

Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (4): 337-348.DOI: 10.13745/j.esf.sf.2020.6.39
Previous Articles Next Articles
					
													CHEN Ningsheng1,2,3(
), TIAN Shufeng1,2,4, ZHANG Yong1,2,4, WANG Zheng1,2,4
												  
						
						
						
					
				
Received:2019-10-14
															
							
																	Revised:2019-12-25
															
							
															
							
																	Online:2021-07-25
															
							
																	Published:2021-07-25
															
						CLC Number:
CHEN Ningsheng, TIAN Shufeng, ZHANG Yong, WANG Zheng. Soil mass domination in debris-flow disasters and strategy for hazard mitigation[J]. Earth Science Frontiers, 2021, 28(4): 337-348.
| 区域 | 区域面积/  km2  |  导致人员死亡失踪  灾害次数  |  死亡失踪  人数  |  灾害点密度/  (个·10-4 ·km-2)  |  泥石流灾害集中带 | 
|---|---|---|---|---|---|
| I | 31 520 | 4 | 42 | 1.269 036 | 喜马拉雅山东南缘冰川暴雨泥石流带 | 
| II | 474 892 | 116 | 3 098 | 2.442 661 | 横断山—云南高原干旱河谷地震泥石流灾害带 | 
| III | 165 307 | 65 | 745 | 3.932 078 | 秦巴山—龙门山—贵州高原雨屏泥石流灾害带 | 
| IV | 274 083 | 21 | 181 | 0.766 191 | II—III级阶梯过渡湿润山区稀遇泥石流灾害带 | 
| V | 242 412 | 25 | 170 | 1.031 302 | 东南台风暴雨影响泥石流灾害带 | 
| VI | 186 244 | 16 | 167 | 0.859 088 | 天山—昆仑山半干旱山区泥石流灾害带 | 
| VII | 295 531 | 21 | 139 | 0.710 585 | 华北半干旱-半湿润中低山区泥石流灾害带 | 
| 合计 | 1 669 989 | 268 | 4 542 | 
Table 1 Statistics of spatial distribution of debris-flow disasters in China
| 区域 | 区域面积/  km2  |  导致人员死亡失踪  灾害次数  |  死亡失踪  人数  |  灾害点密度/  (个·10-4 ·km-2)  |  泥石流灾害集中带 | 
|---|---|---|---|---|---|
| I | 31 520 | 4 | 42 | 1.269 036 | 喜马拉雅山东南缘冰川暴雨泥石流带 | 
| II | 474 892 | 116 | 3 098 | 2.442 661 | 横断山—云南高原干旱河谷地震泥石流灾害带 | 
| III | 165 307 | 65 | 745 | 3.932 078 | 秦巴山—龙门山—贵州高原雨屏泥石流灾害带 | 
| IV | 274 083 | 21 | 181 | 0.766 191 | II—III级阶梯过渡湿润山区稀遇泥石流灾害带 | 
| V | 242 412 | 25 | 170 | 1.031 302 | 东南台风暴雨影响泥石流灾害带 | 
| VI | 186 244 | 16 | 167 | 0.859 088 | 天山—昆仑山半干旱山区泥石流灾害带 | 
| VII | 295 531 | 21 | 139 | 0.710 585 | 华北半干旱-半湿润中低山区泥石流灾害带 | 
| 合计 | 1 669 989 | 268 | 4 542 | 
| [1] | 刘希林, 莫多闻. 论泥石流及其学科性质[J]. 自然灾害学报, 2001, 10(3):1-6. | 
| [2] | 陈宁生, 杨成林, 周伟, 等. 泥石流勘查技术[M]. 北京: 科学出版社, 2011. | 
| [3] |  
											 TAKAHASHI T. Debris flow on prismatic open channel[J]. Journal of the Hydraulics Division, 1980, 106(3):381-396. 
																							 DOI URL  | 
										
| [4] | 胡凯衡, 崔鹏, 马超, 等. 宁南县矮子沟“6.28”特大灾害性泥石流成因和特征[J]. 山地学报, 2012, 30(6):696-700. | 
| [5] | 游勇, 陈兴长, 柳金峰. 汶川地震后四川安县甘沟堵溃泥石流及其对策[J]. 山地学报, 2011, 29(3):320-327. | 
| [6] |  
											 ADDISON K. Debris flow during intense rainfall in Snowdonia, North Wales: a preliminary survey[J]. Earth Surface Processes and Landforms, 1987, 12(5):561-566. 
																							 DOI URL  | 
										
| [7] |  
											 GREGORETTI C. The initiation of debris flow at high slopes: experimental results[J]. Journal of Hydraulic Research, 2000, 38(2):83-88. 
																							 DOI URL  | 
										
| [8] |  
											 GABET E J, BURBANK D W, PUTKONEN J K, et al. Rainfall thresholds for landsliding in the Himalayas of Nepal[J]. Geomorphology, 2004, 63(3/4):131-143. 
																							 DOI URL  | 
										
| [9] | TANG C, VAN ASCH T W J, CHANG M, et al. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms[J]. Geomorphology, 2012, 139(2):559-576. | 
| [10] | VAZ T, LUÍS ZÊZERE J, PEREIRA S, et al. Regional rainfall thresholds for landslide occurrence using a centenary database[C]//Proceedings of the EGU General Assembly Conference. Vienna: European Geosciences Union, 2017. | 
| [11] | 倪化勇, 王德伟. 基于雨量(强)条件的泥石流预测预报研究现状、问题与建议[J]. 灾害学, 2010, 25(1):124-128. | 
| [12] | 谭万沛, 韩庆玉. 四川省泥石流预报的区域临界雨量指标研究[J]. 灾害学, 1992, 7(1):37-42. | 
| [13] |  
											 ZHOU W, TANG C. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides, 2014, 11(5):877-887. 
																							 DOI URL  | 
										
| [14] | 周伟, 唐川. 汶川震区暴雨泥石流发生的降雨阈值[J]. 水科学进展, 2013, 24(6):786-793. | 
| [15] | 胡桂胜, 陈宁生, 游勇, 等. “7·10”连山大桥泥石流运动特征与沟道堵溃分析[J]. 成都理工大学学报(自然科学版), 2015, 42(6):641-648. | 
| [16] |  
											 WU C H, CHEN S C, FENG Z Y. Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan[J]. Landslides, 2014, 11(3):357-367. 
																							 DOI URL  | 
										
| [17] |  
											 CUI P, ZHOU G G D, ZHU X H, et al. Scale amplification of natural debris flows caused by cascading landslide dam failures[J]. Geomorphology, 2013, 182(1):173-189. 
																							 DOI URL  | 
										
| [18] |  
											 DI B F, ZHANG H Y, LIU Y Y, et al. Assessing susceptibility of debris flow in southwest China using gradient boosting machine[J]. Scientific Reports, 2019, 9(1):12532. 
																							 DOI URL  | 
										
| [19] | 崔鹏, 庄建琦, 陈兴长, 等. 汶川地震区震后泥石流活动特征与防治对策[J]. 四川大学学报(工程科学版), 2010, 42(5):10-19. | 
| [20] |  
											 唐邦兴, 杜榕桓, 康志成, 等. 我国泥石流研究[J]. 地理学报, 1980, 35(3):259-264. 
																							 DOI  | 
										
| [21] | 陈宁生, 崔鹏, 王晓颖, 等. 地震作用下泥石流源区砾石土体强度的衰减实验[J]. 岩石力学与工程学报, 2004, 23(16):2743-2747. | 
| [22] | 陈晓清, 李智广, 崔鹏, 等. 5·12汶川地震重灾区水土流失初步估算[J]. 山地学报, 2009, 27(1):122-127. | 
| [23] | 朱平一, 罗德富, 寇玉贞. 西藏古乡沟泥石流发展趋势[J]. 山地研究, 1997, 15(4):296-299. | 
| [24] |  
											 CHEN N S, LI J, LIU L H, et al. Post-earthquake denudation and its impacts on ancient civilizations in the Chengdu Longmenshan region, China[J]. Geomorphology, 2018, 309(1):51-59. 
																							 DOI URL  | 
										
| [25] |  
											 LIN W T, LIN C Y, CHOU W C. Assessment of vegetation recovery and soil erosion at landslides caused by a catastrophic earthquake: a case study in Central Taiwan[J]. Ecological Engineering, 2006, 28(1):79-89. 
																							 DOI URL  | 
										
| [26] |  
											 REN D D. The devastating Zhouqu storm-triggered debris flow of August 2010: likely causes and possible trends in a future warming climate[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7):3643-3662. 
																							 DOI URL  | 
										
| [27] | 刘传正, 苗天宝, 陈红旗, 等. 甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因[J]. 地质通报, 2011, 30(1):141-150. | 
| [28] | CHEN N S, LU Y, ZHOU H B, et al. Combined impacts of antecedent earthquakes and droughts on disastrous debris-flows[J]. Journal of Mountain Science, 2014, 11(6):1507-1520. | 
| [29] | KEAN J W, STALEY D M, CANNON S H. In situ measurements of post-fire debris flows in southern California: comparisons of the timing and magnitude of 24 debris flow events with rainfall and soil moisture conditions[J]. Journal of Geophysical Research Earth Surface, 2011, 116(1):1-21. | 
| [30] |  
											 RAVANEL L, DELINE P. Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’[J]. The Holocene, 2011, 21(2):357-365. 
																							 DOI URL  | 
										
| [31] | RAVANEL L, DELINE P. Rockfall hazard in the Mont Blanc massif increased by the current atmospheric warming[J]. Engineering Geology for Society and Territory, 2015, 1:425-428. | 
| [32] | STOFFEL M, BENISTON M. On the incidence of debris flows from the early little ice age to a future greenhouse climate: a case study from the Swiss Alps[J]. Geophysical Research Letters, 2006, 33(16):271-284. | 
| [33] | 陈宁生, 佘德彬. 基于弃渣综合利用的矿山泥石流灾害防治新模式: 以冕宁盐井沟泸沽铁矿为例[J]. 山地学报, 2019, 37(1):78-85. | 
| [34] | 陈宁生, 周伟, 杨成林, 等. 工矿弃土弃渣泥石流灾害工程治理模式与应用[J]. 矿业研究与开发, 2010, 30(4):84-87. | 
| [35] | 张永双, 金逸民, 吴树仁, 等. 人工弃渣诱发泥石流的动力学研究: 以三峡库区巴东县黄家大沟为例[J]. 地球学报, 2005, 26(6):571-576. | 
| [36] | JAKOB D M, HUNGR O. Debris-flow hazards and related phenomena[M]. Berlin: Springer International Publishing, 2005. | 
| [37] | 钟敦伦, 谢洪. 泥石流与人类经济活动[J]. 长江流域资源与环境, 1999, 8(3):100-106. | 
| [38] |  
											 PARKER R N, HALES T C, MUDD S M, et al. Colluvium supply in humid regions limits the frequency of storm-triggered landslides[J]. Scientific Reports, 2016, 6(1):1-7. 
																							 DOI URL  | 
										
| [39] | 卢阳, 陈宁生, 吕立群, 等. 湖南临湘贺畈沟灾害性泥石流成因分析和启示[J]. 人民长江, 2013, 44(7):28-32. | 
| [40] |  
											 ZHANG Y, CHEN N S, LIU M, et al. Debris flows originating from colluvium deposits in hollow regions during a heavy storm process in taining, southeastern China[J]. Landslides, 2020, 17(2):335-347. 
																							 DOI URL  | 
										
| [41] | 戴福初, 李焯芬, 黄志全, 等. 火山岩坡残积土地区暴雨滑坡泥石流的形成机理[J]. 工程地质学报, 1999, 7(2):51-57. | 
| [42] |  
											 MA T H, LI C J, LU Z M, et al. Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China[J]. Geomorphology, 2015, 245(1):193-206. 
																							 DOI URL  | 
										
| [43] | 袁丽侠, 崔星, 王州平, 等. 浙江乐清仙人坦泥石流的形成机制[J]. 自然灾害学报, 2009, 18(2):150-154. | 
| [44] | 张勇, 陈宁生, 王涛, 等. 泰宁县芦蓭坑沟“5.8”特大泥石流成因和特性分析[J]. 泥沙研究, 2019, 44(4):54-59. | 
| [45] |  
											 CHEN N S, ZHU Y H, HUANG Q, et al. Mechanisms involved in triggering debris flows within a cohesive gravel soil mass on a slope: a case in sw China[J]. Journal of Mountain Science, 2017, 14(4):611-620. 
																							 DOI URL  | 
										
| [46] |  
											 IVERSON R M. The physics of debris flows[J]. Reviews of Geophysics, 1997, 35(3):245-296. 
																							 DOI URL  | 
										
| [47] |  
											 IVERSON R M. Landslide triggering by rain infiltration[J]. Water Resources Research, 2000, 36(7):1897-1910. 
																							 DOI URL  | 
										
| [48] |  
											 IVERSON R M, REID M E, IVERSON N R, et al. Acute sensitivity of landslide rates to initial soil porosity[J]. Science, 2000, 290(1):513-516. 
																							 DOI URL  | 
										
| [49] |  
											 CHEN N S, ZHOU W, YANG C L, et al. The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content[J]. Geomorphology, 2010, 121(3/4):222-230. 
																							 DOI URL  | 
										
| [50] | 南京水利科学研究院土工研究所. 土工试验技术手册[M]. 北京: 人民交通出版社, 2003. | 
| [51] |  
											 LARSEN I J, PEDERSON J L, SCHMIDT J C. Geologic versus wildfire controls on hillslope processes and debris flow initiation in the green river canyons of dinosaur national monument[J]. Geomorphology, 2006, 81(1/2):114-127. 
																							 DOI URL  | 
										
| [52] |  
											 MERRITT E. The identification of four stages during micro-rill development[J]. Earth Surface Processes and Landforms, 1984, 9(5):493-496. 
																							 DOI URL  | 
										
| [53] | 张雄, 裴向军, 裴钻, 等. 极震区泥石流流量计算方法的研究[J]. 自然灾害学报, 2014, 23(6):227-233. | 
| [54] | 郭富赟, 孟兴民, 尹念文, 等. 甘肃省岷县耳阳沟“5·10”泥石流基本特征及危险度评价[J]. 兰州大学学报(自然科学版), 2014, 50(5):628-632. | 
| [55] | 胡凯衡, 崔鹏, 游勇, 等. 汶川灾区泥石流峰值流量的非线性雨洪修正法[J]. 四川大学学报(工程科学版), 2010, 42(5):52-57. | 
| [56] | 余斌, 杨永红, 苏永超, 等. 甘肃省舟曲8.7特大泥石流调查研究[J]. 工程地质学报, 2010, 18(4):437-444. | 
| [57] | 陈宁生, 高延超, 李东风, 等. 丹巴县邛山沟特大灾害性泥石流汇流过程分析[J]. 自然灾害学报, 2004, 13(3):104-108. | 
| [58] | 陈宁生, 邓明枫, 胡桂胜, 等. 地震影响下西南干旱山区泥石流危险性特征与防治对策[J]. 四川大学学报(工程科学版), 2010, 42(增刊1):1-6. | 
| [59] | 陈宁生, 刘美, 刘丽红. 关于山洪与泥石流灾害及其流域性质判别的讨论[J]. 灾害学, 2018, 33(1):39-43, 64. | 
| [60] | 高云建, 陈宁生, 田树峰, 等. 基于堆积物石块磨圆度的泥石流暴发频率判识[J]. 水土保持研究, 2018, 25(4):370-374. | 
| [61] | 陈宁生, 崔鹏, 刘中港, 等. 基于黏土颗粒含量的泥石流容重计算[J]. 中国科学: E辑, 2003, 33(增刊1):164-174. | 
| [62] | 余斌. 根据泥石流沉积物计算泥石流容重的方法研究[J]. 沉积学报, 2008, 26(5):789-796. | 
| [63] | 陈宁生, 杨成林, 李欢. 基于浆体的泥石流容重计算[J]. 成都理工大学学报(自然科学版), 2010, 37(2):168-173. | 
| [64] | 康志成, 崔鹏, 韦方强. 中国科学院东川泥石流观测研究站观测实验资料集(1961—1984)[M]. 北京: 科学出版社, 2006. | 
| [65] |  
											 RICKENMANN D. Empirical relationships for debris flows[J]. Natural Hazards, 1999, 19(1):47-77. 
																							 DOI URL  | 
										
| [66] | 陈宁生, 杨成林, 李战鲁, 等. 泥石流弯道超高与流速计算关系的研究: 以巴塘通戈顶沟地震次生泥石流为例[J]. 四川大学学报(工程科学版), 2009, 41(3):165-171. | 
| [67] | 赵晋恒, 胡凯衡, 唐金波, 等. 考虑爬高效应的泥石流弯道超高公式[J]. 水利学报, 2015, 46(2):190-196. | 
| [68] | 中国地质灾害防治工程行业协会. 泥石流灾害防治工程勘察规范: T/CAGHP 006—2018[S]. 北京: 中国地质灾害防治工程行业协会, 2018. | 
| [69] | 周必凡, 李德基, 罗德富, 等. 泥石流防治指南[M]. 北京: 科学出版社, 1991. | 
| [70] | DONOVAN I P, SANTI P M. A probabilistic approach to post-wildfire debris-flow volume modeling[J]. Landslides, 2017, 14(4):1-16. | 
| [71] |  
											 CAPRA L, LUGO-HUBP J, BORSELLI L. Mass movements in tropical volcanic terrains: the case of Teziutlán (México)[J]. Engineering Geology, 2003, 69(3/4):359-379. 
																							 DOI URL  | 
										
| [72] |  
											 NOCENTINI M, TOFANI V, GIGLI G, et al. Modeling debris flows in volcanic terrains for hazard mapping: the case study of Ischia Island (Italy)[J]. Landslides, 2015, 12(5):831-846. 
																							 DOI URL  | 
										
| [73] |  
											 PICARELLI L, OLIVARES L, AVOLIO B. Zoning for flowslide and debris flow in pyroclastic soils of Campania region based on “infinite slope” analysis[J]. Engineering Geology, 2008, 102(3/4):132-141. 
																							 DOI URL  | 
										
| [74] |  
											 SEPULVEDA S A, REBOLLEDO S, VARGAS G. Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response[J]. Quaternary International, 2006, 158(1):83-95. 
																							 DOI URL  | 
										
| [75] |  
											 RODRÍGUEZ-MORATA C, VILLACORTA S, STOFFEL M, et al. Assessing strategies to mitigate debris-flow risk in Abancay province, south-central Peruvian Andes[J]. Geomorphology, 2019, 342(1):127-139. 
																							 DOI URL  | 
										
| [76] |  
											 CARREÑO C R, KALAFATOVICH C S. The Alcamayo and Cedrobamba catastrophic debris flow (January, March and April 2004) in Machupicchu area, Peru[J]. Landslides, 2006, 3(1):79-83. 
																							 DOI URL  | 
										
| [77] |  
											 BROOKS W E, WILLETT J C, KENT J D, et al. The Muralla Pircada: an ancient Andean debris flow retention dam, Santa Rita B archaeological site, Chao Valley, Northern Perú[J]. Landslides, 2005, 2(2):117-123. 
																							 DOI URL  | 
										
| [78] |  
											 IMAIZUMI F, TSUCHIYA S, OHSAKA O. Behaviour of debris flows located in a mountainous torrent on the Ohya landslide, Japan[J]. Canadian Geotechnical Journal, 2005, 42(3):919-931. 
																							 DOI URL  | 
										
| [79] |  
											 LAVIGNE F, SUWA H. Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia[J]. Geomorphology, 2004, 61(1/2):41-58. 
																							 DOI URL  | 
										
| [80] | DUMAISNIL C, THOURET J C, CHAMBON G, et al. Hydraulic, physical and rheological characteristics of rain-triggered lahars at Semeru volcano, Indonesia[J]. Earth Surface Processes and Landforms, 2010, 35(13):1573-1590. | 
| [81] |  
											 ARGUDEN A T, RODOLFO K S. Sedimentologic and dynamic differences between hot and cold laharic debris flows of Mayon Volcano, Philippines[J]. Geological Society of America Bulletin, 1990, 102(7):865-876. 
																							 DOI URL  | 
										
| [82] |  
											 ADHIKARI D P, KOSHIMIZU S. Debris flow disaster at Larcha, upper Bhotekoshi Valley, central Nepal[J]. Island Arc, 2005, 14(4):410-423. 
																							 DOI URL  | 
										
| [83] |  
											 COE J A, CANNON S H, SANTI P M. Introduction to the special issue on debris flows initiated by runoff, erosion, and sediment entrainment in western North America[J]. Geomorphology, 2008, 96(3/4):247-249. 
																							 DOI URL  | 
										
| [84] |  
											 VARGAS G, RUTLLANT J, ORTLIEB L. ENSO tropical-extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid Coast of western South America (17°-24°S)[J]. Earth and Planetary Science Letters, 2006, 249(3/4):467-483. 
																							 DOI URL  | 
										
| [85] |  
											 PÉREZ F L. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela[J]. CATENA, 2001, 45(3):163-183. 
																							 DOI URL  | 
										
| [86] | WIECZOREK G F, MOSSA G S, MORGAN B A. Regional debris-flow distribution and preliminary risk assessment from severe storm events in the Appalachian Blue Ridge Province, USA[J]. Landslides, 2004, 1(1):53-59. | 
| [87] |  
											 ANDERSON D M, REYNOLDS R C, BROWN J. Bentonite debris flows in northern Alaska[J]. Science (New York, NY), 1969, 164(1):173-174. 
																							 DOI URL  | 
										
| [1] | ZHANG Nan,FANG Zhiwei,HAN Xiao,CHEN Chunli,QI Xiaobo. The study on temporal and spatial distribution law and cause of debris flow disaster in China in recent years. [J]. Earth Science Frontiers, 2018, 25(2): 299-308. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||