地学前缘 ›› 2025, Vol. 32 ›› Issue (2): 261-276.DOI: 10.13745/j.esf.sf.2024.2.5
吴义平(), 王建君, 陶士振, 王青, 雷占祥, 李谦, 张宁宁, 王晓波, 杨怡青
收稿日期:
2023-12-30
修回日期:
2024-02-19
出版日期:
2025-03-25
发布日期:
2025-03-25
作者简介:
吴义平(1973—),男,博士,高级工程师,主要从事油气及伴生资源评价研究、海外新项目评价工作。E-mail: wuyiping01@petrochina.com.cn
基金资助:
WU Yiping(), WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing
Received:
2023-12-30
Revised:
2024-02-19
Online:
2025-03-25
Published:
2025-03-25
摘要:
氦气成藏机理具有特殊性,比油气系统更复杂。自1967年在坦桑尼亚克发现富氦温泉以来,尚未发现规模氦气田,鲁夸裂谷盆地能否形成富氦气藏值得关注。本文利用地球化学、地震、钻井、测井等资料,综合分析了该盆地生氦资源量、氦气释放过程和充注机制,进而探讨了氦气勘探潜力。研究表明:中、新生代裂谷对盆地氦气的运移和聚集具有重要控制作用;地表氦气含量为1.0%~10.2%,载体气类型为氮气、二氧化碳和甲烷,3He/4He值在0.039~0.053 Ra之间,表现为壳幔混源特征,盆地基底和沉积岩生氦量为367亿m3;氦气从源岩到圈闭以及地面经历了生成、释放、运移、充注和溢出5个过程。氦气充注机制主要表现为氮气-氦气脱溶充注、煤层气-氦气萃取充注和二氧化碳-氦气萃取充注3种。其中氮气为深部成因的无机气,与氦气具有同源特征,为盆地的主要充注模式;煤层气来源于盆地沉积中心,与氦气为异源同储;二氧化碳为变质成因无机气,与氦气共生机制与煤层气相同。盆地的有利成藏区带为盆地边界断层(BMF)带。在此处的上覆土壤带,氦气含量比背景值高出35%,目前已发现12个盆地边界断层圈闭(BMFC),风险前氦气远景地质资源量为57.4 亿m3,占盆地待发现资源量的64.6%,成为裂谷盆地的有利勘探目标。
中图分类号:
吴义平, 王建君, 陶士振, 王青, 雷占祥, 李谦, 张宁宁, 王晓波, 杨怡青. 坦桑尼亚鲁夸裂谷盆地氦气充注及成藏机理研究[J]. 地学前缘, 2025, 32(2): 261-276.
WU Yiping, WANG Jianjun, TAO Shizhen, WANG Qing, LEI Zhanxiang, LI Qian, ZHANG Ningning, WANG Xiaobo, YANG Yiqing. Research on helium charging and accumulation mechanism in Rukwa Rift Basin in Tanzania[J]. Earth Science Frontiers, 2025, 32(2): 261-276.
储层 | 地层 | 沉积环境 | 储层岩性 | 储层孔隙度/% | 渗透率/mD | 特征 | 盖层 |
---|---|---|---|---|---|---|---|
上湖层A和 B | 更新统 | 滨岸带河 流沉积 | 分选良好、细-中粒 砂岩,交错层理发育 | 19.6 | 2 200 | 沿边界断层 形成良好储层 | 碳酸盐岩、泥岩、 现代薄层蒸发岩 |
上湖层 B | 上中新统 | ||||||
红色砂岩C | 渐新统 | 辫状冲积 河道砂岩 | 浅黄到白色的 石英砂岩, 净毛比40% | 13~26 | 170~390 | 粒间孔为主,占0~16%;粒内孔占2%~15% | Nsungwe组块状碳酸盐火山灰烬/凝灰岩,伊利石-蒙脱石是主要的黏土矿物 |
红色砂岩D | 上白垩统 Galula组 | 厚度600~3 000 m, 辫状冲积河道砂岩 | 26,变化大 | ||||
卡鲁超群E | 二叠系- 下三叠统 | 砂岩 | >12 | 最大1 320, 平均143 | 储集能力强 | 层间泥岩 | |
基底F | 前寒武系 | 变质岩 | 变化大 | 顶部泥岩 |
表1 鲁夸盆地主要储层和盖层特征表
Table 1 Main reservoir and cap characteristics of RRB
储层 | 地层 | 沉积环境 | 储层岩性 | 储层孔隙度/% | 渗透率/mD | 特征 | 盖层 |
---|---|---|---|---|---|---|---|
上湖层A和 B | 更新统 | 滨岸带河 流沉积 | 分选良好、细-中粒 砂岩,交错层理发育 | 19.6 | 2 200 | 沿边界断层 形成良好储层 | 碳酸盐岩、泥岩、 现代薄层蒸发岩 |
上湖层 B | 上中新统 | ||||||
红色砂岩C | 渐新统 | 辫状冲积 河道砂岩 | 浅黄到白色的 石英砂岩, 净毛比40% | 13~26 | 170~390 | 粒间孔为主,占0~16%;粒内孔占2%~15% | Nsungwe组块状碳酸盐火山灰烬/凝灰岩,伊利石-蒙脱石是主要的黏土矿物 |
红色砂岩D | 上白垩统 Galula组 | 厚度600~3 000 m, 辫状冲积河道砂岩 | 26,变化大 | ||||
卡鲁超群E | 二叠系- 下三叠统 | 砂岩 | >12 | 最大1 320, 平均143 | 储集能力强 | 层间泥岩 | |
基底F | 前寒武系 | 变质岩 | 变化大 | 顶部泥岩 |
序号 | 降低氦气系统风险 的重要程度 | 有效的氦气聚集的 时间序列 |
---|---|---|
1 | 氦源(至关重要) | 储层沉积的质量 |
2 | 储层(通常很多,但必须与 有效盖层和圈闭相匹配) | 合适的盖层沉积 |
3 | 盖层(同储层) | 圈闭形成 |
4 | 圈闭(构造、地层):一个封闭的 空间,阻止流体浮力到地表 | 充注:氦气从基底到 圈闭的释放和运移 |
表2 鲁夸盆地氦气系统要素重要性顺序表
Table 2 Importance sequence of helium system elements in RRB
序号 | 降低氦气系统风险 的重要程度 | 有效的氦气聚集的 时间序列 |
---|---|---|
1 | 氦源(至关重要) | 储层沉积的质量 |
2 | 储层(通常很多,但必须与 有效盖层和圈闭相匹配) | 合适的盖层沉积 |
3 | 盖层(同储层) | 圈闭形成 |
4 | 圈闭(构造、地层):一个封闭的 空间,阻止流体浮力到地表 | 充注:氦气从基底到 圈闭的释放和运移 |
编号 | 温泉名称 | 数据来源 文献 | He含量/% | CO2含量/ % | N2含量/ % | 氩含量/ % | HCO3- 含量/% | CH4 含量/% | 离最近的火山 距离/km | 水温/ ℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | Rukwa2#/Rukwa2#b | [ | 2.49 | 96.0 | ||||||
2 | Ivuna | [ | 8~10.2 | |||||||
3 | Rock of Hades | [ | 4.2 | 0.8 | 87.5 | 0 | 5.4 | 139 | 66 | |
4 | Songwe Rambo | [ | 0.01 | 97.2 | 2.1 | 79.9 | 0.1 | 40 | 65 | |
5 | Maji ya Weta | [ | 0.06 | 89.9 | 9.8 | 71.1 | 43 | 72 | ||
6 | Mtagata | [ | 0.01 | 6.4 | 90.9 | 1.1 | 55 | 0.5 | 135 | 57 |
7 | Utete | [ | 0.25 | 12.4 | 83.9 | 0 | 0.8 | 147 | 58 | |
8 | Songwe River | [ | 0.01 | 99.2 | 0.6 | 0.1 | 40 | 55 | ||
9 | Rukwa1#/MMCT001 | [ | 0.005 | |||||||
10 | Rukwa1#/MMCT002 | 0.004 |
表3 鲁夸盆地及周缘温泉气体组分一栏表
Table 3 Hot spring gas components in RRB and its periphery
编号 | 温泉名称 | 数据来源 文献 | He含量/% | CO2含量/ % | N2含量/ % | 氩含量/ % | HCO3- 含量/% | CH4 含量/% | 离最近的火山 距离/km | 水温/ ℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | Rukwa2#/Rukwa2#b | [ | 2.49 | 96.0 | ||||||
2 | Ivuna | [ | 8~10.2 | |||||||
3 | Rock of Hades | [ | 4.2 | 0.8 | 87.5 | 0 | 5.4 | 139 | 66 | |
4 | Songwe Rambo | [ | 0.01 | 97.2 | 2.1 | 79.9 | 0.1 | 40 | 65 | |
5 | Maji ya Weta | [ | 0.06 | 89.9 | 9.8 | 71.1 | 43 | 72 | ||
6 | Mtagata | [ | 0.01 | 6.4 | 90.9 | 1.1 | 55 | 0.5 | 135 | 57 |
7 | Utete | [ | 0.25 | 12.4 | 83.9 | 0 | 0.8 | 147 | 58 | |
8 | Songwe River | [ | 0.01 | 99.2 | 0.6 | 0.1 | 40 | 55 | ||
9 | Rukwa1#/MMCT001 | [ | 0.005 | |||||||
10 | Rukwa1#/MMCT002 | 0.004 |
温泉名称及空气气样 | 4He含量/ (10-2cm3·cm-3STP) | 20Ne含量/ (10-5cm3·cm-3STP) | 40A r含量/ (10-2cm3·cm-3STP) | N2含量/ (cm3·cm-3STP) |
---|---|---|---|---|
Rukwa | 0.004 7(0.000 2) | 0.014(0.000 4) | 0.029(0.000 8) | |
Rukwa | 0.004 3(0.000 2) | 0.012(0.000 3) | 0.025(0.000 6) | |
Ivuna | 2.5(0.04) | 0.02(0.001 1) | 0.46(0.002) | 0.96 |
Air | 0.000 524(0.000 006) | 1.65(0.003 6) | 0.93(0.001) | 0.78 |
表4 氦气等稀有气体含量(据文献[12,14])
Table 4 Content of rare gases including helium. Adapted from [12,14].
温泉名称及空气气样 | 4He含量/ (10-2cm3·cm-3STP) | 20Ne含量/ (10-5cm3·cm-3STP) | 40A r含量/ (10-2cm3·cm-3STP) | N2含量/ (cm3·cm-3STP) |
---|---|---|---|---|
Rukwa | 0.004 7(0.000 2) | 0.014(0.000 4) | 0.029(0.000 8) | |
Rukwa | 0.004 3(0.000 2) | 0.012(0.000 3) | 0.025(0.000 6) | |
Ivuna | 2.5(0.04) | 0.02(0.001 1) | 0.46(0.002) | 0.96 |
Air | 0.000 524(0.000 006) | 1.65(0.003 6) | 0.93(0.001) | 0.78 |
温泉名称及空气气样 | 3He/4He | 20Ne/22Ne | 21Ne/22Ne | 40Ar/36Ar | 38Ar/36Ar |
---|---|---|---|---|---|
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Ivuna | 0.18(0.01) Ra | 9.68(0.029) | 0.032(0.000 4) | 787 (0.8) | 0.185(0.000 3) |
Air | 1 Ra | 9.80(0.080) | 0.029(0.000 3) | 295.5 (0.5) | 0.188(0.000 4) |
表5 氦气等稀有气体同位素表(据文献[6,12])
Table 5 Isotope table of rare gases including helium. Adapted from [6,12].
温泉名称及空气气样 | 3He/4He | 20Ne/22Ne | 21Ne/22Ne | 40Ar/36Ar | 38Ar/36Ar |
---|---|---|---|---|---|
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Rukwa | 3.45(0.005) Ra | 10.04(0.033) | 0.030(0.000 3) | 331 (0.9) | 0.182(0.001) |
Ivuna | 0.18(0.01) Ra | 9.68(0.029) | 0.032(0.000 4) | 787 (0.8) | 0.185(0.000 3) |
Air | 1 Ra | 9.80(0.080) | 0.029(0.000 3) | 295.5 (0.5) | 0.188(0.000 4) |
区域和裂谷作用前最后一次热构造事件时间 | 地质事件 | 生氦量/m3 | 源区面积/km2 | 参数来源文献 |
---|---|---|---|---|
坦桑尼亚克拉通 (2.4 Ga) | 最后的变质作用 | 1.7× 1013 | 350 000 | [ |
Ubendian带 (570 Ma) | 泛非造山运动的再次改造 | 7.4× 1011 | 75 000 | [ |
Usagaran带区南部 (570 Ma) | 泛非造山运动的再次改造 | 5.7× 1011 | 57 600 | [ |
北坦桑尼亚辐散带(2.0 Ga) | 坦桑尼亚克拉通的堆积 | 1.6× 1012 | 42 500 | [ |
鲁夸盆地基底(570 Ma) | 泛非造山运动改造 | 2.9 × 1011 | 12 800 | [ |
鲁夸盆地沉积(260 Ma) | 卡鲁超群沉积 | 7.4 × 1010 | 12 800 | [ |
表6 坦桑尼亚克拉通最后一次构造运动以来10 km深度以内的生氦量表
Table 6 Helium generation within 10 km depth since the last tectonic movement in the Tanzania Craton
区域和裂谷作用前最后一次热构造事件时间 | 地质事件 | 生氦量/m3 | 源区面积/km2 | 参数来源文献 |
---|---|---|---|---|
坦桑尼亚克拉通 (2.4 Ga) | 最后的变质作用 | 1.7× 1013 | 350 000 | [ |
Ubendian带 (570 Ma) | 泛非造山运动的再次改造 | 7.4× 1011 | 75 000 | [ |
Usagaran带区南部 (570 Ma) | 泛非造山运动的再次改造 | 5.7× 1011 | 57 600 | [ |
北坦桑尼亚辐散带(2.0 Ga) | 坦桑尼亚克拉通的堆积 | 1.6× 1012 | 42 500 | [ |
鲁夸盆地基底(570 Ma) | 泛非造山运动改造 | 2.9 × 1011 | 12 800 | [ |
鲁夸盆地沉积(260 Ma) | 卡鲁超群沉积 | 7.4 × 1010 | 12 800 | [ |
圈闭类型 | 构造位置 | 圈闭数/个 | 圈闭面积/ km2 | 风险前Pmean资源量/ (108m3) | 风险后Pmean资源量/ (108m3) | 资源量占比/ % |
---|---|---|---|---|---|---|
BMFC | 边界断层下盘 | 12 | 528 | 57.4 | 7.8 | 64.6 |
4WAY | 盆地中部 | 12 | 315 | 11.7 | 1.6 | 13.2 |
3WAY | 盆地中部 | 10 | 216 | 19.8 | 2.7 | 22.2 |
合计 | 34 | 1 059 | 88.9 | 12.1 | 100 |
表7 鲁夸盆地主要圈闭风险前待发现氦气资源量表
Table 7 Risked helium undiscovered resources of 34 leads in the RRB
圈闭类型 | 构造位置 | 圈闭数/个 | 圈闭面积/ km2 | 风险前Pmean资源量/ (108m3) | 风险后Pmean资源量/ (108m3) | 资源量占比/ % |
---|---|---|---|---|---|---|
BMFC | 边界断层下盘 | 12 | 528 | 57.4 | 7.8 | 64.6 |
4WAY | 盆地中部 | 12 | 315 | 11.7 | 1.6 | 13.2 |
3WAY | 盆地中部 | 10 | 216 | 19.8 | 2.7 | 22.2 |
合计 | 34 | 1 059 | 88.9 | 12.1 | 100 |
[1] | 贾凌霄, 马冰, 王欢, 等. 全球氦气勘探开发进展与利用现状[J]. 中国地质, 2022, 49(5): 1427-1437. |
[2] |
陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449.
DOI |
[3] |
李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501.
DOI |
[4] | 李玉宏, 王行运, 韩伟. 渭河盆地氦气资源远景调查进展与成果[J]. 中国地质调查, 2015, 2(6): 1-6. |
[5] | BROWN A A. Formation of high helium gases: a guide for explorationists[C/OL]// Proceedings of 2010 AAPG conference. New Oleans:AAPG, 2010: 11-14 [2025-2-17]. https://www.searchanddiscovery.com/. |
[6] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[7] | BARRY P H, LAWSON M, MEURER W P, et al. Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field[J]. Geochimica et Cosmochimica Acta, 2016, 194: 291-309. |
[8] | MTILI K M, BYRNE D J, TYNE R L, et al. The origin of high helium concentrations in the gas fields of southwestern Tanzania[J]. Chemical Geology, 2021, 585: 120542. |
[9] | IDLEMAN B D, ZEITLER P K, MCDANNELL K T. Characterization of helium release from apatite by continuous ramped heating[J]. Chemical Geology, 2018, 476: 223-232. |
[10] | KUSKY T M, POLAT A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305(1/2/3): 43-73. |
[11] | MUIRHEAD J D, FISCHER T P, OLIVA S J, et al. Displaced cratonic mantle concentrates deep carbon during continental rifting[J]. Nature, 2020, 582: 67-72. |
[12] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[13] | DESHPANDE R D, GUPTA S K. Groundwater helium: an indicator of active tectonic regions along Narmada River, central India[J]. Chemical Geology, 2013, 344: 42-49. |
[14] | DIVEENA D, JON G G, COLIN G M, et.al. The principles of helium exploration[J]. Petroleum Geoscience, 2022, 47(1): 481-538. |
[15] | DELALANDE M, BERGONZINI L, GHERARDI F, et al. Fluid geochemistry of natural manifestations from the Southern Poroto-Rungwe hydrothermal system (Tanzania): preliminary conceptual model[J]. Journal of Volcanology and Geothermal Research, 2010, 199: 127-141. |
[16] | JUSTYN W, ZANDER B. 3D seismic surveys-update[EB/OL].(2022-2-03) [2023-2-08]. https://noblehelium.com.au/north-rukwa-project. |
[17] | IAN S, LORNA B, EAMES S, et al. Helium one AGM presentation final verified[EB/OL].(2023-2-15) [2024-2-06]. https://www.helium-one.com/wp-content/uploads/2023/02/230215_Helium-One_AGM_Presentation_Final_verified.pdf. |
[18] | MADUHU S, YALAMANCHILI S R, WEBER J, et al. Eyasi-wembere basin, Tanzania: hydrocarbon prospectivity and structural interpretation through the integration of airborne gravity gradient and magnetic survey results[C]// Proceedings of 2017 SEG international exposition and annual meeting. Houston: Society of Exploration Geophysicists, 2017: 1781-1785. |
[19] | REISCH M S. New method used to discover potential helium source[J]. Chemical and Engineering News, 2016, 94(27): 1-2. |
[20] | MULAYA E, GLUYAS J, MCCAFFREY K, et al. Structural geometry and evolution of the Rukwa Rift Basin, Tanzania: implications for helium potential[J]. Basin Research, 2022, 34(2): 938-960. |
[21] | EBINGER C, DJOMANI Y P, MBEDE E, et al. Rifting Archaean lithosphere: the Eyasi-Manyara-Natron rifts, East Africa[J]. Journal of the Geological Society, 1997, 154(6): 947-960. |
[22] | FOSTER A, EBINGER C, MBEDE E, et al. Tectonic development of the northern taiizaiiian sector of the East African Rift System[J]. Journal of the Geological Society, 1997, 154(4): 689-700. |
[23] | BONIFACE N, SCHENK V. Neoproterozoic eclogites in the Paleoproterozoic Ubendian belt of Tanzania: evidence for a pan-African suture between the Bangweulu Block and the Tanzania Craton[J]. Precambrian Research, 2012, 208: 72-89. |
[24] | BONIFACE N, SCHENK V, APPEL P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): evidence from monazite and zircon geochronology, and geochemistry[J]. Precambrian Research, 2012, 192: 16-33. |
[25] | MTELELA C, ROBERTS E M, DOWNIE R, et al. Interplay of structural, climatic, and volcanic controls on late quaternary lacustrine-deltaic sedimentation patterns in the western branch of the East African Rift System, Rukwa Rift Basin, Tanzania[J]. Journal of Sedimentary Research, 2016, 86(10): 1179-1207. |
[26] | HARÐARSON B S. The western branch of the East African Rift: a review of tectonics, volcanology and geothermal activity[C]// Proceedings of 39th Geothermal Resources Council annual meeting. Geothermal:always on. Reno: Geothermal Resources Council, 2015: 215-220. |
[27] | DAWSON J B. The Gregory rift valley and Neogene-recent volcanoes of Northern Tanzania[J]. Mineralogical Magazine, 2010, 74(4): 801-802. |
[28] | ROBERTS E M, STEVENS N J, O’CONNOR P M, et al. Initiation of the western branch of the East African Rift coeval with the eastern branch[J]. Nature Geoscience, 2012, 5(4): 289-294. |
[29] | WESCOTT W A, KREBS W N, ENGELHARDT D W, et al. New biostratigraphic age dates from the Lake Rukwa Rift Basin in western Tanzania: geologic note (1)[J]. AAPG Bulletin, 1991, 75(7): 1255-1263. |
[30] | WHEELER W H, KARSON J A. Extension and subsidence adjacent to a “weak” continental transform: an example from the Rukwa Rift, East Africa[J]. Geology, 1994, 22(7): 625-628. |
[31] | REDDY S M, COLLINS A S, BUCHAN C, et al. Heterogeneous excess argon and Neoproterozoic heating in the Usagaran Orogen, Tanzania, revealed by single grain 40Ar/39Ar thermochronology[J]. Journal of African Earth Sciences, 2004, 39(3/4/5): 165-176. |
[32] | DELVAUX D, KERVYN F, VITTORI E, et al. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin[J]. Journal of African Earth Sciences, 1998, 26(3): 397-421. |
[33] | BAIYEGUNHI C. The correlation of dry density and porosity of some rocks from the Karoo Supergroup: a case study of selected rock types between Grahamstown and Queenstown in the Eastern Cape Province, South Africa[J]. IOSR Journal of Engineering, 2014, 4(12): 30-40. |
[34] | MORLEY C K, CUNNINGHAM S M, HARPER R M, et al. Geology and geophysics of the Rukwa Rift, East Africa[J]. Tectonics, 1992, 11(1): 69-81. |
[35] | ROBERTS E M, O’CONNOR P M, GOTTFRIED M D. et al. Revised stratigraphy and age of the Red Sandstone Group in the Rukwa Rift Basin, Tanzania[J]. Cretaceous Research, 2004, 25(5): 749-759. |
[36] | O’CONNOR P M, GOTTFRIED M D, STEVENS N J, et al. A new vertebrate fauna from the Cretaceous red sandstone group, Rukwa Rift Basin, southwestern Tanzania[J]. Journal of African Earth Sciences, 2006, 44(3): 277-288. |
[37] |
陶士振, 吴义平, 陶小晚, 等. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367.
DOI |
[38] |
吴义平, 王青, 陶士振, 等. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350.
DOI |
[39] | WALKER B G. Springs of deep-seated origin in Tanzania[J]. Journal of Hydrology, 1971, 12(2): 170-171. |
[40] | BARRY P H, HILTON D R, FISCHER T P, et al. Helium and carbon isotope systematics of cold “mazuku” CO2 vents and hydrothermal gases and fluids from Rungwe volcanic province, southern Tanzania[J]. Chemical Geology, 2013, 339: 141-156. |
[41] | WEERARATNE D S, FORSYTH D W, FISCHER K M, et al. Evidence for an upper mantle plume beneath the Tanzanian Craton from Rayleigh wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B9): 2427. |
[42] | PINNA P, CALVEZ J, ABESSOLO A, et al. Neoproterozoic events in the Tcholliré area: pan-African crustal growth and geodynamics in central-northern Cameroon (Adamawa and North Provinces)[J]. Journal of African Earth Sciences, 1994, 18: 347-353. |
[43] | MUIRHEAD J D, KATTENHORN S A. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa[J]. Journal of Structural Geology, 2018, 106: 1-18. |
[44] | REINERS P W, FARLEY K A. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3845-3859. |
[45] | MACKINTOSH S J, BALLENTINE C J. Using 3He/4He isotope ratios to identify the source of deep reservoir contributions to shallow fluids and soil gas[J]. Chemical Geology, 2012, 304: 142-150. |
[46] | KOSMBAEVA G T, AUBAKIROV Y A, TASTANOVA L K, et al. Petroleum resources management systems(PRMS)[J]. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2021, 3(47): 80-86. |
[47] |
刘金华, 葛政俊, 李晓凤. 苏北盆地CO2气藏成藏规律及富氦成因[J]. 天然气地球科学, 2023, 34(3): 477-485.
DOI |
[48] | ROBERTS E M, O’CONNOR P M, STEVENS N J, et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: new insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa[J]. Journal of African Earth Sciences, 2010, 57(3): 179-212. |
[49] | 吴义平, 曹庆超, 李谦, 等. 一种定量预测气藏中氦气含量的方法及装置: CN202311239763.7[P]. 2023-2-15. |
[1] | 张辉善, 宋玉财, 李文昌, 马中平, 张晶, 洪俊, 刘磊, 吕鹏瑞, 王志华, 张海迪, 杨博, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. 巴基斯坦铅、锌地球化学分布特征与成矿潜力及对特提斯带沉积岩容矿铅锌找矿勘查的启示[J]. 地学前缘, 2025, 32(1): 105-126. |
[2] | 洪俊, Tahseenullah KHAN, 李文渊, Yasir Shaheen KHALIL, 马中平, 张晶, 王志华, 张辉善, 张海迪, 刘畅, Asad Ali NAREJO. 巴基斯坦锂、铍地球化学分布特征与成矿远景区优选[J]. 地学前缘, 2025, 32(1): 127-141. |
[3] | 吴发富, 赵凯, 宋松, 罗军强, 张辉善, 于文明, 刘江涛, 程湘, 刘浩, 曾雄伟, 何垚砚, 向鹏, 王建雄, 胡鹏. 摩洛哥大阿特拉斯构造带东段铅、锌地球化学分布与找矿远景区优选[J]. 地学前缘, 2025, 32(1): 162-182. |
[4] | 张晶, 李天虎, 王志华, Naghmah HAIDER, 洪俊, 张辉善, 梁楠. 巴基斯坦斑岩型铜矿地球化学特征与成矿潜力分析[J]. 地学前缘, 2025, 32(1): 91-104. |
[5] | 曾招阳, 宁树正, 王自国. 煤中的战略性矿产:以镓锗为例[J]. 地学前缘, 2024, 31(6): 331-349. |
[6] | 康凤新, 郑婷婷, 史猛, 隋海波, 徐蒙, 江海洋, 钟振楠, 秦鹏, 张保建, 赵季初, 马哲民, 崔洋, 李嘉龙, 段晓飞, 白通, 张平平, 姚松, 刘肖, 史启鹏, 王学鹏, 杨海涛, 陈京鹏, 刘琲琲. 山东省地热资源赋存规律及其富集机制[J]. 地学前缘, 2024, 31(6): 67-94. |
[7] | 陈如彪, 王玉满, 黄正良, 李维岭, 闫伟, 梁峰, 郭玮. 鄂尔多斯盆地西北缘海相页岩裂缝孔隙发育特征与页岩气富集模式:以奥陶系乌拉力克组为例[J]. 地学前缘, 2024, 31(5): 46-60. |
[8] | 杨怡青, 陶士振, 陈悦. 美国典型富氦无机成因气田中氦气地质特征与聚集机制[J]. 地学前缘, 2024, 31(1): 327-339. |
[9] | 陶士振, 吴义平, 陶小晚, 王晓波, 王青, 陈胜, 高建荣, 吴晓智, 刘申奥艺, 宋连腾, 陈荣, 李谦, 杨怡青, 陈悦, 陈秀艳, 陈燕燕, 齐雯. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367. |
[10] | 项鑫, 黄传炎, 曹兰柱, 曹强, 江涛, 张宇飞, 宋宇, 徐婕. 二连盆地洼槽区非常规油气富集模式及勘探潜力[J]. 地学前缘, 2023, 30(6): 462-472. |
[11] | 杨雨, 文龙, 陈聪, 汪华. 四川盆地西部二叠系多期台缘带油气勘探潜力[J]. 地学前缘, 2023, 30(1): 1-10. |
[12] | 陈蟒蛟, 谭开俊, 文龙, 乐幸福, 姚军. 四川盆地中二叠统天然气成藏特征及巨大勘探前景[J]. 地学前缘, 2023, 30(1): 11-19. |
[13] | 魏浩元, 朱宗良, 肖文华, 魏军, 韦德强, 苑伯超, 向鑫. 酒泉盆地青西凹陷油气地质特征及下步勘探方向[J]. 地学前缘, 2023, 30(1): 69-80. |
[14] | 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明, 张盛生, 雷敏, 付国强, 李振宇. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 2023, 30(1): 81-105. |
[15] | 赵贤正, 金凤鸣, 蒲秀刚, 罗群, 周立宏, 姜文亚, 董雄英, 时战楠, 韩文中, 张伟, 汪虎. 油气聚集链:内涵、特征与勘探实践:以渤海湾盆地冀中、黄骅坳陷为例[J]. 地学前缘, 2022, 29(6): 120-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||