Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 194-203.DOI: 10.13745/j.esf.sf.2019.11.29
Previous Articles Next Articles
LIU Demin(), YANG Weiran, GUO Tieying
Received:
2019-10-10
Revised:
2019-10-30
Online:
2020-01-20
Published:
2020-01-20
CLC Number:
LIU Demin, YANG Weiran, GUO Tieying. Discussion on Cenozoic tectonic development and dynamics in South Tibet[J]. Earth Science Frontiers, 2020, 27(1): 194-203.
对比特征 | 推覆构造(飞来峰) | 滑覆构造(滑来峰) | ||
---|---|---|---|---|
伸展滑覆 | 重力滑动 | |||
构造体制 | 挤压体制 | 伸展体制 | 隆起背景下的重力作用 | |
构 造 体 的 变 形 | 断层组合 | 逆断层 | 正断层 | 兼而有之,其前缘更似 推覆构造,根部则具伸 展构造特征 |
褶皱特点 | 倒转-平卧背斜为主, 倒转翼变薄拉断 | 下翼成倒转翼保存完好 | ||
杏仁等变形 | 长轴直立,短轴水平, 常成直立椭球状 | 与之相反,常为平躺的椭球状 | ||
变形序列 | 老地层推覆于新地层之上, 常地层重复 | 与之相反,常地层缺失 | ||
变形结构 | 水平缩短,垂向相厚 | 水平拉长,垂向变薄 | ||
构造面之下变形 | 多经受挤压缩短 | 伸展变形微弱 | 有时有明显伸展变形 |
Table 1 Discrimination of nappe and slipe tectonics
对比特征 | 推覆构造(飞来峰) | 滑覆构造(滑来峰) | ||
---|---|---|---|---|
伸展滑覆 | 重力滑动 | |||
构造体制 | 挤压体制 | 伸展体制 | 隆起背景下的重力作用 | |
构 造 体 的 变 形 | 断层组合 | 逆断层 | 正断层 | 兼而有之,其前缘更似 推覆构造,根部则具伸 展构造特征 |
褶皱特点 | 倒转-平卧背斜为主, 倒转翼变薄拉断 | 下翼成倒转翼保存完好 | ||
杏仁等变形 | 长轴直立,短轴水平, 常成直立椭球状 | 与之相反,常为平躺的椭球状 | ||
变形序列 | 老地层推覆于新地层之上, 常地层重复 | 与之相反,常地层缺失 | ||
变形结构 | 水平缩短,垂向相厚 | 水平拉长,垂向变薄 | ||
构造面之下变形 | 多经受挤压缩短 | 伸展变形微弱 | 有时有明显伸展变形 |
Fig.7 (a) Cross-section of the Chomolangma area. (b) Finite element modeling of the vertical extrusion of the Higher Himalayan Zone ((b)adapted from [24])
[1] | 杨巍然. 开合构造研究中的几个问题[J]. 地质通报, 2004, 23(3):195-199. |
[2] | 姜春发. 开合构造概况[J]. 地质通报, 2004, 23(3):199-207. |
[3] | PAN G T, DING J, YAO D S, et al. Geological map of Qinghai-Xizang (Tibet) Plateau and adjacent areas[M]. Chengdu: Chengdu Cartographic Publishing House, 2004. |
[4] | 任纪舜. 1∶500万国际亚洲地质图[CM]. 北京: 地质出版社, 2013. |
[5] | HEIM A, GANSSER A. Central Himalaya geological observations of the Swiss expeditions 1936[J]. Mémoire, Société Helvetique Science Naturelle, 1939, 73:1-245. |
[6] |
HODGESK V, HURTADO J M, WHIPPLE K X. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics[J]. Tectonics, 2001, 20:799-809.
DOI URL |
[7] | 许志琴, 王勤, 曾令森, 等. 高喜马拉雅的三维挤出模式[J]. 中国地质, 2013, 40(3):671-680. |
[8] |
HARRISON T M, RYERSON F J, LEFORT P, et al. A late Miocene-Pliocene origin for the Central Himalayan inverted metamorphism[J]. Earth and Planetary Science Letters, 1997, 146:1-8.
DOI URL |
[9] |
ARITA K. Origin of the inverted metamorphism of the Lower Himalayas Central Nepal[J]. Tectonophysics, 1983, 95:43-60.
DOI URL |
[10] |
LEFORT P. Himalayas-collided range-present knowledge of continental arc[J]. American Journal of Science, 1975, 275:1-44.
DOI URL |
[11] |
LELOUP P H, MAHEO G, AMAUD N, et al. The south Tibet detachment shear zone in the Dinggye area: time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 2010, 292:1-16.
DOI URL |
[12] |
BURG J P, CHEN G M. Tectonics and structural formation of southern Tibet, China[J]. Nature, 1984, 311:219-223.
DOI URL |
[13] | BURCHFIEL B C, CHEN Z L, HODGES K V, et al. The south Tibetan detachment system, Himalayan Orogen: extension con-temporaneous with and parallel to shortening in a collisional mountain belt[J]. Special Paper-Geological Society of America, 1992, 269:1-41. |
[14] |
HODGES K V, PARRISH R R, SEARLE M P. Tectonic evolution of the central Annapurna Range, Nepalese Himalayas[J]. Tectonics, 1996, 15:1264-1291.
DOI URL |
[15] | SEARLE M P, SIMPSON R L, LAW R D, et al. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet[J]. Journal Geology Science of London, 2003, 160:345-366. |
[16] | 刘焰, WOLFGANG S, 李剑, 等. 藏南定日地区主中央冲断层与藏南拆离系的特征及其活动时代[J]. 地质通报, 2004, 23(7):636-644. |
[17] |
MEIGS A J, BURBANK D W, BECK R A, Middle-Late Miocene (N 10 Ma) formation of the Main Boundary Thrust in the western Himalaya[J]. Geology, 1995, 23:423-426.
DOI URL |
[18] |
DECELLES P G, GEHRELS G E, QUADE J, et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal[J]. Geological Society of America Bulletin, 1998, 110:2-21.
DOI URL |
[19] | GANSSER A. The geology of the Himalayas[M]. New York: Wiley Inter-science, 1964: 289. |
[20] | NAKATA T. Active faults of the Himalaya of India and Nepal[J]. Special Paper-Geological Society of America, 1989, 232:243-264. |
[21] |
SCHELLING D, ARITA K. Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal, Himalaya[J]. Tectonics, 1991, 10:851-862.
DOI URL |
[22] |
ZHAO W J, NELSON K D. Project INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366:557-559.
DOI URL |
[23] | 尹安. 喜马拉雅造山带新生代构造演化: 沿走向变化的构造几何形态、剥露历史和前陆沉积的约束[J]. 地学前缘, 2006, 13(5):416-515. |
[24] | 曾佐勋, 杨巍然, FRANZ N, 等. 造山带挤出构造[J]. 地质科技情报, 2001, 20(1):1-7. |
[25] | 刘德民, 李德威. 喜马拉雅造山带中段定结地区拆离断层[J]. 大地构造与成矿学, 2003, 27(1):37-42. |
[26] | 张宏飞, HARRIS N, PARRISH R, 等. 北喜马拉雅萨迦穹窿中苦堆和萨迦淡色花岗岩的 U-Pb 年龄及其地质意义[J]. 科学通报, 2004, 49:2090-2094. |
[27] | 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36. |
[28] | 张进江, 丁林, 钟大赉, 等. 喜玛拉雅平行于造山带伸展:是垮塌的标志还是挤压隆升过程的产物?[J]. 科学通报, 1999, 44(19):2031-2036. |
[29] | 王瑜, 万景林, 李大明, 等. 藏南伸展拆离系聂拉木一带构造抬升的热年代学证据[J]. 矿物岩石地球化学通报, 2001, 20(4):292-294. |
[30] |
SORKHABI R B, STUMP E, FOLAND K A, et al. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India[J]. Tectonophysics, 1996, 260:187-199.
DOI URL |
[31] |
BURBANK D W, BLYTHE A E, PUTKONEN J, et al. Decoupling of erosion and precipitation in the Himalayas[J]. Nature, 2003, 426:652-655.
DOI URL |
[32] | 刘德民, 李德威, 杨巍然, 等. 喜马拉雅造山带晚新生代构造隆升的裂变径迹证据[J]. 地球科学:中国地质大学学报, 2005, 30(2):147-152. |
[33] |
ZEITLER P K. Cooling history of the NW Himalaya, Pakistan[J]. Tectonics, 1985, 4(1):127-151.
DOI URL |
[34] |
BURG J P, NIEVERGELT P, OBERLI F, et al. The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding[J]. Journal of Asian Earth Sciences, 1998, 16:239-252.
DOI URL |
[35] | VANNAY J C, GRASEMANN B, RAHN M, et al. Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalayan orogen: evidence for tectonic extrusion coupled to fluvial erosion[J]. Tectonics, 2004, 23:1-24. |
[36] | 朱大岗, 孟宪刚, 邵兆刚, 等. 西藏扎达盆地形成演化与喜马拉雅山隆升[J]. 地球学报, 2006, 27(3):193-200. |
[37] | 潘保田, 方小敏, 李吉均, 等. 晚新生代青藏高原隆升与环境变化[M]∥施雅风, 李吉均, 李炳元. 青藏高原晚新生代隆升与环境变化. 广州, 广东科技出版社, 1998, 1-463. |
[38] |
ZHEISHENG A, KUTZBACH J E, PRELLl W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(3):62-66.
DOI URL |
[39] | 王富葆, 李升峰, 申旭辉, 等. 吉隆盆地的形成演化、 环境变迁与喜马拉雅山隆起[J]. 中国科学: D辑, 1996, 26:329-335. |
[40] | 施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1):10-21. |
[41] | 丁林, 钟大赉, 潘裕生, 等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 1995, 40(16):1479-1500. |
[42] | 郑勇, 张进江, 王佳敏, 等. 聂拉木地区喜马拉雅造山带上新世以来快速剥蚀事件及其构造-气候耦合意义[J]. 科学通报, 2014, 59(11):987-998. |
[1] | GAO Lianfeng, LI Puzhuang, ZHANG Zhenguo, WAN Xiaoqiao, XIA Shiqiang, DONG Guiyu, WANG Zhaosheng, LENG Chunpeng, ZHANG Ying, YAO Jiming, ZHANG Linting, YU Jiangtao, YIN Shiyan. Paleoceanographic environment in Gyangzê, South Tibet during the Jurassic-Cretaceous boundary interval [J]. Earth Science Frontiers, 2020, 27(4): 272-281. |
[2] |
LIU Demin, YANG Weiran, GUO Tieying, RU Jiangtao, XIONG Aimin .
Discussion on the Cenozoic tectonic evolution and dynamics of southern Tibet
[J]. Earth Science Frontiers, 2020, 27(1): 275-286.
|
[3] | YANG Weiran, JIANG Chunfa, ZHANG Kang, GUO Tieying, YOU Zhendong. Applying the view of opening-closing-rotating tectonics to study how the Earth’s interior is working [J]. Earth Science Frontiers, 2020, 27(1): 204-210. |
[4] | HU Zhiping,PENG Jianbing,ZHANG Fei,WANG Rui,CHEN Nannan. The critical issues and creative concepts in the development of urban underground space [J]. Earth Science Frontiers, 2019, 26(3): 76-84. |
[5] | YANG Weiran,JIANG Chunfa,ZHANG Kang,GUO Tieying. Discussions on opening-closing-rotating tectonic system and its forming mechanism and on the dynamic mechanism of plate tectonics [J]. Earth Science Frontiers, 2019, 26(1): 337-. |
[6] | ZHANG Lei,HE Dengfa,LI Di,JI Dongsheng,LIANG Yusheng,ZHENG Menglin,WU Songtao,ZHOU Ge. Geological structure and genesis model of the Baijiahai uplift in the Junggar Basin [J]. Earth Science Frontiers, 2019, 26(1): 149-164. |
[7] | ZHANG Yong,HE Dengfa,LIU Changlei. Three-dimensional geological structure and genetic mechanism of the Bachu uplift in the Tarim Basin [J]. Earth Science Frontiers, 2019, 26(1): 134-148. |
[8] | CHEN Jiajun,HE Dengfa,SUN Fangyuan,WANG Feng,ZHANG Weikang. Three-dimensional geological modeling of the Tabei paleo-uplift and discussion on related issues [J]. Earth Science Frontiers, 2019, 26(1): 121-133. |
[9] | HE Dengfa,WU Shunli. The “past and present” of the Tianjingshan palaeo-uplift: discussion on structural restoration of paleo-uplift [J]. Earth Science Frontiers, 2019, 26(1): 86-101. |
[10] | ZHENG Menglin,FAN Xiangdong,HE Wenjun,YANG Tongyuan,TANG Yong, DING Jing,WU Haisheng,CHEN Lei,GUO Jianchen. Superposition of deep geological structural evolution and hydrocarbon accumulation in the Junggar Basin [J]. Earth Science Frontiers, 2019, 26(1): 22-32. |
[11] | Liu-Chang-Zheng, CHEN Yue-Long, HU Guang, DIAO Juan, LI Yue, LI Lin-Ye, JI Bing-Yan, HONG Yuan-Kui. Some problems in the study of the genesis of Xigeda Formation. [J]. Earth Science Frontiers, 2011, 18(5): 271-282. |
[12] | XU Ze-Min, LIU Wen-Lian. Some problems in the study of the genesis of Xigeda Formation. [J]. Earth Science Frontiers, 2011, 18(5): 256-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||