Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 316-327.DOI: 10.13745/j.esf.sf.2021.12.27
Previous Articles Next Articles
LIANG Guanghe1,2,3(), YANG Weiran4,*(
)
Received:
2021-12-15
Revised:
2021-12-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
YANG Weiran
CLC Number:
LIANG Guanghe, YANG Weiran. Decipher the driving force in continental drift from new insights about the South Atlantic breakup process[J]. Earth Science Frontiers, 2022, 29(1): 316-327.
Fig.2 Distribution of passive continental marginal basins on the two sides of the South Atlantic and the profile locations in the study area. Modified after [19].
Fig.3 Two structural sections of the passive basins on two sides of the South Atlantic and related Moho dip angles (modified after [19]). (a) Profile A-A' in the middle South Atlantic. (b) Profile B-B' in the southern South Atlantic. Areas inside the purple box were used in calculating the Moho dip angles.
Fig.5 Schematic diagram of the South Atlantic breakup and continental drift processes. (a) Initial cracking stage. (b) Drift process. (c) Current state.
Fig.8 Simplified diagram of two passive continental margin structural models (adapted from [22]) and the slip driving force. (a) Model of passive continent with volcanic-rifted margin. (b) Model of passive continent with magma-poor margin. (c) Simplified geological interpretation of a. (d) Simplified geological interpretation of b.
[1] | WEGENER A. The origins of the continents[J]. Journal of Geodynamics, 2001, 32:31-63. |
[2] |
陈凌, 王旭, 梁晓峰, 等. 俯冲构造vs.地幔柱构造:板块运动驱动力探讨[J]. 中国科学: 地球科学, 2020, 50(4):501-514. DOI: 10.1360/SSTe-2019-0106.
DOI |
[3] | 杨经绥, 连东洋, 吴魏伟, 等. 俯冲物质深地幔循环: 地球动力学研究的一个新方向[J]. 地质学报, 2021, 95(1):42-63. |
[4] | WOLFGANG F, MARTIN M, BLAKEY R. Plate tectonics[M]. Berlin, Heidelberg: Springer, 2011. |
[5] |
HOERNLE K, ROHDE J, HAUFF F, et al. How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot?[J]. Nature Communications, 2015, 6:7799. https://doi.org/10.1038/ncomms8799
DOI URL |
[6] | BOUYSSE P. Geological map of the world. Scale: 1∶50000000[M]. 3rd ed. Paris: CGMW/CCGM, 2009. |
[7] | YONO T, CHOI D R, GAVRILOV A A, et al. Ancient and continental rocks in the Atlantic Ocean[J]. New Concepts in Global Tectonics Newsletter, 2009, 53:4-37. |
[8] |
SKOLOTNEV S G, BELTNEV V E, LEPEKHINA E N, et al. Younger and older zircons from rocks of the oceanic lithosphere in the central Atlantic and their geotectonic implications[J]. Geotectonics, 2010, 44(6):462-492.
DOI URL |
[9] |
CLASS C, ROEX A L. South Atlantic DUPAL anomaly: dynamic and compositional evidence against a recent shallow origin[J]. Earth and Planetary Science Letters, 2011, 305(1/2):92-102.
DOI URL |
[10] |
EWINGJ I, LUDWIG W J, EWING M, et al. Structure of the Scotia Sea and Falkland Plateau[J]. Journal of Geophysical Research Atmospheres, 1971, 76(29):7118-7137.
DOI URL |
[11] | DERUELLE B, NGOUNOUNO I, DEMAIFFE D. The ‘Cameroon Hot Line’ (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres[J]. Comptes Rendus: Géoscience, 2007, 339(9):589-600. |
[12] |
GANNOUN A, BURTON K W, BARFOD D N, et al. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re-Os isotope system[J]. Lithos, 2015, 224/225:1-12.
DOI URL |
[13] |
VENTURA R S, GANADE C E, LACASSE C M, et al. Dating Gondwanan continental crust at the Rio Grande Rise, South Atlantic[J]. Terra Nova, 2019, 31:424-429.
DOI URL |
[14] | 任纪舜, 徐芹芹, 赵磊, 等. 寻找消失的大陆[J]. 地质论评, 2015, 61(5):969-989. |
[15] |
ESCRIG S, SCHIANO P, SCHILLING J G, et al. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40 degrees-50 degrees S)[J]. Earth and Planetary Science Letters, 2005, 235:528-548.
DOI URL |
[16] |
ESCRIG S, CAPMAS F, DUPRE B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts[J]. Nature, 2004, 431:59-63.
DOI URL |
[17] |
PEATE D W, HAWKESWORTH C J, MANTOVANI M S M, et al. Petrogenesis and stratigraphy of the High-Ti/Y Urubici magma type in the Paraná Flood Basalt Province and implications for the nature of the ‘Dupal’-type mantle in the South Atlantic Region[J]. Journal of Petrology, 1999, 40:451-473.
DOI URL |
[18] |
FODOR R V, HANAN B B. Geochemical evidence for the Trindade hotspot trace: Columbia seamount ankaramite[J]. Lithos, 2000, 51(4):293-304.
DOI URL |
[19] | 章雨, 李江海, 杨梦莲, 等. 南大西洋两岸被动大陆边缘构造分段性特征及其成因探讨[J]. 中国石油勘探, 2019, 24(6):799-806. |
[20] | BRUNE S, HEINE C, CLIFT P D, et al. Rifted margin architecture and crustal rheology: reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea[J]. Marine & Petroleum Geology, 2017, 79:257-281. |
[21] | BLAICH O A, INGE F J, FILIPPOS T. Crustal breakup and continent-ocean transition at South Atlantic conjugate margins[J]. Journal of Geophysical Research: Solid Earth, 2011, 116:B01402. |
[22] |
FRANKE D. Rifting, lithosphere breakup and volcanism: comparison of magma-poor and volcanic rifted margins[J]. Marine and Petroleum Geology, 2013, 43:63-87.
DOI URL |
[23] |
CLERC C, RINGENBACH J C, JOLIVET L, et al. Rifted margins: ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust[J]. Gondwana Research, 2018, 53:20-40.
DOI URL |
[24] |
BOTT M H P. Ridge push and associated plate interior stress in normal and hot spot regions[J]. Tectonophysics, 1991, 200:17-32.
DOI URL |
[25] | 毛小平, 陆旭凌弘, 王晓明, 等. 周向应力在地壳运动中的作用[J]. 地学前缘, 2020, 27(1):221-233. |
[26] |
HUBBERT M K, RUBEY W W. Role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin, 1959, 70:115-166.
DOI URL |
[27] |
HALES A L. Gravitational sliding and continental drift[J]. Earth and Planetary Science Letters, 1969, 6:31-34.
DOI URL |
[28] |
JACOBY W R. Instability in the upper mantle and global plate movements[J]. Journal of Geophysical Research, 1970, 75:5671-5680.
DOI URL |
[29] |
SUZANNE E, BEGLINGE R, HARRY D, et al. Relating petroleum system and play development to basin evolution: West African South Atlantic basins[J]. Marine and Petroleum Geology, 2012, 30:1-25.
DOI URL |
[30] | 朱伟林, 崔旱云, 吴培康, 等. 被动大陆边缘盆地油气勘探新进展与展望[J]. 石油学报, 2017, 38(10):1099-1109. |
[31] | 王殿举, 李江海, 李一赫. 下地壳流变学性质对南大西洋两岸盆地结构不对称性的控制[J]. 地学前缘, 2020, 27(3):254-261. |
[32] | KRONENBERG A, BRANDON M T, FLETCHER R, et al. Beyond plate tectonics: rheology and orogenesis of the continents[M]// New departures in structural geology and tectonics. San Francisco: Stanford University Press, 2003. |
[33] | JACKSON J. Strength of the continental lithosphere: time to abandon the jelly sandwich?[J]. GSA Today, 2002, 12:4-9. |
[34] | KOHLSTEDT D L, EVANS B, MACKWELL S J. Strength of the lithosphere: constraints imposed by laboratory experiments[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B9):17587-17602. |
[35] | FRANKEL H R. The continental drift controversy[M]. New York: Cambridge University Press, 2012. |
[36] | PAVLENKOVA N I, PAVLENKOVA G A. The upper mantle structure of the Northern Eurasia from seismic profiling with nuclear explosions[J]. NCGT Journal, 2017, 5(1):6-26. |
[37] |
GUNGY C, PANNING M, ROMANOWICZ B. Global anisotropy and the thickness of continents[J]. Nature, 2003, 422(6933):707-711.
DOI URL |
[38] |
SHAPIRO N M, RICZWOLLER M H, MARESCHAL J C, et al. Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints[J]. Geological Society, London, Special Publications, 2004, 239(1):175-194.
DOI URL |
[39] | 任纪舜, 牛宝贵, 赵磊, 等. 地球系统多圈层构造观的基本内涵[J]. 地质力学学报, 2019, 25(5):607-612. |
[40] |
WILSON J T. Static or mobile Earth: the current scientific revolution[J]. Tectonophysics, 1969, 7(5) : 600-601.
DOI URL |
[41] | 马杏垣. 中国岩石圈动力学图集[M]. 北京: 中国地图出版社, 1989. |
[42] | 杨巍然, 郭铁鹰, 路元良, 等. 中国大地构造演化中的“开”与“合”[J]. 地球科学: 中国地质大学学报, 1984, 9(3):39-53. |
[43] | 杨巍然, 姜春发, 张抗, 等. 开合旋构造体系及其形成机制探讨: 兼论板块构造的动力学机制[J]. 地学前缘, 2019, 26(1):337-355. |
[44] | 杨巍然, 姜春发, 张抗, 等. 运用开合旋构造观探究地球内部是如何运行的[J]. 地学前缘, 2020, 27(1):204-210. |
[1] | LIANG Guanghe. Continental drift process revealed by high precision seismic survey in the central basin of the South China Sea [J]. Earth Science Frontiers, 2023, 30(5): 430-449. |
[2] | LIANG Guanghe. Continental drift process revealed by high precision seismic survey in the central basin of the South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 293-306. |
[3] | LIANG Guanghe, YANG Weiran. Decipher the driving force in continental drift from new insights about the South Atlantic breakup process [J]. Earth Science Frontiers, 2022, 29(1): 328-341. |
[4] | LIANG Guanghe. Detailed study of the formation of Japanese islands based on tectonic evolution of basins in the East China Sea and Northern South China Sea [J]. Earth Science Frontiers, 2020, 27(1): 244-259. |
[5] | LIANG Guanghe. Study on the dynamic mechanism of northward drift of the Indian Plate [J]. Earth Science Frontiers, 2020, 27(1): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||