Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 511-534.DOI: 10.13745/j.esf.sf.2024.1.4-en
• 环境变化与生物圈层相互作用 • Previous Articles Next Articles
Received:
2023-12-10
Revised:
2023-12-29
Online:
2024-01-25
Published:
2024-01-25
[1] | WANG P X. Seaflooor Observatories: The Third Platform for Earth System Observation[J]. Chinese Journal of Nature, 2007, 29(3):125-131. |
[2] | ULRICH H, CHRISTIAN K, MARK D Z. Continental scientific drilling: A decade of progress, and challenges for the future[M]. Berlin, Heidelberg: Springer, 2007: 1-366. |
[3] | ICDP. ICDP science plan 2020-2030[M]. Germany: International Continental Scientific Drilling Program, 2020: 1-36. |
[4] | ICDP official website. The international continental scientific drilling program. [2023-12-01]. https://www.icdp-online.org/ |
[5] | GAO Y, WANG C S, HUANG Y J, et al. Progress in the study of paleoclimate change in continental scientific drilling projects[J]. Earth Science Frontiers, 2017, 24(1): 1-17. |
[6] | PAGES IPO. Science and implementation plans: PANASH (Paleoclimates of the Northern and Southern Hemispheres)-the pole-equator-pole transects[M]. Bern, Switzerland: Pages Series, 1995: 1-99. |
[7] |
KERR R A. How hot will the greenhouse world be?[J]. Science, 2005, 309(5731): 100-100.
PMID |
[8] | TIERNEY J E, POULSEN C J, MONTANEZ I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517): 1-9. |
[9] | WANG C S, WANG T T, CHEN X, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017: 24(1): 1-17. |
[10] |
HAY W W. Can humans force a return to a ‘Cretaceous’ climate?[J]. Sedimentary Geology, 2011, 235(1-2): 5-26.
DOI URL |
[11] |
FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
DOI PMID |
[12] |
MCINERNEY F A, WING S L. The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 489-516.
DOI URL |
[13] | NATIONAL RESEARCH COUNCIL. Understanding Earth's deep past: Lessons for our climate future[M]. Washington D C, USA: The National Academies Press, 2011: 1-177. |
[14] | IPCC. Climate change 2021: The physical science basis, contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK; New York, USA: Cambridge University Press, 2021: 1-2391. |
[15] | WANG C S, FENG Z Q, WU H Y, et al. Preliminary Achievement of the Chinese Cretaceous Continental Scientific Drilling Project-SK-l[J]. Acta Geologica Sinica, 2008, 82(1): 9-20. |
[16] |
O’BRIEN C L, ROBINSON S A, PANCOST R D, et al. Cretaceous sea-surface temperature evolution: constraints from tex86 and planktonic foraminiferal oxygen isotopes[J]. Earth-Science Reviews, 2017, 172: 224-247.
DOI URL |
[17] | GASKELL D E, HUBER M, O’BRIEN C L, et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years[J]. The Proceedings of the National Academy of Sciences, 2022, 119(11): e2111332119. |
[18] |
WANG Y D, HUANG C M, SUN B N, et al. Paleo-CO2 variation trends and the Cretaceous greenhouse climate[J]. Earth-Science Reviews, 2014, 129: 136-147.
DOI URL |
[19] | BICE K L, NORRIS R D. Possible atmospheric CO2 extremes of the Middle Cretaceous (late Albian-Turonian)[J]. Paleoceanography, 2002, 17(4): 1-17. |
[20] |
MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
DOI PMID |
[21] |
MACLEOD K G, HUBER B T, BERROCOSO Á J, et al. A stable and hot Turonian without glacial δ18O excursions is indicated by exquisitely preserved Tanzanian foraminifera[J]. Geology, 2013, 41(10): 1083-1086.
DOI URL |
[22] |
ANDO A, HUBER B T, MACLEOD K G, et al. Blake Nose stable isotopic evidence against the mid-Cenomanian glaciation hypothesis[J]. Geology, 2009, 37(5): 451-454.
DOI URL |
[23] |
WANG C S, SCOTT R W, WAN X Q, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126(1): 275-299.
DOI URL |
[24] |
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
DOI URL |
[25] |
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95.
DOI URL |
[26] | WANG P J, ZHAO R L, MENG Q A, et al. The Cretaceous Songliao Basin: Dynamic background from volcanic rift to interior sag basin[J]. Earth Science Frontiers, 2015, 22(3): 99-117. |
[27] | GIERLOWSKI-KORDESCH E H and KELTS K R. Lake basins through space and time[M]. Tulsa, Oklahoma, USA: American Association of Petroleum Geologists, 2001: 1-636. |
[28] |
GAO Y, WANG C S, WANG P J, et al. Progress on Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75.
DOI PMID |
[29] | WANG C S, FENG Z Q, WANG P J, et al. Initial Report of Continental Scientific Drilling Project of the Cretaceous Songliao Basin(SK1)[M]. Beijing: Science Press, 2016: 1-752. |
[30] |
GAO Y F, WANG P J, WANG C S, et al. Well Site Selecting, Core Profile Characteristics and Distribution of the Special Lithology in CCSD-SKⅡ[J]. Acta Geologica Sinica, 2008: 82(5): 669-675.
DOI URL |
[31] | GAO Y F, WANG C S, WANG P J, et al. Well site selecting, core section characteristics and distribution of the special lithological layers in CCSD-SK-Ⅰn borehole, Songliao Basin[J]. Earth Science Frontiers, 2009, 16(6): 104-112. |
[32] | WANG P J, LIU H B, REN Y G, et al. How to choose a right drilling site for the ICDP Cretaceous Continental Scientific Drilling in the Songliao Basin (SK2), Northeast China[J]. Earth Science Frontiers, 2017, 24(1): 216-228. |
[33] | HOU H C, WANG C S, ZHANG J D, et al. Deep continental scientific drilling engineering in Songliao Basin: Progress in earthscience research[J]. Geology in China, 2018, 45(4): 641-657. |
[34] |
ZHU Y Y, WANG W S, WU X M, et al. Main technical innovations of Songke Well No.2 Drilling Project[J]. China Geology, 2018, 1(2): 187-201.
DOI URL |
[35] |
GAO H, WANG P J, GAO Y F, et al. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3[J]. Earth Science Frontiers, 2023, 30(3): 425-440
DOI |
[36] | WANG T T, RAMEZANI J, YANG C, et al. High-resolution geochronology of sedimentary strata by U-Pb CA-ID-TIMS zircon geochronology: A review[J]. Earth-Science Reviews, 2023, 245. |
[37] |
KUIPER K F, DEINO A, HILGEN F J, et al. Synchronizing rock clocks of Earth history[J]. Science, 2008, 320: 500-504.
DOI PMID |
[38] |
WANG T T, RAMEZANI J, WANG C S, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44.
DOI URL |
[39] |
WANG T T, WANG C S, RAMEZANI J, et al. High-precision geochronology of the Early Cretaceous Yingcheng Formation and its stratigraphic implications for Songliao Basin, China.[J]. Geoscience Frontiers, 2022, 13(4): 101386.
DOI URL |
[40] |
LIU H B, WANG P J, GAO Y F, et al. New data from ICDP borehole SK2 and its constraint on the beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China[J]. Science Bulletin, 2021, 66: 411-413.
DOI PMID |
[41] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the Solar System[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 55-70.
DOI URL |
[42] |
WU H C, ZHANG S H, HINNOV L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian in Songliao Basin, northeastern China[J]. Earth and Planetary Science Letters, 2014, 407: 82-95.
DOI URL |
[43] | ZHANG S J, WU H C, ZHANG S H, et al. Hierarchical Milankovitch and sub-Milankovitch cycles in the environmental magnetism of the lower Shahezi Formation, Lower Cretaceous, Songliao Basin, northeastern China[J]. Frontiers in Earth Science, 2023, 11. https://doi.org/10.3389feart.2023.1077787. |
[44] | HE H Y, DENG C L, WANG P J, et al. Toward age determination of the termination of the Cretaceous Normal Superchron[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2). https://doi.org/10.1029/2011GC003901. |
[45] |
DENG C L, HE H Y, PAN Y X, et al. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, northeast Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(1): 44-54.
DOI URL |
[46] | WANG P J, DU X D, WANG J, et al. The chronostratigraphy and stratigraphic classification of the Cretaceous of the Songliao Basin[J]. Acta Geologica Sinica, 1995, 69(4): 372-381. |
[47] | HUANG Q H, TAN W, YANG H C. Stratigraphic succession and chronosrata of Cretaceous in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 1999, 18(6): 15-28. |
[48] |
SHA J G. Cretaceous stratigraphy of northeast China: non-marine and marine correlation[J]. Cretaceous Research, 2007, 28(2): 146-170.
DOI URL |
[49] |
YU Z Q, HE H Y, DENG C L, et al. New geochronological constraints for the Upper Cretaceous Nenjiang Formation in the Songliao Basin, NE China[J]. Cretaceous Research, 2019, 102: 160-169.
DOI URL |
[50] |
YU Z Q, HE H Y, DENG C L, et al. New SIMS U-Pb geochronology for the Shahezi Formation from CCSD-SK-IIe borehole in the Songliao Basin, NE China[J]. Science Bulletin, 2020, 65: 1049-1051.
DOI PMID |
[51] |
YIN Y K, GAO Y F, WANG P J, et al. Discovery of Triassic volcanic-sedimentary strata in the basement of Songliao Basin[J]. Science Bulletin, 2019, 64(10): 644.
DOI PMID |
[52] |
WANG P J, MATTERN F, DIDENKO N A, et al. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin[J]. Earth-Science Reviews, 2016, 159: 82-102.
DOI URL |
[53] |
SONG Y, REN J Y, STEPASHKO A A, et al. Post-rift geodynamics of the Songliao Basin, NE China: Origin and significance of T11 (Coniacian) unconformity[J]. Tectonophysics, 2014, 634: 1-18.
DOI URL |
[54] |
FENG Z Q, GRAHAM S A. From foredeep to orogenic wedge-top: The Cretaceous Songliao retroforeland basin, China[J]. Geoscience Frontiers, 2023, 14(3): 101527.
DOI URL |
[55] |
WAN X Q, ZHAO J, SCOTT R W, et al. Late Cretaecous stratigraphy, Songliao Basin, NE China: SKI cores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 31-43.
DOI URL |
[56] |
WU H C, HINNOV L A, ZHANG S H, et al. Continental geological evidence for Solar System chaotic behavior in the Late Cretaceous[J]. GSA Bulletin, 2022, 135 (3-4): 712-724.
DOI URL |
[57] |
ZHANG Z F, HUANG Y J, LI M S, et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022, 596: 117800.
DOI URL |
[58] |
HUANG H, GAO Y, MA C, et al. Organic carbon burial is paced by a -173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489.
DOI URL |
[59] |
MITCHELL J M. An overview of climatic variability and its causal mechanisms[J]. Quaternary Research, 1976, 6: 481-493.
DOI URL |
[60] |
CHAMBERLAIN C P, WAN X Q, GRAHAM S A, et al. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 106-124.
DOI URL |
[61] | GAO R Q. Palynology of Cretaceous Petroleum Strata in the Songliao Basin[M]. Beijing: Geological Publishing House, 1999: 1-94. |
[62] |
ZHANG L M, WANG C S, WIGNALL P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274.
DOI URL |
[63] |
IBARRA D E, CHAMBERLAIN C P. Quantifying closed-basin lake temperature and hydrology by inversion of oxygen isotopeand trace element paleoclimate records[J]. American Journal of Science, 2015, 315(9): 781-808.
DOI URL |
[64] |
FRIEDRICH O, NORRIS R D, ERBACHER J. Evolution of middle to Late Cretaceous oceans: A 55 m.y. record of Earth's temperature and carbon cycle[J]. Geology, 2012, 40(2): 107-110.
DOI URL |
[65] | KELLER G. Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect?[J]. Special Paper of the Geological Society of America, 2014, 505: 57-89. |
[66] |
SCHULTE P, ALEGRET L, ARENILLAS I, et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary[J]. Science, 2010, 327(5970): 1214-1218.
DOI PMID |
[67] |
HULL P M, BORNEMANN A, PENMAN D E, et al. On impact and volcanism across the Cretaceous-Paleogene boundary[J]. Science, 2020, 367(6475): 266-272.
DOI PMID |
[68] |
GAO Y, IBARRA D E, WANG C S, et al. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous[J]. Geology, 2015, 43(4): 287-290.
DOI URL |
[69] |
GAO Y, IBARRA D E, CAVES RUGENSTEIN J K, et al. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China[J]. Earth-Science Reviews, 2021, 216: 103572.
DOI URL |
[70] |
SANEI H, GRASBY S E, BEAUCHAMP B. Latest Permian mercury anomalies[J]. Geology, 2012, 40(1): 63-66.
DOI URL |
[71] |
GU X, ZHANG L M, YIN R S, et al. Deccan volcanic activity and its links to the end-Cretaceous extinction in northern China[J]. Global and Planetary Change, 2022, 210: 103772.
DOI URL |
[72] |
MILLER K G, WRIGHT J D, BROWNING J V. Visions of ice sheets in a greenhouse world[J]. Marine Geology, 2005, 217(3-4): 215-231.
DOI URL |
[73] |
JACOBS D K, SAHAGIAN D L. Climate-induced fluctuations in sea level during non-glacial times[J]. Nature, 1993, 361(6414): 710-712.
DOI |
[74] | MICHAEL W, RICHARD L, BENJAMIN S. Eustasy, its controlling factors, and the limno-eustatic hypothesis: Concepts inspired by Eduard Suess[J]. Austrian Journal of Earth Sciences, 2014, 107: 115-131. |
[75] | ZHANG M M, ZHOU J J. Discovery of the Genus similar to Lycopsid and the origin of the Holostei Superorder in the Songliao Basin: One of the Cretaceous fish fossils in Northeast China[J]. Vertebrata Palasiatica, 1976, 14(3): 146-153. |
[76] | HUANG F T, CHI Y L, HUANG Q H. The measurements of the dispersion constants of tracers and their interpretation[J]. Petroleum Exploration and Development, 1999, 26(3): 104-107. |
[77] | ZHANG S. Arguments and solutions on the transgression event in the Late Cretaceous of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 1-12. |
[78] |
XI D P, WAN X Q, FENG Z Q, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: Evidence from SK-1and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2011, 56: 253-256.
DOI URL |
[79] |
HUANG Y J, YANG G S, GU J, et al. Marine incursion events in the Late Cretaceous Songliao Basin: Constraints from sulfur geochemistry records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385(1): 152-161.
DOI URL |
[80] |
HU J F, PENG P A, LIU M Y, et al. Seawater incursion events in a Cretaceous paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5(1): 9508.
DOI |
[81] |
XI D P, CAO W X, HUANG Q H, et al. Late Cretaceous marine fossils and seawater incursion events in the Songliao Basin, NE China[J]. Cretaceous Research, 2016, 62: 172-182.
DOI URL |
[82] |
XU Y L, LI D D, GAO Y, et al. Multiple S-isotopic evidence for seawater incursions during the deposition of the upper Cretaceous source rocks in the Songliao Basin, northeastern China[J]. Chemical Geology, 2023, 642: 121790.
DOI URL |
[83] |
QIU J. A trip to dinosaur time[J]. Nature, 2010, 467: 150-151.
DOI |
[84] |
QIU J. Dinosaur climate probed[J]. Science, 2015, 348(6240): 1185-1185.
DOI URL |
[85] | WANG C S, GAO Y, IBARRA D E, et al. An unbroken record of climate during the age of dinosaurs[J]. EOS, Transactions American Geophysical Union, 2021, 102. https://doi.org/10.1029/2021E0158455. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||