

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 156-178.DOI: 10.13745/j.esf.sf.2025.8.63
Previous Articles Next Articles
Received:2025-08-20
Revised:2025-08-30
Online:2025-11-25
Published:2025-11-12
CLC Number:
NIU Yaoling. Why should we drill through intact ocean crust?[J]. Earth Science Frontiers, 2025, 32(6): 156-178.
Fig.5 Ocean ridge basalt (MORB) composition shows the extent of ocean ridge mantle melting and magma production that increase with increasing spreading rate
Fig.7 Slow- and ultraslow-spreading ridge locations with normal seismic thickness (6.0±1.0 km) where serpentinized mantle peridotites are exposed on the seafloor
Fig.10 Cartoon illustrations of across-ridge and along-ridge cross sections to show the lithological architecture of ocean crust/mantle relationships between fast- and slow-spreading ocean ridges
| [1] | DIETZ R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190: 854-857. |
| [2] | HESS H H. History of ocean basins. ENGEL A E J, JAMES H L, LEONARD B F. Petrologic studies: a volume to Honor A F[M]. Buddington: Geological Society of America, 1962: 599-620. |
| [3] | VINE F J, MATTHEWS D H. Magnetic anomalies over ocean ridges[J]. Nature, 1963, 199: 947-949. |
| [4] | MAXWELL A E, VON HERZON R P, ANDREWS J E, et al. Initial Reports of Deep Sea Drilling Project.Volume III[S/OL]. 1970. https://doi.org/10.2973/dsdp.proc.3.1970. |
| [5] | MCKENZIE D P, PARKER R L. The North Pacific: an example of tectonics on a sphere[J]. Nature, 1967, 216: 1276-1280. |
| [6] | MORGAN W J. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73: 1959-1982. |
| [7] | LE PICHON X. Sea-floor spreading and continental drift[J]. Journal of Geophysical Researc, 1968, 73: 3661-3697. |
| [8] | WEGENER A. Die entstehhung der kontinente[J]. Geologische Rundschau, 1912, 3: 276-293. |
| [9] | RAITT R W. Seismic refraction studies of the Pacific ocean basin[J]. Geological Society of America Bulletin, 1956, 67: 1623-1640. |
| [10] | EWING J, EWING M. Seismic-refraction profiles in the Atlantic ocean basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge and in the Norwegian Sea[J]. Geological Society of America Bulletin, 1959, 70: 291-318. |
| [11] | HESS H H. The oceanic crust[J]. Journal of Marine Research, 1955, 14: 423-439. |
| [12] | ENGEL A E J, ENGEL C G. Composition of basalts from the mid-Atlantic ridge[J]. Science, 1964, 144: 1330-1333. |
| [13] | MUIR I D, TILLEY C E. Basalts from the northern part of the rift zone of the mid-Atlantic ridge[J]. Journal of Petrology, 1964, 5(3): 409-434. |
| [14] | ENGEL A E J, ENGEL C G, HAVENS R G. Chemical characteristics of oceanic basalts and the upper mantle[J]. Geological Society of America Bulletin, 1965, 76(7): 719-734. |
| [15] | HESS H H. The AMSOC hole to the Earth’s mantle[J]. American Scientist, 1960, 48: 254-263. |
| [16] | CHRISTENSEN N I. The abundance of serpentinites in the oceanic crust[J]. Journal of Geology, 1972, 80(6): 709-719. |
| [17] | CHRISTENSEN N I. Serpentinites, peridotites, and seismology[J]. International Geology Review, 2004, 46(9): 795-816. |
| [18] | ANONYMOUS. Penrose field conference on ophiolites[J]. Geotimes, 1972, 17: 24-25. |
| [19] | COLEMAN R G. Ophiolites: Ancient Oceanic Lithosphere?[C]. Berlin Heidelberg: Springer-Verlag, 1977: 229. |
| [20] | BRUCE M C, NIU Y L. Evidence for Palaeozoic magmatism recorded in the Late Neoproterozoic Marlborough ophiolite, New England Fold Belt, central Queensland[J]. Australian Journal of Earth Sciences, 2000, 47(6): 1065-1076. |
| [21] | BRUCE M C, NIU Y L. Early Permian supra-subduction assemblage of the South Island terrane, Percy Isles, New England Fold Belt, Queensland[J]. Australian Journal of Earth Sciences, 2000, 47(6): 1077-1085. |
| [22] | SHERVAIS J W. Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 2000GC000080. |
| [23] | STERN R J. Subduction zones[J]. Reviews of Geophysics, 2002, 40(4): 3.1-3.38. |
| [24] | STERN R J, REAGAN M, ISHIZUKA O, et al. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites[J]. Lithosphere, 2010, 4: 469-483. |
| [25] | PEARCE J A, ROBINSON P T. The Troodos ophiolite complex probably formed in a subduction initiation slab edge setting[J]. Gondwana Research, 2010, 18(1): 60-81. |
| [26] | NIU Y L. Progress and applications of the plate tectonics theory[J]. Science Bulletin, 2023, 68(13): 1340-1341. |
| [27] | NIU Y L. Do we really need to drill through the intact ocean crust?[J]. Geoscience Frontiers, 2025, 16(1): 101954. |
| [28] | NIU Y L, O’HARA M J, PEARCE J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrologic perspective[J]. Journal of Petrology, 2003, 44(5): 851-866. |
| [29] | NIU Y L, SHI X F, LI T G, et al. Testing the mantle plume hypothesis: an IODP effort to drill into the Kamchatka-Okhotsk Sea basement[J]. Science Bulletin, 2017, 62(021): 1464-1472. |
| [30] | NIU Y L. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8): 1047-1074. |
| [31] | NIU Y L. The 60-year-old quest of ocean drilling into the mantle remains unfulfilled and we must persevere[J]. Science Bulletin, 2023, 68(23): 2893-2895. |
| [32] | VOOSEN P. At long last, ocean drillers exhume a bounty of rocks from Earth’s mantle-Rocks fulfil 60-year-old quest and could yield science bonanza[N]. Science News, 2023-05-25. https://www.science.org/content/article/long-last-ocean-drillers-exhume-bounty-rocksearth-s-mantle. |
| [33] | VOOSEN P. Ocean drillers exhume a bounty of mantle rocks-deep cores fulfill 60-year-old quest and could yield science bonanza[J]. Science, 2023, 380: 876-877. |
| [34] | BASCOM W. The Mohole[J]. Scientific American, 1959, 200(4): 41-49. |
| [35] | BATIZA R, ALLAN J F, BACH W, et al. Petrology, geochemistry, and petrogenesis of Leg 142 basalts - synthesis of results[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 142: 101. |
| [36] | DICK H J B, NATLAND J H, MILLER D J, et al. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program 1997[S/OL]. 1999, 176: https://doi.org/10.2973/odp.proc.ir.176.1999. |
| [37] | DICK H J B, NATLAND J H, ALT J C, et al. A long in-situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge[J]. Earth and Planetary Science Letters, 2000, 179(1): 31-51. |
| [38] | KOPPERS A A P, COGGON R. Exploring Earth by Scientific Ocean Drilling: 2050 Science Framework[S/OL]. 2020. https://doi.org/10.6075/J0W66J9H. |
| [39] | TEAGLE D, ILDEFONSE B. Journey to the mantle of the Earth[J]. Nature, 2011, 471: 437-439. |
| [40] | GILLIS K M, MEVEL C, ALLAN J F, Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program[S/OL]. 1993: 147. https://doi.org/10.2973/odp.proc.ir.2147.1993. |
| [41] | GILLIS K M, SNOW J E, KLAUS A. et al. Primitive layered gabbros from fast-spreading lower oceanic crust[J]. Nature, 2014, 505: 204-207. |
| [42] | ROBINSON P T, VON HERZEN R P, ADAMSON A C. et al. Proc. ODP, Init. Repts. College Station, TX: Ocean Drilling Program[S/OL]. 1987: 118. https://doi.org/10.2973/odp.proc.ir.118.1989. |
| [43] | DICK H J B, MACLEOD C J, BLUM O. et al. Proc. 2017. IODP 360 Preliminary Report[S/OL]. 2017, 360: 51: http://publications.iodp.org/proceedings/360/360title.html. |
| [44] | MCCAIG A, LANG S, et al. Building blocks of life, atlantis massif. IODP 399[S/OL]. 2023. https://iodp.tamu.edu/scienceops/expeditions/atlantis_massif_blocks_of_life.html. |
| [45] | LISSENBERG C J, MCCAIG A, LANG S Q, et al. A long section of serpentinized depleted mantle peridotite[J]. Science, 2024, 385(6709): 623-629. |
| [46] | CHEN Y J. Oceanic crustal thickness versus spreading rate[J]. Geophysical Research Letters, 2013, 19(8): 753-756. |
| [47] | BOWN J W, WHITE R S. Variation with spreading rate of oceanic crustal thickness and geochemistry[J]. Earth and Planetary Science Letters, 1994, 121(3/4): 435-449. |
| [48] | WHITE R S, MINSHULL T A, BICKLE M J, et al. Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data[J]. Journal of Petrology, 2001, 42(6): 1171-1196. |
| [49] | MCKENZIE D, BICKLE M J. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 1988(3): 625-679. |
| [50] | LANGMUIR C H, KLEIN E M, PLANK T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges[J]. Mantle flow and melt generation at mid-ocean ridges, AGU Geophys Monogr, 1992, 71: 183-280. |
| [51] | NIU Y L. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11: 9-46. |
| [52] | AMSOC Committee. Drilling thru the Earth’s crust: a study of the desirability and feasibility of drilling a hole to the Mohorovicic Discontinuity[J]. National Academy of Sciences-National Research Council Publication, 1959, 717: 1-21. |
| [53] | DETRICK R, COLLINS J, STEPHEN R, et al. In situ evidence for the nature of the seismic layer 2/3 boundary in oceanic crust[J]. Nature, 1994, 370(6487): 288-290. |
| [54] | NIU Y L. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth: a review and new perspectives[J]. Earth-Science Reviews, 2021, 217: 103614. |
| [55] | DICK H J B, FISHER R L, BRYAN W B. Mineralogical variability of the uppermost mantle along mid-ocean ridges[J]. Earth and Planetary Science Letters, 1984, 69(1): 88-106. |
| [56] | DICK H J B. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism[J]. Geological Society London Special Publications, 1989, 42(1): 71-105. |
| [57] | HéKINIAN R, BIDEAU D, FRANCHETEAU J, et al. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific)[J]. Journal of Geophysical Research Solid Earth, 1993, 98: 8069-8094. |
| [58] | HéKINIAN R, BIDEAU D, HEBéRT R, et al. Magmatic processes at upper mantle-crustal boundary zone: garrett transform (EPR South)[J]. Journal of Geophysical Research Solid Earth, 1995, 100: 10163-10185. |
| [59] | CANNAT M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4163-4172. |
| [60] | CANNAT M. How thick is the magmatic crust at slow-spreading oceanic ridges?[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B2): 2847-2857. |
| [61] | BIDEAU D, HéKINIAN R, SICHLER B, et al. Contrasting volcanictectonic processes during the past 2 Ma on the Mid-Atlantic Ridge: submersible mapping, petrological and magnetic results at lat. lat. 34°52'N and 33°55'N[J]. Marine Geophysical Researches, 1998, 20(5): 425-458. |
| [62] | KELEMEN P B, KIKAWA E, MILLER D J, et al. Leg 209 summary:processes in a 20- km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°-16°N[C]. Proceedings of the Ocean Drilling Program, Scientific Results, 209:College Station, TX (Ocean Drilling Program), 2007: 1-33. |
| [63] | KELLEY D S, KARSON J A, BLACKMAN D K, et al. An off-axis hydrothermal vent field near the mod-Atlantic ridge at 30°N[J]. Nature, 2001, 412: 145-149. |
| [64] | KELLEY D S, KARSON J A, FRUH-GREEN G L, et al. A serpentine-hosted ecosystem: the lost City hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434. |
| [65] | REID I, JACKSON H R. Oceanic spreading rate and crustal thickness[J]. Marine Geophysical Researches, 1981, 5(2): 165-172. |
| [66] | PHIPPS MORGAN J, PARMENTIER E M, LIN J. Mechanisms for the origin of mid-ocean ridge axial topography: implications for the thermal and mechanical structure of accreting plate boundaries[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B12): 12826-12839. |
| [67] | NIU Y L. Mid-ocean ridge magmatism: Style of mantle upwelling, partial melting, crustal level processes, and spreading rate dependence: a petrologic approach[D]. PhD thesis, University of Hawaii, Honolulu, 1992: 250. |
| [68] | NIU Y L, HéKINIAN R. Spreading rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature, 1997, 385(6614): 326-329. |
| [69] | SINTON J M, DETRICK R S. Mid-ocean ridge magma chambers[J]. Journal of Geophysical Research. Solid Earth, 1992, 97(B1): 197-216. |
| [70] | BATIZA R. Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity[J]. Nature, 1984, 309(5967): 440-441. |
| [71] | NIU Y L, BATIZA R. Chemical variation trends at fast and slow spreading ridges[J]. Journal of Geophysical Research Solid Earth, 1993, 98: 7887-7902. |
| [72] | NIU Y L, BATIZA R. Magmatic processes at a slow spreading ridge segment: 26°S Mid-Atlantic ridge[J]. Journal of Geophysical Research, 1994, 99(B10): 19719-19740. |
| [73] | NIU Y L. The meaning of global ocean ridge basalt major element compositions[J]. Journal of Petrology, 2016, 57(11/12): 2081-2104. |
| [74] | REGELOUS M, WEINZIERL C G, HAASE K M. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt composition[J]. Earth and Planetary Science Letters, 2016, 449: 1-11. |
| [75] | GALE A, LANGMUIR C H, DALTON C A. The global systematics of ocean ridge basalts and their origin[J]. Journal of Petrology, 2014(6): 1051-1082. |
| [76] | CANNAT M, SAUTER D, BEZOS A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2013, 9(4): Q04002. |
| [77] | PHIPPS MORGAN J, FORSYTH D W. Three-dimensional flow and temperature perturbations due to a transform offset: effects on oceanic crustal and upper mantle structure[J]. Journal of Geophysical Research: Solid Earth, 1988, 93: 2955-2966. |
| [78] | SHEN Y, FORSYTH D W. The effects of temperature-and pressure-dependent viscosity on three-dimensional passive flow of the mantle beneath a ridge-transform system[J]. Journal of Geophysical Research: Solid Earth, 1992, 97: 19717-19728. |
| [79] | DICK H J B, LIN J, SCHOUTEN H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426: 405-412. |
| [80] | CASTILLO P R, CLAGUE D A, DAVIS A S, et al. Petrogenesis of Davidson Seamount lavas and its implications for fossil spreading center and intraplate magmatism in the eastern Pacific[J]. Geochemistry Geophysics Geosystems, 2013, 11(2): Q02005. |
| [81] | NIU Y L, GREEN D H. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins[J]. Earth-Science Reviews, 2018, 185: 301-307. |
| [82] | MACDONALD K C. Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone[J]. Annual Review of Earth and Planetary Sciences, 1982, 10(1): 155-190. |
| [83] | STANDISH J J, SIMS K W W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge[J]. Nature Geoscience, 2010, 3(4): 286-292. |
| [84] | MICHAEL P J, LANGMUIR C H, DICK H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean[J]. Nature, 2003, 423: 956-961. |
| [85] | SMALL C. A global analysis of mid-ocean ridge axial topography[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 116(1): 64-84. |
| [86] | BUCK W R, LAVIER L L, POLIAKOV A N B. Modes of faulting at mid-ocean ridges[J]. Nature, 2005, 434(7034): 719-723. |
| [87] | CANN J R, BLACKMAN D K, SMITH D K, et al. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge[J]. Nature, 1997, 385(6614): 329-332. |
| [88] | TUCHOLKE B E, LIN J, KLEINROCK M. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B5): 9857-9866. |
| [89] | MACLEOD C J, ESCARTIN J, BANERJI D, et al. First direct evidence for oceanic detachment faulting: the Mid-Atlantic Ridge, 15°45’N[J]. Geology, 2002, 30(10): 879-882. |
| [90] | BLACKMAN D K, KARSON J K, KELLEY D S, et al. Geology of the Atlantis Massif (MAR 308N): implications for the evolution of an ultramafic core complex[J]. Marine Geophysical Research, 2004, 23: 443-469. |
| [91] | SMITH D K, CANN J R, ESCARTIN J. Widespread active detachment faulting and core complex formation near 13° N on the Mid-Atlantic Ridge[J]. Nature, 2006, 4442: 440-443. |
| [92] | DICK H J B, TIVEY M A, TUCHOLKE B E. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30’N, 45°20’W[J]. Geochemistry, Geophysics, Geosystems, 2008. 9(5): Q05014. |
| [93] | MACLEOD C J, SEARLE R C, MURTON B J, et al. Life cycle of oceanic core complexes[J]. Earth and Planetary Science Letters, 2009, 287(3/4): 333-344. |
| [94] | DICK H J B, THOMPSON G, BRYAN W B. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections[J]. EOS, Transaction American Geophysical Union, 1981, 62(17): 406. |
| [95] | KARSON J A, DICK H J B. Tectonics of ridge-transform intersections at the Kane Fracture Zone[J]. Marine Geophysical Researches, 1983, 6(1): 51-98. |
| [96] | BATIZA R, MELSON W G, O’HEARN T. Simple magma supply geometry inferred beneath a segment of the Mid-Atlantic Ridge[J]. Nature, 1988, 335(6189): 428-431. |
| [97] | MICHAEL P J, FORSYTH D W, BLACKMAN D K, et al. Mantle control of a dynamically evolving spreading center: Mid-Atlantic Ridge 31-34°S[J]. Earth & Planetary Science Letters, 1994, 121(3/4): 451-468. |
| [98] | NIU Y L, BIDEAU D, HéKINIAN R, et al. Mantle compositional control on the extent of melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33-35°N[J]. Earth and Planetary Science Letters, 2001, 186(3): 383-399. |
| [99] | BACH W, GL FRÜH-GREEN G L. Alteration of the oceanic lithosphere and implications for seafloor processes[J]. Elements, 2010, 6: 173-178. |
| [100] | FORSYTH D, UYEDA S. On the relative importance of the driving forces of plate motion[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 43: 163-200. |
| [101] | NIU Y L. Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2014, 10(1): 23-46. |
| [102] | NIU Y L. On the cause of continental breakup: a simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes[J]. Journal of Asian Earth Sciences, 2020, 194: 104367. |
| [103] | NIU Y L. Shallow origin of continental mantle materials beneath slow-spreading ocean ridges[J]. Science Bulletin, 2025, 70(10): 533-1537. |
| [104] | NIU Y L. Using D/V Meng Xiang to drill intact magmatic crust in the Pacific to reveal the petrological nature of the oceanic Moho[J]. Geoscience Frontiers, 2025, 16(1): 101954. |
| [105] | NIU Y L, O’HARA M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective[J]. Journal of Petrology, 2008, 49, (4): 633-664. |
| [106] | VOOSEN P. With venerable ships’s retirement, U.S.-led ocean-drilling program ends[J]. Science, 2024, 386(6727): 1203-1204. |
| [107] | NATLAND J H, Steering Committee Members (DOLCUM), (Natland J H). Deep drilling in the ocean crust and upper mantle: past commitments, present prospects and future plans[M]. Woods Hole, MA (Woods Hole Oceanographic Institution): DICK, H J B, et al. Drilling the oceanic lower crust and upper mantle, 1989: 9-19. |
| [108] | MICHIBAYASHI K, TOMINAGA M, ILDEFONSE B, et al. What Lies Beneath: the formation and evolution of oceanic lithosphere[J]. Oceanography, 2019, 32(1): 138-149. |
| [109] | XU Y, NIU Y L, ZHANG X, et al. D/V Meng Xiang is coming to revive the 60-year-old dream of Moho drilling and enter a new phase of international scientific ocean drilling[J]. Science Bulletin, 2025, 70(12): 2023-2024. |
| [110] | SUN Z, XU Y, DENG Y N. The Moho is in reach of ocean drilling with the Meng Xiang[J]. Nature Geoscience, 2025, 18(4): 275-276. |
| [111] | NORMILE D. China’s ‘dreamy’ scientific drilling ship takes global command - As U.S. leadership falters, Meng Xiang prepares for bold mission to retrieve rocks from Earth’s mantle[J]. Science, 2024, 386: 1202-1203. |
| [112] | SHI X F, ZOU J J, WANG K S. Paleo environmental changes in the Okhotsk Sea since late Pleistocene and its driving force[J]. Marine Geology and Quaternary Geology, 2012, 31(31): 1-12. |
| [113] | YAO Z Q, SHI X F, YIN Q, et al. Ice sheet and precession controlled subarctic Pacific productivity and upwelling over the last 550, 000 years[J]. Nature Communications, 2024, 15(1): 3489. |
| [114] | ZHU R X, ZHANG S C, WANG H J, et al. Multi-spheric interactions driven differential formation and accumulation of hydrocarbon resources in the North Sea Basin[J]. Science China Earth Sciences, 2024, 67: 3397-3420. |
| [115] | ZHANG T, LI J B, NIU X W, et al. Highly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge[J]. Nature, 2024, 633, 109-113. |
| [116] | ZHANG T, LI J B, DING W W, et al. Magnetotelluric evidence for highly focused mantle melting along the ultraslow-spreading Gakkel Ridge, Arctic Ocean[J]. National Science Review, 2025, 12(5): nwaf077. |
| [117] | LI C F, LU Y, WANG J. A global reference model of Curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7: 45129. |
| [118] | ZHOU D, LI C F, ZLOTNIK S, et al. Correlations between oceanic crustal thickness, melt volume, and spreading rate from global gravity observation[J]. Marine Geophysical Researches, 2020, 41: 14. |
| [119] | 邓晋福, 赵海玲, 莫宣学, 等. 中国大陆根-柱构造: 大陆动力学的钥匙[M]. 北京: 地质出版社, 1996. |
| [120] | DENG J F, MO X X, ZHAO H L, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots-plume tectonics’[J]. Earth-Science Reviews, 2004, 65: 223-275. |
| [121] | DENG J F, SU S G, NIU Y L, et al. A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism[J]. Lithos, 2007, 96(1/2): 22-35. |
| [122] | SU S G, NIU Y L, DENG J F, et al. Petrology and geochronology of Xuejiashiliang igneous complex and their genetic link to the lithospheric thinning during the Yanshanian orogenesis in eastern China[J]. Lithos, 2007, 96(1/2): 90-107. |
| [1] | HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling [J]. Earth Science Frontiers, 2022, 29(4): 10-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
