closure of the Paleo-Tethys Ocean in the central Qiangtang region[J]. International Journal of Earth Sciences, 2017, 106(8): 2945-2962. |
[79] | DAN W, WANG Q, LI X H, et al. Low δ18O magmas in the carboniferous intra-oceanic arc, central Tibet: implications for felsic magma generation and oceanic arc accretion[J]. Lithos, 2019, 326: 28-38. |
[80] | 李典, 王根厚, 刘正勇, 等. 古岛弧地体的俯冲是南羌塘增生杂岩形成的重要机制: 来自日湾茶卡洋岛的证据[J]. 沉积与特提斯地质, 2021, 41(2): 176-189. |
[81] | LIANG X, WANG G H, YUAN G L, et al. Mesozoic and Cenozoic deformations in the Raggyorcaka area, Tibet: implications for the tectonic evolution of the North Qiangtang terrane[J]. Journal of the Geological Society, 2015, 172(5): 614-623. |
[82] | LIANG X, WANG G H, GAO J H, et al. A late Permian-Triassic trench-slope basin in the Central Qiangtang metamorphic belt, northern Tibet: stratigraphy, sedimentology, syndepositional deformation and tectonic implications[J]. Basin Research, 2021, 33(4): 2383-2410. |
[83] | 熊兴国, 徐安全, 岳龙, 等. 羌塘才玛尔错晚三叠世地层的厘定及其意义[J]. 贵州地质, 2006, 23(1): 29-31. |
[84] | 邓万明, 尹集祥, 呙中平. 羌塘茶布-双湖地区基性超基性岩和火山岩研究[J]. 中国科学: 地球科学: 中国地质大学学报, 1996, 26(4): 296-301. |
[85] | 李林贵, 梁晓, 王根厚, 等. 西藏羌塘增生杂岩带内中—晚三叠世碳酸盐岩地层的发现及大地构造意义[J]. 地质学报, 2018, 92(4): 828-844. |
[86] | DAN W, WANG Q, WHITE W M, et al. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet[J]. Geology, 2021, 49(2): 130-134. |
[87] | 高曦, 李静超, 袁国礼, 等. 南羌塘增生过程的中—晚三叠世岩浆记录: 藏北玛依岗日-角木日地区基性岩墙[J]. 岩石学报, 2019, 35(3): 760-774. |
[88] | BARR S R, TEMPERLEY S, TARNEY J. Lateral growth of the continental crust through deep level subduction-accretion: a re-evaluation of central Greek Rhodope[J]. Lithos, 1999, 46(1): 69-94. |
[89] | TANG X C, ZHANG K J. Lawsonite-and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2): 150-166. |
[90] | XU W, DONG Y S, ZHANG X Z, et al. Petrogenesis of high-Ti mafic dykes from southern Qiangtang, Tibet: implications for a ca. 290 Ma large igneous province related to the early Permian rifting of Gondwana[J]. Gondwana Research, 2016, 36: 410-422. |
[91] | 白艳萍, 陆济璞, 唐娟红, 等. 藏北红脊山地区变质玄武岩地球化学及其形成构造环境[J]. 桂林理工大学学报, 2011, 31(4): 495-503. |
[92] | 陆济璞, 张能, 黄位鸿, 等. 藏北羌塘中北部红脊山地区蓝闪石+ 硬柱石变质矿物组合的特征及其意义[J]. 地质通报, 2006, 25(1): 70-75. |
[93] | 翟庆国. 藏北羌塘中部榴辉岩岩石学、地球化学特征及构造演化过程[D]. 北京: 中国地质科学院, 2008. |
[94] | 张修政, 董永胜, 王强, 等. 青藏高原羌塘中部高压变质带的研究进展及存在问题[J]. 地质通报, 2018, 37(8): 1406-1416. |
[95] | 邓希光, 丁林, 刘小汉. 青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J]. 岩石学报, 2002, 18(4): 517-525. |
[96] | 张修政, 董永胜, 李才, 等. 青藏高原羌塘中部不同时代榴辉岩的识别及其意义: 来自榴辉岩及其围岩40Ar-39Ar 年代学的证据[J]. 地质通报, 2010, 29(12): 1815-1824. |
[97] | ZHANG K J, CAI J X, ZHANG Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 722-729. |
[98] | 张修政, 董永胜, 李才, 等. 羌塘中部晚三叠世岩浆活动的构造背景及成因机制: 以红脊山地区香桃湖花岗岩为例[J]. 岩石学报, 2014, (2): 547-564. |
[99] | ZHANG X Z, DONG Y S, WANG Q, et al. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(1): 266-279. |
[100] | 董永胜, 张修政, 施建荣, 等. 藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征[J]. 地质通报, 2009, 28(9): 1201-1206. |
[101] | 董永胜, 李才. 藏北羌塘中部果干加年山地区发现榴辉岩[J]. 地质通报, 2009, 28(9): 1197-1200. |
[102] | JIN X, ZHANG Y X, ZHOU X Y, et al. Protoliths and tectonic implications of the newly discovered Triassic Baqing eclogites, central Tibet: evidence from geochemistry, Sr-Nd isotopes and geochronology[J]. Gondwana Research, 2019, 69: 144-162. |
[103] | ZHANG Y X, JIN X, ZHANG K J, et al. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision[J]. Scientific reports, 2018, 8(1): 1-12. |
[104] | PULLEN A, KAPP P, GEHRELS G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean[J]. Geology, 2008, 36(5): 351-354. |
[105] | ZHANG Z M, ZHAO G C, SANTOSH M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17(4): 615-631. |
[106] | 李才, 翟庆国, 董永胜, 等. 青藏高原羌塘中部榴辉岩的发现及其意义[J]. 科学通报, 2006, 51(1): 70-74. |
[107] | 翟庆国, 李才, 王军, 等. 藏北羌塘中部绒玛地区蓝片岩岩石学, 矿物学和40Ar/39Ar年代学[J]. 岩石学报, 2009, 25(9): 2281-2288. |
[108] | 李静超, 赵中宝, 郑艺龙, 等. 古特提斯洋俯冲碰撞在南羌塘的岩浆岩证据: 西藏荣玛乡冈塘错花岗岩[J]. 岩石学报, 2015, 31(7): 2078-2088. |
[109] | 胡培远, 李才, 杨韩涛, 等. 青藏高原羌塘中部果干加年山一带晚三叠世花岗岩的特征, 锆石定年及其构造意义[J]. 地质通报, 2010, 29(12): 1825-1832. |
[110] | ZHAI Q G, JAHN B M, WANG J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168: 186-199. |
[111] | LI G M, LI J X, ZHAO J X, et al. Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: evidence from U-Pb ages, petrochemistry and Sr-Nd-Hf isotopes[J]. Journal of Asian Earth Sciences, 2015, 105: 443-455. |
[112] | LIU H, WANG B D, MA L, et al. Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: evidence from the sangehuadakitic rocks[J]. Journal of Asian Earth Sciences, 2016, 132: 9-24. |
[113] | LI X R, WANG J, CHENG L L, et al. New insights into the Late Triassic Nadigangri Formation of northern Qiangtang, Tibet, China: constraints from U-Pb ages and Hf isotopes of detrital and magmatic zircons[J]. Acta Geologica Sinica-English Edition, 2018, 92(4): 1451-1467. |
[114] | WANG J, FU X G, CHEN W X, et al. Chronology and geochemistry of the volcanic rocks in Woruo Mountain region, northern Qiangtang depression: implications to the Late Triassic volcanic-sedimentary events[J]. Science in China Series D: Earth Sciences, 2008, 51(2): 194-205. |
[115] | ZHANG K J, TANG X C, WANG Y, et al. Geochronology, geochemistry, and Nd isotopes of early Mesozoic bimodal volcanism in northern Tibet, western China: constraints on the exhumation of the central Qiangtang metamorphic belt[J]. Lithos, 2011, 121(1/2/3/4): 167-175. |
[116] | 李学仁. 羌塘盆地那底岗日组火山-沉积岩石学特征及构造属性研究[D]. 北京: 中国地质大学 (北京), 2019. |
[117] | 李晓勇, 文丰. 西藏日土东部晚三叠世日干配错组及其与下伏地层不整合面的发现[J]. 地质通报, 2007, (8): 1009-1013. |
[118] | KAPP P, YIN A, HARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878. |
[119] | LI D, WANG G H, GAO J H, et al. The continental subduction in the evolution of central Qiangtang mélange belt and its tectonic significance[J]. International Geology Review, 2019, 61(9): 1143-1170. |
[120] | 王根厚, 梁晓, 李典, 等. 南羌塘增生造山带形成演化探讨[C]//中国地球科学联合学术年会论文集(七). 北京, 中国和平音像电子出版社. 2015: 14. |
[121] | 王国芝, 王成善. 西藏羌塘基底变质岩系的解体和时代厘定[J]. 中国科学: 地球科学, 2001(增刊1): 77-82. |
[122] | KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319(3): 159-254. |
[123] | ZHANG K J, ZHANG Y X, LI B, et al. The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: evidence from geochemical comparison with the Jinsa suture[J]. Geology, 2006, 34(6): 493-496. |
[124] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘增生杂岩中俯冲反向驱动高压变质岩折返: 来自猫耳山大型拆离断层的启示[J]. 地学前缘, 2021, 28(6): 205-226.
DOI |
[125] | GAO R, CHEN C, LU Z W, et al. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling[J]. Tectonophysics, 2013, 606: 160-170. |
[126] | FAN J J, LI C, XIE C M, et al. Depositional environment and provenance of the upper Permian-Lower Triassic Tianquanshan Formation, northern Tibet: implications for the Palaeozoic evolution of the southern Qiangtang, Lhasa, and Himalayan terranes in the Tibetan Plateau[J]. International Geology Review, 2016, 58(2): 228-245. |
[127] | CLOOS M, SHREVE R L. Shear-zone thickness and the seismicity of Chilean-and Marianas-type subduction zones[J]. Geology, 1996, 24(2): 107-110. |
[128] | COWAN D S, SILLING R M. A dynamic, scaled model of accretion at trenches and its implications for the tectonic evolution of subduction complexes[J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B11): 5389-5396. |
[129] | HASHIMOTO Y, KIMURA G. Underplating process from melange formation to duplexing: example from the cretaceous Shimanto Belt, Kii Peninsula, southwest Japan[J]. Tectonics, 1999, 18(1): 92-107. |
[130] | MENEGHINI F, MARRONI M, Moore J C, et al. The processes of underthrusting and underplating in the geologic record: structural diversity between the Franciscan Complex (California), the Kodiak Complex (Alaska) and the Internal Ligurian Units (Italy)[J]. Geological Journal, 2009, 44(2): 126-152. |
[131] | MOORE J C, BYRNE T. Thickening of fault zones: A mechanism of melange formation in accreting sediments[J]. Geology, 1987, 15(11): 1040-1043. |
[132] | CLOOS M, SHREVE R L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description[J]. Pure and Applied Geophysics, 1988, 128(3): 455-500. |
[133] | KIMURA G, KITAMURA Y, HASHIMOTO Y, et al. Transition of accretionary wedge structures around the up-dip limit of the seismogenic subduction zone[J]. Earth and Planetary Science Letters, 2007, 255(3/4): 471-484. |
[134] | UJIIE K. Off-scraping accretionary process under the subduction of young oceanic crust: the Shimanto Belt of Okinawa Island, Ryukyu Arc[J]. Tectonics, 1997, 16(2): 305-322. |
[135] | COWAN D S. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America[J]. Geological Society of America Bulletin, 1985, 96(4): 451-462. |
[136] | PEACOCK S M. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust[J]. Geological Society of America Bulletin, 1993, 105(5): 684-694. |
[137] | CLOOS M. Flow melanges: numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California[J]. Geological Society of America Bulletin, 1982, 93(4): 330-345. |
[138] | KIMURA G, MARUYAMA S, ISOZAKI Y, et al. Well-preserved underplating structure of the jadeitized Franciscan complex, Pacheco Pass, California[J]. Geology, 1996, 24(1): 75-78. |
[139] | ONISHI C T, KIMURA G, HASHIMOTO Y, et al. Deformation history of tectonic melange and its relationship to the underplating process and relative plate motion: an example from the deeply buried Shimanto Belt, SW Japan[J]. Tectonics, 2001, 20(3): 376-393. |
[140] | SHIBATA T, ORIHASHI Y, KIMURA G, et al. Underplating of mélange evidenced by the depositional ages: U-Pb dating of zircons from the Shimanto accretionary complex, southwest Japan[J]. Island Arc, 2008, 17(3): 376-393. |
[141] | ZHANG K J, ZHANG Y X, TANG X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20(4): 302-308. |
[1] | LI Dian, WANG Genhou, LIU Zhengyong, LI Pengsheng, FENG Yipeng, TANG Yu, LI Chao, LI Yang. Subduction reversal in the accretion complex drives the exhumation of deep subducted mélange in southern Qiangtang, Tibet: Insights from the Mao'ershan detachment fault [J]. Earth Science Frontiers, 2021, 28(6): 205-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||