Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (2): 393-401.DOI: 10.13745/j.esf.sf.2022.2.3
Special Issue: 印度-欧亚大陆碰撞及其远程效应
Previous Articles Next Articles
XUE Shuai1(), LU Zhanwu1,*(
), LI Wenhui1, WANG Guangwen1, WANG Haiyan1, LIANG Hongda2
Received:
2022-01-10
Revised:
2022-02-14
Online:
2022-03-25
Published:
2022-03-31
Contact:
LU Zhanwu
CLC Number:
XUE Shuai, LU Zhanwu, LI Wenhui, WANG Guangwen, WANG Haiyan, LIANG Hongda. Electrical resistivity structure beneath the central Cona-Oiga rift, southern Tibet, and its implications for regional dynamics[J]. Earth Science Frontiers, 2022, 29(2): 393-401.
Fig.2 Typical MT sounding curves for the Cuonadong dome (see Fig.1b for locations of sites 033, 048, 055, 061). Red hollow circles and blue hollow rhombi represent observation modes xy and yx. Red and blue solid lines denote the corresponding inversion results.
Fig.4 N-S vertical cross section 3D inversion result. C1/C2, LR1/LR2, R1/R2 indicate high conductivity and low- and high-resistivity features, respectively.
[1] |
TAPPONNIER P, XU Z Q, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547):1671-1677.
DOI URL |
[2] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76:1-131.
DOI URL |
[3] |
ZHANG J J, SANTOSH M, WANG X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21:939-960.
DOI URL |
[4] | 侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. |
[5] | 戚学祥, 曾令森, 孟祥金, 等. 特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2008, 24(7):1501-1508. |
[6] |
HOU Z Q, COOK N J. Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue[J]. Ore Geology Reviews, 2009, 36:2-24.
DOI URL |
[7] |
ARMIJO R, TAPPONNIER P, MERCIER J L, et al. Quaternary extension in southern Tibet: field observations and tectonic implications[J]. Journal of Geophysical Research, 1986, 91(B14):13803-13872.
DOI URL |
[8] |
ARMIJO R, TAPPONNIER P, HAN T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth and Planets, 1989, 94(B3):2787-2838.
DOI URL |
[9] | 张进江, 丁林. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 2003, 38(2):179-189. |
[10] | 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649. |
[11] | 张进江, 郭磊, 张波. 北喜马拉雅穹隆带雅拉香波穹隆的构造组成和运动学特征[J]. 地质科学, 2007, 42(1):16-30. |
[12] | 许志琴, 杨经绥, 戚学祥, 等. 印度/亚洲碰撞: 南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J]. 地质通报, 2006, 25(1/2):1-14. |
[13] | 莫宣学, 潘桂堂. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-61. |
[14] | 丁林, 岳雅慧, 蔡福龙, 等. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 2006, 80(9):1252-1261. |
[15] |
ZHANG J J, GUO L. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 2007, 29:722-736.
DOI URL |
[16] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. |
[17] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9:555-560.
DOI URL |
[18] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47:871-880. |
[19] |
ZENG L, GAO L E, XIE K, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303:251-266
DOI URL |
[20] | TAYLOR M, YIN A, RYERSON F J, et al. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 2003, 22(4). DOI: 10.1029/2002TC001361. |
[21] |
MCCAFFREY R, NABELEK J. Role of oblique convergence in the active deformation of the Himalaya and southern Tibetan Plateau[J]. Geology, 1998, 26(8):691-694.
DOI URL |
[22] |
SEEBER L, PECHER A. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform[J]. Geology, 1998, 26(9):791-794.
DOI URL |
[23] |
PANG Y J, ZHANG H, GERYA T V, et al. The mechanism and dynamics of N-S rifting in southern Tibet: insight from 3-D thermomechanical modeling[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(1):859-877.
DOI URL |
[24] | XUE S, CHEN Y, LIANG H D, et al. Deep electrical resistivity structure across the Gyaring Co fault in Central Tibet revealed by magnetotelluric data and its implication[J]. Tectonophysics, 2021, 809. https://doi.org/10.1016/j.tecto.2021.228835 . |
[25] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276:788-790.
DOI URL |
[26] |
CLARK M K, ROYDEN L H. Topographic ooze Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706.
DOI URL |
[27] |
UNSWORTH M J, JONES A G, WEI W B, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J]. Nature, 2005, 438(7064):78-81.
DOI URL |
[28] | UNSWORTH M, WEI W B, JONES A G, et al. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2). DOI: 10.1029/2002JB002305. |
[29] |
BEAUMONT C, JAMIESON R A, NGUYEN M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 2001, 414:738-742.
DOI URL |
[30] |
BAI D H, UNSWORTH M J, MEJU M A, et al. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 2010, 3(5):358-362.
DOI URL |
[31] |
NABELEK J, HETENYI G, VERGNE J, et al. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325:1371-1374.
DOI URL |
[32] | 金胜, 魏文博, 汪硕, 等. 青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据[J]. 地球物理学报, 2010, 53(10):2376-2385. |
[33] |
ZHAO G Z, UNSWORTH M J, ZHAN Y, et al. Crustal structure and rheology of the Longmenshan and Wenchuan MW 7.9 earthquake epicentral area from magnetotelluric data[J]. Geology, 2012, 40(12):1139-1142.
DOI URL |
[34] |
XUE S, BAI D, CHEN Y, et al. Contrasting crustal deformation mechanisms in the Longmenshan and West Qinling orogenic belts, NE Tibet, revealed by magnetotelluric data[J]. Journal of Asian Earth Sciences, 2019, 176:120-128.
DOI URL |
[35] | DONG H, WEI W B, JIN S, et al. Shaping the surface deformation of central and south Tibetan Plateau: insights from magnetotelluric array data [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(9): e2019JB019206. |
[36] |
LEE J, MCCLELLAND W, WANG Y, et al. Oligocene-miocene middle crustal flow in southern Tibet: geochronology of Mabja dome[J]. Geological Society, London, Special Publications, 2006, 268(1):445-469.
DOI URL |
[37] |
CHEN Y, LI W, YUAN X H, et al. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 2015, 413:13-24.
DOI URL |
[38] | 吴中海, 张永双, 胡道功, 等. 西藏错那—沃卡裂谷带中段邛多江地堑晚新生代正断层作用[J]. 地质力学学报, 2007, 13(4):297-306. |
[39] | 徐义贤, 郑建平, 杨晓志, 等. 岩石圈中部不连续面的成因及其动力学意义[J]. 科学通报, 2019, 64(22):2305-2315. |
[40] | 胡祥云, 林武乐, 杨文采, 等. 克拉通岩石圈电性结构研究进展[J]. 中国科学: 地球科学, 2020, 50(11):1533-1552. |
[41] |
CHEN L S, BOOKER J R, JONES A G, et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J]. Science, 1996, 274:1694-1696.
DOI URL |
[42] |
XIE C L, JIN S, WEI W B, et al. Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data[J]. Earth Planets and Space, 2017, 69(1):1-17.
DOI URL |
[43] | 陈小斌, 叶涛, 蔡军涛, 等. 大地电磁资料精细处理和二维反演解释技术研究(七):云南盈江—龙陵地震区深部电性结构及孕震环境[J]. 地球物理学报, 2019, 62(4):1377-1393. |
[44] | 王绪本, 张刚, 周军, 等. 龙门山构造带壳幔电性结构特征及其与汶川、芦山强震关系[J]. 地球物理学报, 2018, 61(5):1984-1995. |
[45] | 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义[J]. 科学通报, 2009, 54(3):373-381. |
[46] | 吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007, 81(10):1328-1337. |
[47] | 吴中海, 张永双, 胡道功, 等. 藏南错那—沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 2008, 30(1):144-160. |
[48] | 哈广浩, 吴中海, 何林. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 2018, 92(10):2051-2067. |
[49] | 潘桂堂, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533. |
[50] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞[J]. 地学前缘, 2018, 25(6):78-91. |
[51] | 熊发挥, 杨经绥, 巴登珠, 等. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8):2137-2163. |
[52] | 徐向珍, 杨经绥, 熊发挥, 等. 西藏罗布莎康金拉铬铁矿区地幔橄榄岩锆石SHRIMP U-Pb年龄及地质意义[J]. 地质学报, 2016, 90(11):3215-3226. |
[53] | 曾令森, 高利娥. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 2017, 33(5):1420-1444. |
[54] | 曾令森, 赵令浩, 高利娥, 等. 喜马拉雅造山带中新世岩浆型石榴子石的矿物化学特征: 从高Sr/Y 花岗岩到淡色花岗岩[J]. 岩石学报, 2019, 35(6):1599-1626. |
[55] | 高利娥, 曾令森, 谢克家. 北喜马拉雅片麻岩穹隆始新世高级变质和深熔作用的厘定[J]. 科学通报, 2011, 56(36):3078-3090. |
[56] | 聂凤军, 胡朋, 江思宏, 等. 藏南邛多江地区二长花岗岩Ar-Ar同位素年龄及其地质意义[J]. 岩石学报, 2006, 22(11):2704-2710. |
[57] | 王思琪. 西藏古堆高温地热系统水文地球化学过程与形成机理[J]. 北京: 中国地质大学(北京), 2017. |
[58] |
EGBERT G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2):475-496.
DOI URL |
[59] |
BOOKER J R. The Magnetotelluric phase tensor: a critical review[J]. Surveys in Geophysics, 2014, 35(1):7-40.
DOI URL |
[60] |
LIANG H D, JIN S, WEI W B, et al. Lithospheric electrical structure of the Middle Lhasa Terrane in the South Tibetan Plateau[J]. Tectonophysics, 2018, 731/732:95-103.
DOI URL |
[61] |
EGBERT G D, KELBERT A. Computational recipes for electromagnetic inverse problems[J]. Geophysical Journal International, 2012, 189(1):251-267.
DOI URL |
[62] | 殷长春, 刘云鹤, 熊彬. 地球物理三维电磁反演方法研究动态[J]. 中国科学: 地球科学, 2020, 50(3):432-435. |
[63] |
CHEN J Y, GAILLARD F, VILLAROS A, et al. Melting conditions in the modern Tibetan crust since the Miocene[J]. Nature Communications, 2018, 9(1):1-13.
DOI URL |
[64] | 吴珍汉, 叶培盛, 吴中海, 等. 特提斯喜马拉雅构造带雅拉香波穹隆构造热事件LA-ICP-MS 锆石U-Pb年龄证据[J]. 地质通报, 2014, 33(5):595-605. |
[65] |
YIN A, TAYLOR M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10):1798-1821.
DOI URL |
[66] | 卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2):210-217. |
[67] |
CHEN L, CAPITANIO F A, LIU L J, et al. Crustal rheology controls on the Tibetan Plateau formation during India-Asia convergence[J]. Nature Communications, 2017, 8(1):1-8.
DOI URL |
[1] | DENG Yan, XU Yuchao, FAN Ye, SUN Guicheng, DONG Zeyi, HAN Bing. Application of the magnetotelluric method in the Sichuan-Yunnan region—a review [J]. Earth Science Frontiers, 2024, 31(1): 181-200. |
[2] | SHAN Shuaiqiang,HE Dengfa,ZHANG Yuying. Characteristics and genetic model of the Xianxian metamorphic core complex in the Cangxian uplift, Bohai Bay Basin [J]. Earth Science Frontiers, 2019, 26(1): 178-188. |
[3] | . Geophysicalgeological prospecting models for positioning prognosis of hidden metal deposits. [J]. Earth Science Frontiers, 2011, 18(3): 284-292. |
[4] | LI De-Wei JIA Xi-Beng XU Li-Gui. Coupling and formation mechanism of continental intraplate basin and orogen—Examples from the QinghaiTibet Plateau and adjacent basins [J]. Earth Science Frontiers, 2009, 16(3): 110-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||