

Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 232-245.DOI: 10.13745/j.esf.sf.2020.9.15
Previous Articles Next Articles
					
													LI Dewen1,2( ), LI Linlin1,2, MA Baoqi1,2, ZHANG Jian3
), LI Linlin1,2, MA Baoqi1,2, ZHANG Jian3
												  
						
						
						
					
				
Received:2020-07-02
															
							
																	Revised:2020-08-18
															
							
															
							
																	Online:2021-03-25
															
							
																	Published:2021-04-03
															
						CLC Number:
LI Dewen, LI Linlin, MA Baoqi, ZHANG Jian. Characteristics of lake sediment response to earthquakes and the reconstruction of paleoseismic sequences[J]. Earth Science Frontiers, 2021, 28(2): 232-245.
 
																													Fig.2 Comparing the liquefaction behaviors of non-cohesive materials with low (a-c) and high (d-f) particle contents during cyclic loading. Modified after [9].
 
																													Fig.5 Conditions of fluidization and elutriation by movement of pore fluid within sediments (modeled as quartz spheres in 20 ℃ water). Modified after [9].
| 重力流类型 | 主要机制 | 次要机制 | 
|---|---|---|
| 浊流 | 紊流 | 颗粒碰撞(分散压力)、向上逃逸孔隙流体 | 
| 液态化流 | 向上逃逸孔隙流体 | 颗粒碰撞(分散压力)、紊流 | 
| 颗粒流 | 颗粒碰撞(分散压力) | 紊流、浮力、摩擦力 | 
| 泥石流 | 摩擦力、颗粒碰撞(分散压力) | 紊流、浮力、黏聚力、向上逃逸孔隙流体 | 
Table 1 List of dominant and secondary sediment support mechanisms for the different types of underwater gravity flows (after [53-54])
| 重力流类型 | 主要机制 | 次要机制 | 
|---|---|---|
| 浊流 | 紊流 | 颗粒碰撞(分散压力)、向上逃逸孔隙流体 | 
| 液态化流 | 向上逃逸孔隙流体 | 颗粒碰撞(分散压力)、紊流 | 
| 颗粒流 | 颗粒碰撞(分散压力) | 紊流、浮力、摩擦力 | 
| 泥石流 | 摩擦力、颗粒碰撞(分散压力) | 紊流、浮力、黏聚力、向上逃逸孔隙流体 | 
| 测试项 | 测试对象 | 样品特征 | 测试目的 | 
|---|---|---|---|
| 岩心磁化率和元素面扫描、X成像 | 全部湖泊岩心 | 0.1~0.2 mm分辨率,无损 | 1,2,3,4 | 
| 毫米级CT扫描 | 全部湖泊岩心 | 0.5 mm分辨率,无损 | 1,2,3,4 | 
| 地质编录 | 全部湖泊岩心 | 连续 | 1,2,3,4 | 
| 210Pb、137Cs测年 | 典型湖泊岩心(顶部) | 约1 cm厚 | 2 | 
| 14C测年 | 典型湖泊岩心 | 约1 cm厚 | 2 | 
| 古地磁测量 | 典型湖泊岩心 | 2 cm厚 | 2 | 
| 释光年代学 | 典型湖泊岩心 | 2 | |
| 含水量 | 典型湖泊岩心 | 0.25~1 cm厚 | 3,4 | 
| 碳分析(TOC/TC/TIC) | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 粒度、粒形分析 | 典型湖泊岩心 | 0.25~1 cm厚 | 3,4 | 
| 硅藻 | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 孢粉 | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 显微结构、构造、粒度、粒形 | 重点层位 | 5~10 cm厚,连续观察 | 4 | 
| 微区元素分析、X射线成像 | 重点层位 | 10~100 μm分辨率,无损 | 4 | 
| 微米CT扫描 | 重点层位 | 样品尺寸≤2.5 cm | 4 | 
| 磁化率各向异性(AMS) | 重点层位 | 2 cm厚 | 4 | 
Table 2 Summary of the main types of paleoseismologic measurements performed on lake sediement cores. Adapted from [40].
| 测试项 | 测试对象 | 样品特征 | 测试目的 | 
|---|---|---|---|
| 岩心磁化率和元素面扫描、X成像 | 全部湖泊岩心 | 0.1~0.2 mm分辨率,无损 | 1,2,3,4 | 
| 毫米级CT扫描 | 全部湖泊岩心 | 0.5 mm分辨率,无损 | 1,2,3,4 | 
| 地质编录 | 全部湖泊岩心 | 连续 | 1,2,3,4 | 
| 210Pb、137Cs测年 | 典型湖泊岩心(顶部) | 约1 cm厚 | 2 | 
| 14C测年 | 典型湖泊岩心 | 约1 cm厚 | 2 | 
| 古地磁测量 | 典型湖泊岩心 | 2 cm厚 | 2 | 
| 释光年代学 | 典型湖泊岩心 | 2 | |
| 含水量 | 典型湖泊岩心 | 0.25~1 cm厚 | 3,4 | 
| 碳分析(TOC/TC/TIC) | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 粒度、粒形分析 | 典型湖泊岩心 | 0.25~1 cm厚 | 3,4 | 
| 硅藻 | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 孢粉 | 典型湖泊岩心 | 0.25 cm厚 | 3,4 | 
| 显微结构、构造、粒度、粒形 | 重点层位 | 5~10 cm厚,连续观察 | 4 | 
| 微区元素分析、X射线成像 | 重点层位 | 10~100 μm分辨率,无损 | 4 | 
| 微米CT扫描 | 重点层位 | 样品尺寸≤2.5 cm | 4 | 
| 磁化率各向异性(AMS) | 重点层位 | 2 cm厚 | 4 | 
| 过程类型 | 地貌部位 | 主要机制 | 物质运移 | 持续时间/s | 
|---|---|---|---|---|
| 地震动 | 全域 | 循环液化 | 往复 | 10~102 | 
| 洪水 | 河口附近 | 悬浮分散 | 单向 | 104~106 | 
| 风暴 | 浅水区 | 循环液化 | 往复 | 104~106 | 
| 滑塌 | 陡坡及其前缘 | 动力液化 | 单向 | 10~103 | 
| 浊流 | 陡坡及其前缘 | 动力液化 | 单向 | 10~103 | 
Table 3 Comparision of the characteristics of sedimentary processes of common event-induced deposits under lake environment
| 过程类型 | 地貌部位 | 主要机制 | 物质运移 | 持续时间/s | 
|---|---|---|---|---|
| 地震动 | 全域 | 循环液化 | 往复 | 10~102 | 
| 洪水 | 河口附近 | 悬浮分散 | 单向 | 104~106 | 
| 风暴 | 浅水区 | 循环液化 | 往复 | 104~106 | 
| 滑塌 | 陡坡及其前缘 | 动力液化 | 单向 | 10~103 | 
| 浊流 | 陡坡及其前缘 | 动力液化 | 单向 | 10~103 | 
| [1] | GANGOPADHYAY A, TALWANI P. Symptomatic features of intraplate earthquakes[J]. Seismological Research Letters, 2003,74(6):863-883. DOI URL | 
| [2] | LAFUENTE P, ARLEGUI L E, LIESA C L, et al. Spatial and temporal variation of palaeoseismic activity at an intraplate, historically quiescent structure: the Concud fault (Iberian Chain, Spain)[J]. Tectonophysics, 2014,632:167-187. DOI URL | 
| [3] | BULL W B. Tectonically active landscapes[M]. Chichester: Wiley-Blackwell, 2009: 320. | 
| [4] | MCCALPIN J P. Paleoseismology[M]. 2nd ed. Salt Lake City: Academic Press, 2009. | 
| [5] | ZREDA M, NOLLER J S. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen lake[J]. Science, 1998,282(5391):1097-1099. DOI URL | 
| [6] | NOLLER J, ZREDA M G, LETTIS W R. Use of cosmogenic Cl-36 to date the Quaternary activity of the Hebgen Lake Fault, Montana[C]//Geological Society of America. Abstracts with Programms. McLean: Geological Society of America, 1996. | 
| [7] | SHEN X M, LI D W, TIAN Y T, et al. Late Pleistocene-Holocene slip history of the Langshan-Seertengshan piedmont fault (Inner Mongolia, northern China) from cosmogenic 10Be dating on a bedrock fault scarp[J]. Journal of Mountain Science, 2016,13(5):882-890. DOI URL | 
| [8] | STRASSER M, MONECKE K, SCHNELLMANN M, et al. Lake sediments as natural seismographs: a compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation[J]. Sedimentology, 2013,60(1):319-341. DOI URL | 
| [9] | ALLEN J. Sedimentary structures: their character and physical basis part B[M]. Amsterdam: Elsevier, 1982. | 
| [10] | GOLDFINGER C. Sub-aqueous paleoseismology[J]. International Geophysics, 2009,95:119-170. | 
| [11] | OBERMEIER S F. Using Liquefaction-Induced and other soft-sediment features for paleoseismic analysis[J]. International Geophysics, 2009,95:497-564. | 
| [12] | KREMER K, WIRTH S B, REUSCH A, et al. Lake-sediment based paleoseismology: limitations and perspectives from the Swiss Alps[J]. Quaternary Science Reviews, 2017,168:1-18. DOI URL | 
| [13] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 17742-2008中国地震烈度表[S]. 北京: 中国标准出版社, 2008. | 
| [14] | BULL W B. Tectonic geomorphology of mountains: a new approach to paleoseismology[M]. Oxford: Blackwell Science, 2007: 328. | 
| [15] | MOERNAUT J, VAN DAELE M, FONTIJN K, et al. Larger earthquakes recur more periodically: new insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile[J]. Earth and Planetary Science Letters, 2018,481:9-19. DOI URL | 
| [16] | MCCALPIN J P, NELSON A R. Introduction to paleoseismology[J]. International Geophysics, 2009,95:1-27. | 
| [17] | 陈宝魁, 王东升, 李宏男, 等. 海底地震动特性及相关谱研究[J]. 防灾减灾工程学报, 2016,36(1):38-43. | 
| [18] | SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, 1971,97:1249-1273. DOI URL | 
| [19] | BJERRUM L, KRINGSTAD S, KUMMENEJE O. The shear strength of a fine sand[C]//Proceedings of the 5th International Conference on Soil Mechanics. Paris, 1961: 29-37. | 
| [20] | FINN W D L, PICKERING D J, BRANSBY P L. Sand liquefaction intriaxial and simple shear tests[J]. Journal of the Soil Mechanics and Foundations Division, 1971,97(4):639-659. DOI URL | 
| [21] | AMBRASEYS N, SARMA S. Liquefaction of soils induced by earthquakes[J]. Bulletin of the Seismological Society of America, 1969,59(2):651-664. DOI URL | 
| [22] | SCHLICHTING H, GERSTEN K. Boundary-layer theory[M]. 9th ed. Berlin: Springer-Verlag, 2017. | 
| [23] | 章梓雄, 董曾南. 粘性流体力学[M]. 2版. 北京: 清华大学出版社, 2011: 358. | 
| [24] | LE ROUX J P. A simple method to predict the threshold of particle transport under oscillatory waves[J]. Sedimentary Geology, 2001,143(1/2):59-70. DOI URL | 
| [25] | LE ROUX J P. A simple method to predict the threshold of particle transport under oscillatory waves. Sedimentary Geology, 2001, 143(1/2): 59-70: reply to discussion[J]. Sedimentary Geology, 2004,163(3/4):327-330. | 
| [26] | LE ROUX J P. Erratum to “Discussion of: Le Roux, J.P. (2001). A simple method to predict the threshold of particle transport under oscillatory waves” [Sediment. Geol. 143 (2001) 59-70]: reply to discussion[J]. Sedimentary Geology, 2004,167(1/2):109. DOI URL | 
| [27] | YOU Z J, YIN B S. A discussion of the paper “A simple method to predict the threshold of particle transport under oscillatory waves” by J.P. Le Roux[J]. Sedimentary Geology, 2004,163(3/4):323-325. DOI URL | 
| [28] | MIGNIOT C. Etude despropriétés physiques de différents sédiments très fins et de leur comportement sous des actions hydrodynamiques[J]. La Houille Blanche, 1968,7:591-620. | 
| [29] | TASLAGYAN K A, CHAN D H, MORGENSTERN N R. Effect of vibration on the critical state of dry granular soils[J]. Granular Matter, 2015,17(6):687-702. DOI URL | 
| [30] | CHAPRON E, BECK C, POURCHET M, et al. 1822 earthquake-triggered homogenite in Lake Le Bourget (NW Alps)[J]. Terra Nova, 1999,11(2/3):86-92. DOI URL | 
| [31] | ARNAUD F, LIGNIER V, REVEL M, et al. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps)[J]. Terra Nova, 2002,14(4):225-232. DOI URL | 
| [32] | SCHNELLMANN M, ANSELMETTI F S, GIARDINI D, et al. Prehistoric earthquake history revealed by lacustrine slump deposits[J]. Geology, 2002,30(12):1131-1134. DOI URL | 
| [33] | MONECKE K, ANSELMETTI F S, BECKER A, et al. The record of historic earthquakes in lake sediments of Central Switzerland[J]. Tectonophysics, 2004,394(1/2):21-40. DOI URL | 
| [34] | MOERNAUT J, DE BATIST M, CHARLET F, et al. Giant earthquakes in South-Central Chile revealed by Holocene mass-wasting events in Lake Puyehue[J]. Sedimentary Geology, 2007,195(3/4):239-256. DOI URL | 
| [35] | HOWARTH J D, FITZSIMONS S J, NORRIS R J, et al. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand[J]. Earth and Planetary Science Letters, 2014,403:340-351. DOI URL | 
| [36] | MOERNAUT J, DAELE M V, HEIRMAN K, et al. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile[J]. Journal of Geophysical Research Solid Earth, 2014,119(3):1607-1633. DOI URL | 
| [37] | PETERSEN J, WILHELM B, REVEL M, et al. Sediments of Lake Vens (SW European Alps, France) record large-magnitude earthquake events[J]. Journal of Paleolimnology, 2014,51(3):343-355. DOI URL | 
| [38] | AVŞAR U, HUBERT-FERRARI A, DE BATIST M, et al. Sedimentary records of past earthquakes in Boraboy Lake during the last ca 600 years (North Anatolian Fault, Turkey)[J]. Palaeography, Palaeoclimatlogy, Palaeoecology, 2015,433:1-9. | 
| [39] | GARRETT E, FUJIWARA O, GARRETT P, et al. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan[J]. Earth-Science Reviews, 2016,159:337-357. DOI URL | 
| [40] | SCHWAB M J, WERNER P, DULSKI P, et al. Palaeolimnology of Lake Sapanca and identification of historic earthquake signals, Northern Anatolian Fault Zone (Turkey)[J]. Quaternary Science Reviews, 2009,28(11/12):991-1005. DOI URL | 
| [41] | MOERNAUT J, VAN DAELE M, STRASSER M, et al. Lacustrine turbidites produced by surficial slope sediment remobilization: a mechanism for continuous and sensitive turbidite paleoseismic records[J]. Marine Geology, 2017,384:159-176. DOI URL | 
| [42] | VAN DAELE M, MOERNAUT J, DOOM L, et al. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: implications for quantitative lacustrine palaeoseismology[J]. Sedimentology, 2015,62(5):1466-1496. DOI URL | 
| [43] | MICHETTI A M, AUDEMARD M F A, AUDEMARD M F A . Future trends in paleoseismology: integrated study of the seismic landscape as a vital tool in seismic hazard analyses[J]. Tectonophysics, 2005,408(1/2/3/4):3-21. DOI URL | 
| [44] | MARCO S, AGNON A. High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform[J]. Tectonophysics, 2005,408(1/2/3/4):101-112. DOI URL | 
| [45] | STRASSER M, HILBE M, ANSELMETTI F S. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards[J]. Marine Geophysical Research, 2011,32(1/2):331-347. DOI URL | 
| [46] | SMYTH W D, CARPENTER J R. Instability in geophysical flows[M]. Cambridge: Cambridge University Press, 2019: 327. | 
| [47] | WETZLER N, MARCO S, HEIFETZ E. Quantitative analysis of seismogenic shear-induced turbulence in lake sediments[J]. Geology, 2010,38(4):303-306. DOI URL | 
| [48] | WEAVER L, ARNAUD E. Polyphase glacigenic deformation in the Waterloo Moraine, Kitchener, Ontario, Canada[J]. Sedimentary Geology, 2011,235(3/4):292-303. DOI URL | 
| [49] | GRISHCHENKO V A, GUZHIKOV A Y. Paleomagnetic directions distortion caused by viscous-plastic deformations estimated from anisotropy of magnetic susceptibility (case study of Berriasian clays from east Crimea)[M]// NURGALIEV D, SHCHERBAKOV V, KOSTEROV A, et al. Recent advances in rock magnetism, environmental magnetism and paleomagnetism. Berlin: Springer, 2019: 25-35. | 
| [50] | ROBION P, GRELAUD S, DE LAMOTTE D F. Pre-folding magnetic fabrics in fold-and-thrust belts: why the apparent internal deformation of the sedimentary rocks from the Minervois basin (NE: Pyrenees, France) is so high compared to the Potwar basin (SW: Himalaya, Pakistan)?[J]. Sedimentary Geology, 2007,196:181-200. DOI URL | 
| [51] | EDWARDS D A. Turbidity currents: dynamics, deposits, and reversals[M]. Berlin: Springer-Verlag, 1993. | 
| [52] | LARSEN D J, ABBOT M B. A high-resolution geophysical survey of Jenny Lake: using lake sediments to construct a continuous record of tectonic activity and earthquake-triggered disturbances at Grand Teton National Park[R]// University of Wyoming national park service research center annual report. Laramie: University of Wyoming, 2015: 1-6. | 
| [53] | BRIDGE J S, DEMICCO R V. Earth surface processes, landforms and sediment deposits[M]. Cambridge: Cambridge University Press, 2008. | 
| [54] | SCHNELLMANN M, ANSELMETTI F S, GIARDINI D, et al. 15000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards[J]. Eclogae Geologicae Helvetiae, 2006,99(3):409-428. DOI URL | 
| [55] | MARCO S, AGNON A. Prehistoric earthquake deformations near Masada, Dead Sea graben[J]. Geology, 1995,23(8):695-698. DOI URL | 
| [56] | RODRI GUEZ-PASCUA M A, CALVO J P, DE VICENTE G, et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 2000,135(14):117-135. DOI URL | 
| [57] | JIANG H C, ZHONG N, LI Y H, et al. Soft sediment deformation structures in the Lixian lacustrine sediments, eastern Tibetan Plateau and implications for postglacial seismic activity[J]. Sedimentary Geology, 2016,344:123-134. DOI URL | 
| [58] | JIANG H C, MAO X, XU H Y, et al. Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, East Tibet[J]. Geomorphology, 2014,204:518-531. DOI URL | 
| [59] | 李雁玲, 李杰森. 云南抚仙湖近千年地震事件记录[J]. 地球科学进展, 2003,18(6):906-911. | 
| [60] | 李杰森, 宋学良, 孙应伦, 等. 云南抚仙湖现代浊流沉积物的磁化率测定及与地震相关性分析[J]. 地震学报, 1999,21(1):83-88. | 
| [61] | 李杰森, 宋学良, 马成大, 等. 用环境磁学磁化率方法研究历史地震: 抚仙湖地区重要历史地震事件的检验与发现[J]. 地震研究, 2000,23(4):444-451. | 
| [62] | HAMPTON M A, LEE H J, LOCAT J. Submarine landslides[J]. Reviews of Geophysics, 1996,34(1):33-59. DOI URL | 
| [63] | GILLI A, ANSELMETTI F S, GLUR L, et al. Lake sediments as archives of recurrence rates and intensities of past flood events[M]//SCHWEILER-BOLLSCHWEILER M, STOFFEL M, RUDOLF-MIKLAU F. Dating torrential processes on fans and cones: methods and their application for hazard and risk assessment. Netherlands: Springer, 2013: 225-242. | 
| [64] | WILHELM B, ARNAUD F, SABATIER P, et al. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps[J]. Journal of Quaternary Science, 2013,28(2):189-199. DOI URL | 
| [65] | GIRARDCLOS S, SCHMIDT O T, STURM M, et al. The 1996 AD delta collapse and largeturbidite in Lake Brienz[J]. Marine Geology, 2007,241:137-154. DOI URL | 
| [66] | STØREN E N, DAHL S O, NESJE A, et al. Identifying the sedimentary imprint of high-frequency Holocene river floods in lake sediments: development and application of a new method[J]. Quaternary Science Reviews, 2010,29(23/24):3021-3033. DOI URL | 
| [67] | SCHILLEREFF D N, CHIVERRELL R C, MACDONALD N, et al. Flood stratigraphies in lake sediments: a review[J]. Earth-Science Reviews, 2014,135:17-37. DOI URL | 
| [68] | CHOWDHURY B, DASARI G, NOGAMI T. Laboratory study of liquefaction due to wave-seabed interaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,132:842-851. DOI URL | 
| [69] | KASHIWAYA K. Geomorphology of lake-catchment systems: a new perspective from limnogeomorphology[M]. Singapore: Springer Nature Singapore Pte Ltd, 2017: 139. | 
| [70] | HUBERT-FERRARI A, LAMAIR L, HAGE S, et al. A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey): implications for the East Anatolian Fault seismic cycle[J]. Earth and Planetary Science Letters, 2020,538. DOI: 10.1016/j.epsl.2020.116152. DOI | 
| [71] | LIU X, ZHU C, ZHENG J, et al. The observations of seabed sediment erosion and resuspension processes in the Jiaozhou Bay in China[J]. Acta Oceanologica Sinica, 2017,36:79-85. | 
| [72] | 李勇, 钟建华, 邵珠福, 等. 软沉积变形构造的分类和形成机制研究[J]. 地质论评, 2012,58(5):829-838. | 
| [73] | OWEN G, MORETTI M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands[J]. Sedimentary Geology, 2011,235(3/4):141-147. DOI URL | 
| [74] | ZHU L P, LÜ X, WANG J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015,5:13318. DOI URL | 
| [75] | AHLBORN M, HABERZETTL T, WANG J B, et al. Synchronous pattern of moisture availability on the southern Tibetan Plateau since 17.5 Cal. ka BP: the Tangra Yumco lake sediment record[J]. Boreas, 2017,46(2):229-241. DOI URL | 
| [76] | GYAWALI A R, WANG J B, MA Q F, et al. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,516:101-112. DOI URL | 
| [1] | LI Kuo,PENG Min,ZHAO Chuandong,YANG Ke,ZHOU Yalong,LIU Fei,TANG Shiqi,YANG Fan,HAN Wei,YANG Zheng,CHENG Xiaomeng,XIA Xueqi,GUAN Tao,LUO Jianlan,CHENG Hangxin. Vicennial implementation of geochemical survey of land quality in China [J]. Earth Science Frontiers, 2019, 26(6): 128-158. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||