Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (2): 284-295.DOI: 10.13745/j.esf.sf.2020.6.28
Previous Articles Next Articles
Received:
2019-06-12
Revised:
2020-03-19
Online:
2021-03-25
Published:
2021-04-03
CLC Number:
ZHU Tao, MA Xiaoxi. Re-estimating the depth of shear wave splitting anisotropy in the Yunnan region by using a mantle convection model based on lithospheric thickness and lateral mantle viscosity variations[J]. Earth Science Frontiers, 2021, 28(2): 284-295.
Fig.1 Results of shear wave splitting measurements that have errors ≤10° in the fast polarization direction (data adapted from [4-13]), and variation of lithospheric thickness (adapted from [20, 32]) in the study area. Symbols: Dark bar—fast polarization direction and time of shear wave splitting; White dot—shear wave splitting stations; Pink line—fault. The study area is divided into four subregions by green lines: northwestern (NWYN), southwestern (SWYN) and eastern (EYN) Yunnan, and Sichuan Basin and its western margin (SB).
Fig.2 Variations of the mean angular difference between the (a) mantle convective velocity direction or (b) mantle maximum elongation direction and the fast polarization direction with depth for different subregions
Fig.4 Velocity anomalies at different depths from six seismic S-wave velocity models. Numbers in each bracket indicate the minimum (Min) and maximum (Max) values of the color bar. For instance, (-8, 8) means Min is -8 and Max 8.
Fig.6 Plots of the mean angular difference between the mantle convective velocity direction (a, c, e, g, i) or mantle maximum elongation direction (b, d, f, h, j) predicted by five seismic models and the observed fast direction (see Fig.1) vs. depth. (a, b), (c, d), (e, f), (g, h) and (i, j) are the results for the NWYN, SWYN, EYN26S, EYN26N and SB subregions, respectively.
[1] |
SAVAGE M K. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting?[J]. Reviews of Geophysics, 1999,37(1):65-106.
DOI URL |
[2] |
MARONE F, ROMANOWICZ B. The depth distribution of azimuthal anisotropy in the continental upper mantle[J]. Nature, 2007,447(7141):198-203.
DOI URL |
[3] |
LIU K H, GAO S S. Estimation of the depth of anisotropy using spatial coherency of shear-wave splitting parameters[J]. Bulletin of the Seismological Society of America, 2011,101(5):2153-2161.
DOI URL |
[4] |
FLESCH L M, HOLT W, SILVER P G, et al. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth and Planetary Science Letters, 2005,238(1/2):248-268.
DOI URL |
[5] |
SOL S, MELTZER A, BURGMANN R, et al. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology, 2007,35(6):563-566.
DOI URL |
[6] | HUANG Z, WANG L, XU M, et al. Shear wave splitting across the Ailao Shan-Red River fault zone, SW China[J]. Geophysical Research Letters, 2007,34(20). https://doi.org/10.1029/2007GL031236. |
[7] |
HUANG Z, WANG L, XU M, et al. Teleseismic shear-wave splitting in SE Tibet: insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 2015,432:354-362.
DOI URL |
[8] |
HUANG Z, WANG L, ZHAO D, et al. Seismic anisotropy and mantle dynamics beneath China[J]. Earth and Planetary Science Letters, 2011,306(1/2):105-117.
DOI URL |
[9] |
WANG C Y, FLESCH L M, SILVER P G, et al. Evidence for mechanically coupled lithosphere in central Asia and resulting implications[J]. Geology, 2008,36(5):363-366.
DOI URL |
[10] |
BAI L, IIDAKA T, KAWAKATSU H, et al. Upper mantle anisotropy beneath Indochina block and adjacent regions from shear-wave splitting analysis of Vietnam broadband seismograph array data[J]. Physics of the Earth and Planetary Interiors, 2009,176:33-43.
DOI URL |
[11] |
SHI Y, GAO Y, SU Y, et al. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 2012,25(1):25-34.
DOI URL |
[12] | 常利军, 丁志峰, 王椿镛. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报, 2015,58(11):4052-4067. |
[13] | 常利军, 王椿镛, 丁志峰. 云南地区SKS波分裂研究[J]. 地球物理学报, 2006,49(1):197-204. |
[14] | 安美建, 石耀霖. 中国大陆岩石圈厚度分布研究[J]. 地学前缘, 2006,13(3):23-30. |
[15] |
STEINBERGER B, BECKER T W. A comparison of lithospheric thickness models[J]. Tectonophysics, 2018,746:325-338.
DOI URL |
[16] |
LONG M D, SILVER P G. Shear wave splitting and mantle anisotropy:measurements, interpretations, and new directions[J]. Surveys in Geophysics, 2009,30(4):407-461.
DOI URL |
[17] |
GAO S S, LIU K H, ABDELSALAM M G. Seismic anisotropy beneath the afar depression and adjacent areas: implications for mantle flow[J]. Journal of Geophysical Research, 2010,115: B12330. https://doi.org/10.1029/2009JB007141.
DOI URL |
[18] |
ALSINA D, SNIEDER R. Small-scale sublithospheric continental mantle deformation: constraints from SKS splitting observations[J]. Geophysical Journal International, 1995,123(2):431-448.
DOI URL |
[19] | 朱涛. 基于地幔动力学模拟推断云南地区剪切波各向异性源的深度[J]. 地球物理学报, 2018,61(3):948-962. |
[20] |
LEV E, LONG M D, VAN DER HILST R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 2006,251(3/4):293-304.
DOI URL |
[21] |
HU J, YANG H, XU X, et al. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau[J]. Gondwana Research, 2012,22(3/4):1060-1067.
DOI URL |
[22] |
FOUCH M J, FISCHER K M, PARMENTIER E M, et al. Shear wave splitting, continental keels, and patterns of mantle flow[J]. Journal of Geophysical Research, 2000,105(B3):6255-6275.
DOI URL |
[23] |
ASSUMPCÃO M, HEINTZ M, VAUCHEZ A, et al. Upper mantle anisotropy in SE and Central Brazil from SKS splitting: evidence of asthenospheric flow around a cratonic keel[J]. Earth and Planetary Science Letters, 2006,250(1):224-240.
DOI URL |
[24] |
ASSUMPCÃO M, GUARIDO M, VAN DER LEE S, et al. Upper-mantle seis-mic anisotropy from SKS splitting in the South American stable platform: a test of asthenospheric flow models beneath the lithosphere[J]. Lithosphere, 2011,3(2):173-180.
DOI URL |
[25] |
WANG X, NI J F, ASTER R, et al. Shear-wave splitting and mantle flow beneath the Colorado Plateau and its boundary with the Great Basin[J]. Bulletin of the Seismological Society of America, 2008,98(5):2526-2532.
DOI URL |
[26] |
MILLER M S, BECKER T W. Mantle flow deflected by interactions between sub-ducted slabs and cratonic keels[J]. Nature Geoscience, 2012,5(10):726-730.
DOI URL |
[27] |
FOSTER K, DUEKER K, SCHMANDT B, et al. A sharp cratonic lithosphere-asthenosphere boundary beneath the American Midwest and its relation to mantle flow[J]. Earth and Planetary Science Letters, 2014,402(1):82-89.
DOI URL |
[28] |
TACKLEY P J. Effects of strongly temperature-dependent viscosity on time-dependent 3-dimensional model of mantle convection[J]. Geophysical Research Letters, 1993,20(20):2187-2190.
DOI URL |
[29] |
ZHONG S, ZUBER M T, MORESI L, et al. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection[J]. Journal of Geophysical Research, 2000,105:11063-11082.
DOI URL |
[30] | CONRAD C P, LITHGOW-BERTELLONI C. Influence of continental roots and asthenosphere on plate-mantle coupling[J]. Geophysical Research Letters, 2006,33: L05312. https://doi.org/10.1029/2005GL025621. |
[31] | 朱涛, 冯锐. 球层中的非线性自由热对流-变黏度模型[J]. 地震学报, 2005,27(2):194-204. |
[32] |
ZHANG S Q, KARATO S. Lattice preferred orientation of olivine aggregates deformed in simple shear[J]. Nature, 1995,375:774-777.
DOI URL |
[33] |
STEINBERGER B, CALDERWOOD A R. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations[J]. Geophysical Journal International, 2006,167(3):1461-1481.
DOI URL |
[34] |
FORTE A M, QUÉRÉ S, MOUCHA R, et al. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints[J]. Earth and Planetary Science Letters, 2010,295(3/4):329-341.
DOI URL |
[35] | ARGUS D F, GORDON R G, DEMETS C. Geologically current motion of 56 plates relative to the no-net-rotation reference frame[J]. Geochemistry, Geophysics, Geosystems, 2011,12: Q11001. https://doi.org/10.1029/2011GC003751. |
[36] |
WANG C Y, FLESCH L M, CHANG L J, et al. Evidence of active mantle flow beneath South China[J]. Geophysical Research Letters, 2013,40(19):5137-5141.
DOI URL |
[37] |
LI L, RATERRON P, WEIDNER D, et al. Stress measurements of deforming olivine at high pressure[J]. Physics of Earth and Planetary Interiors, 2004,143/144:357-367.
DOI URL |
[38] |
LI L, RATERRON P, WEIDNER D, et al. Olivine flow mechanisms at 8 GPa[J]. Physics of Earth and Planetary Interiors, 2003,138(2):113-129.
DOI URL |
[39] |
COUVY H, FROST D J, HEIDELBACH F, et al. Shear deformation experiments of forsterite at 11 GPa-1400 ℃ in the multianvil apparatus[J]. European Journal of Mineralogy, 2004,16(6):877-889.
DOI URL |
[40] |
MAINPRICE D, TOMMASI A, COUVY H, et al. Pressure sensitivity of Olivine slip systems and seismic anisotropy of Earth’s upper mantle[J]. Nature, 2005,433(7027):731-733.
DOI URL |
[41] | CHRISTENSEN N I. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonics[J]. Geophysical Journal of the Royal Astronomical Society, 1984,76(1):89-112. |
[42] |
SILVER P G, CHAN W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research, 1991,96(B10):16429-16454.
DOI URL |
[43] |
MAINPRICE D, SILVER P G. Interpretation of SKS-waves using samples from the subcontinental lithosphere[J]. Physics of Earth and Planetary Interiors, 1993,78(3/4):257-280.
DOI URL |
[44] |
DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model[J]. Physics of Earth and Planetary Interiors, 1981,25(4):297-356.
DOI URL |
[45] |
KENNETT B L N, ENGDAHL E R. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991,105(2):429-465.
DOI URL |
[46] |
MONTAGNER J P, KENNET B L N. How to reconcile body-wave and normal-mode reference earth models[J]. Geophysical Journal International, 1996,125(1):229-248.
DOI URL |
[47] |
LI Y, GAO M, WU Q. Crustal thickness map of the Chinese mainland from teleseismic receiver functions[J]. Tectonophysics, 2014,611:51-60.
DOI URL |
[48] | 包茨, 杨先杰, 李登湘. 四川盆地地质构造特征及天然气远景预测[J]. 天然气工业, 1985,5(4):1-11. |
[49] | 朱守彪, 蔡永恩, 石耀霖. 青藏高原即邻区现今地应变率场的计算及其结果的地球物理意义[J]. 地球物理学报, 2005,48(5):1053-1061. |
[50] |
GRAND S P. Mantle shear-wave tomography and the fate of subducted slabs[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2002,360(1800):2475-2491.
DOI URL |
[51] |
RITSEMA J, DEUSS A, VAN HEIJST H J, et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 2011,184(3):1223-1236.
DOI URL |
[52] |
SIMMONS N A, FORTE A M, BOSCHI L, et al. GyPSuM:a joint tomographic model of mantle density and seismic wave speeds[J]. Journal of Geophysical Research, 2010,115(B12):B12310. DOI: 10.1029/2010JB007631.
DOI URL |
[53] |
PANNING M P, LEKIC V, ROMANOWICZ B A. Importance of crustal corrections in the development of a new global model of radial anisotropy[J]. Journal of Geophysical Research, 2010,115: B12325. https://doi.org/10.1029/2010JB007520.
DOI URL |
[54] |
HOUSER C, MASTERS G, SHEARER P, et al. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms[J]. Geophysical Journal International, 2008,174(1):195-212.
DOI URL |
[55] | AUER L, BOSCHI L, BECKER T W, et al. Savani: a variable resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets[J]. Journal of Geophysical Research, 2014,119(4):3006-3034. |
[1] | MAO Xiaoping, LU-XU Linghong, WANG Xiaoming, FAN Xiaojie, GENG Tao, WANG Haochen. Role of circumferential-direction stress in crustal movement [J]. Earth Science Frontiers, 2020, 27(1): 221-233. |
[2] | LIU Li-Jun, Michael Gurnis. Adjoint method and its application in mantle convection. [J]. Earth Science Frontiers, 2010, 17(3): 139-148. |
[3] | WANG Chun-Yong CHANG Li-Jun SU Wei LOU Hai P.G.Silver L.M.Flesch. A model of mechanically coupled deformation in lithosphere beneath the eastern Tibetan Plateau and its vicinity. [J]. Earth Science Frontiers, 2008, 15(6): 208-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||