地学前缘 ›› 2020, Vol. 27 ›› Issue (2): 197-217.DOI: 10.13745/j.esf.sf.2020.3.20
赵新福1,2(), 曾丽平1,2, 廖旺1,2, 李婉婷2,3, 胡浩1, 李建威1,2
收稿日期:
2019-12-18
修回日期:
2020-02-22
出版日期:
2020-03-25
发布日期:
2020-03-25
作者简介:
赵新福 (1982—),男,教授,主要从事岩浆热液铁-铜-金-稀土成矿系统研究。E-mail: xfzhao@cug.edu.cn
基金资助:
ZHAO Xinfu1,2(), ZENG Liping1,2, LIAO Wang1,2, LI Wanting2,3, HU Hao1, LI Jianwei1,2
Received:
2019-12-18
Revised:
2020-02-22
Online:
2020-03-25
Published:
2020-03-25
摘要:
长江中下游成矿带的宁芜和庐枞火山岩盆地中发育了大量与早白垩世(约130 Ma)陆相火山-侵入岩有关的玢岩铁矿。这类矿床的特征为具有磁铁矿-磷灰石-阳起石(透辉石)矿物组合,在国际上一般被称为铁氧化物-磷灰石型(Iron Oxide-Apatite, IOA)或基鲁纳型(Kiruna-type)矿床。玢岩铁矿的概念自20世纪70年代提出以来,其成因就一直存在争议,主要有矿浆、岩浆热液及矿浆-热液过渡的观点。近年来的高精度年代学揭示出宁芜和庐枞盆地内玢岩铁矿在约130 Ma集中爆发成矿。矿物学、岩石学及地球化学的综合研究表明成矿物质主要来源于次火山岩体,且成矿早期流体具有高温(550~780 ℃)和超高盐度(可达90% NaCleq)的特点。这些特点与成矿岩体及周围火山岩在成矿早阶段发育大规模钠质蚀变相吻合;但同时S-Sr等同位素和流体包裹体成分分析表明在铁成矿过程中还有外来壳源(如膏盐层物质)流体的加入。一些研究工作还表明玢岩铁矿与夕卡岩型铁矿具有相似的热液蚀变演化过程,暗示两者或许存在某些成因联系,很可能是相似流体与不同性质围岩及在不同温度下水岩交代产物。这些新的证据为探讨玢岩铁矿的成矿作用过程和成因机制提供了新的制约,也带来了新问题。本文从成岩成矿年代学、成矿物质来源、成矿早期流体性质、玢岩铁矿与夕卡岩铁矿及其外围新发现的金铜矿化的成因联系等角度,对近年来长江中下游成矿带玢岩铁矿研究的主要新进展进行初步总结。当前IOA型矿床的成因研究成为国际上矿床学研究的一个热点,除了长期争论的矿浆成因和岩浆热液成因,最近提出多个了岩浆-热液复合成矿模型,如岩浆磁铁矿-气泡悬浮模型及富水铁熔体的上升、脱气和侵位成因模型。将IOA型矿床成因争论的焦点逐渐聚焦在岩浆到岩浆后(岩浆热液)阶段,铁质究竟是以含铁岩浆热液、铁矿浆 (Fe-O或P-Ca-Fe-O),还是岩浆磁铁矿微晶或其他未知的形式来富集成矿的,还有待进一步研究,文章对以上的新模型进行简要介绍和评述,并与长江中下游的矿床进行对比。
中图分类号:
赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示[J]. 地学前缘, 2020, 27(2): 197-217.
ZHAO Xinfu, ZENG Liping, LIAO Wang, LI Wanting, HU Hao, LI Jianwei. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and its implication for ore genesis[J]. Earth Science Frontiers, 2020, 27(2): 197-217.
图1 长江中下游成矿带大地构造位置(a)及地质简图(b)、宁芜盆地(c)和庐枞盆地(d)区域地质简图(图a,b据文献[3];图c,d据文献[1,8]) TLF—郯城—庐江断裂; XGF—襄樊—广济断裂; YC—阳新—常州断裂。
Fig.1 Simplified tectonic map of the location of the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRVMB)(a); Simplified geological map of the MLYRVMB (b); Geological map of the Ningwu (c) and Luzong (d) volcanic basins. Adapted from [1,3,8].
图2 玢岩铁矿理想成矿模式图(据文献[1]) 1—三叠系青龙群石灰岩;2—三叠系黄马青组砂页岩;3—三叠系象山群组砂岩;4—白垩系龙王山、大王山组火山岩;5—辉石闪长岩-辉石闪长玢岩;6—蚀变分带界线;7—浸染状磁铁矿; 8—角砾岩化带及角砾状矿石;9—块状矿石;10—镜铁矿或磁铁矿脉;11—层状铁矿;12—黄铁矿化。蚀变分带:I—下部蚀变带;II—中部蚀变带;III—上部浅色蚀变带。
Fig.2 Genesis model of IOA deposits in China. Adapted from [1].
图3 凹山(a)、姑山(b)、罗河(c)和和睦山(d)矿床的典型地质剖面(据文献[1,4,28])
Fig.3 Typical geological cross-sections of the Washan (a), Gushan (b), Luohe (c) and Hemushan (d) IOA deposits. Adapted from [1,4,28].
图4 典型玢岩铁矿的蚀变矿物和矿石特征 (a)—高村(陶村)矿床中浸染状矿石(照片来自[48]);(b)—罗河矿床中粗粒浸染状矿石,由石榴子石、磁铁矿、磷灰石和硬石膏组成(照片来自[49]);(c)—凹山矿床的细粒磁铁矿胶结钠化辉石闪长玢岩角砾(照片来自[50]);(d)—高村(陶村)矿床中伟晶状阳起石-磷灰石-磁铁矿脉(照片来自[48]);(e)—梅山矿床中块状磁铁矿;(f)—罗河矿床中硬石膏-磷灰石-磁铁矿矿石被晚期黄铁矿脉穿插;(g)—姑山矿床中典型的气孔状赤铁矿矿石(照片来自[36]);(h)—龙桥矿床中细粒透辉石-磁铁矿矿石(照片来自[51]);(i)—龙桥矿床中的典型金云母-磁铁矿矿石(照片来自[51])。 矿物缩写: Act—阳起石; Anh—硬石膏; Ap—磷灰石; Di—透辉石; Grt—石榴子石; Mag—磁铁矿; Py—黄铁矿; Phl—金云母; Qz—石英。
Fig.4 Typical alteration minerals and ore features of porphyrite iron ore deposit
图5 宁芜(a)和庐枞(b)矿集区成岩成矿年代汇总(数据引自文献[9,48,54,56-58,60-61,63-76])
Fig.5 Ages summary of the IOA deposits and related volcanic rocks and intrusions from the Ningwu (a) and Luzong (b) mineralizing districts. Data adapted from [9,48,54,56-58,60-61,63-76].
图6 δ34Smineral-Δ34Ssulfate-sulfide图(数据引自文献[28,34,52,69,88-91]) 硫化物和硫酸盐矿物对的δ34S值在Δ34Ssulfate-sulfide=0处的交点表示矿物对发生硫同位素分馏前流体总硫同位素的组成,泥河和罗河铁矿床中流体的总硫同位素组成分别约为+16.2‰ 和+13.5‰。
Fig.6 Relationship map of δ34Smineral-Δ34Ssulfate-sulfide. Data adapted from [28,34,52,69,88-91].
图7 玢岩铁矿中成矿前及成矿阶段部分流体包裹体特征 (a)—罗河矿床的石榴子石中含多个子晶多相包裹体与富气两相及纯气相包裹体共生(照片来自[49]);(b)—罗河矿床中石榴子石含多个子晶多相包裹体(照片来自[49]);(c)—梅山矿床的辉石中含多个子晶多相包裹体(照片来自[49]);(d)—和睦山矿床的磷灰石颗粒中成群分布的含子晶三相包裹体、气液两相包裹体,代表成矿流体发生沸腾现象(照片来自[80])。
Fig.7 Transmitted-light photomicrographs of fluid inclusions at the pre-ore and syn-ore stages from the IOA deposits
图8 玢岩铁矿成矿流体的lg(Cl/Br)-lg(Na/K)图解(数据来自文献[49])
Fig.8 Diagram of log(Cl/Br)-log(Na/K) of the ore-forming fluids of the IOA deposits. Data adapted from [49].
图9 主要IOA及矿集区全球分布图(世界地图底图来自https://www.mapsofworld.com/projection-maps/robinson/world-physical-with-colors.html) Kirunavaara/Kiruna=典型矿床/矿集区。
Fig.9 Global distribution of typical IOA deposits and IOA provinces
位置 | 矿床名称 | 矿床规模 | 赋矿围岩 | 主要矿物 | 矿体形态 | 主要矿石类型 | 主成矿时代 | 成矿早期流体 温度和盐度 | 参考文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中国, 宁芜 盆地 | 梅山 | 338Mt@ 39.14%Fe | 闪长玢岩、辉石安山岩 | Mag,Hem; Ab,Scp,Kfs,Grt,Di,Ap,Act,Ep,Chl,Cal,Qz,Kln | 透镜状 | 块状、浸染状、脉状矿石为主,局部气孔状构造 | 暂无;成矿岩体为129.2 Ma | ≥780 ℃, 90% NaCleq | [ | |||||||||
凹山 | 207Mt@ 25%Fe | 闪长玢岩、安山质火山岩 | Mag; Ab,Scp(Ab),Kfs,Ap,Act,Tur,Ep,Chl,Qz,Kln | 囊状 | 块状、脉状、角砾状矿石 | 暂无;成矿岩体为 131.7 ~130.2 Ma | 600~ 800 ℃, 80% NaCleq | [ | ||||||||||
姑山 | 180Mt@ 50%~ 56%Fe | 闪长玢岩、砂岩、页岩和少量碳酸岩 | Hem,Mag; Ap,Qz, Cal,Kln | 似穹 隆状 | 块状、角砾状矿石为主 | 暂无;成矿岩体为129.2 Ma | 720~1 040 ℃(赤铁矿和磁铁矿热爆温度) | [ | ||||||||||
和睦山 | 80Mt@ 45%Fe | 辉长闪长岩、含膏盐层碳酸岩 | Mag,(Hem),Py,Ccp; Ab,Phl,Di,Ap,Tur,Anh,Chl,Ep,Cal,Qz | 扁豆状、 似层状 | 浸染状、脉状和角砾状矿石 | 132.9~ 129.1 Ma | 410~430 ℃ (磁铁矿化流体包裹体均一温度) | [ | ||||||||||
中国, 庐枞 盆地 | 泥河 | 200Mt@ 35.5%Fe | 闪长玢岩、粗安岩 | Mag,(Hem),Py,Ccp; Ab,Kfs,Di,Grt,Ap,Wo,Anh,Chl,Ep,Cal,Qz,Kln | 似层状、透镜状 | 脉状、网脉状、浸染状、块状矿石 | 131.2~ 130.9 Ma | ≥857 ℃, 达90% NaCleq | [ | |||||||||
罗河 | 372Mt@ 35.5%Fe | 闪长玢岩、粗安岩 | Mag,(Hem),Py,Ccp; Ab,Kfs,Di,Grt,Ap,Wo,Anh,Chl,Ep,Cal, Qz | 似层状、透镜状 | 脉状、网脉状和浸染状矿石,少量块状矿石 | 131.0~ 129.1 Ma | >830 ℃, 达90% NaCleq | [ | ||||||||||
瑞典, Kiruna 地区 | Kiirunavaara | 1539Mt@ 47%Fe, 1%P | 粗安岩为底板,流纹英安岩岩为顶板 | Mag,(Hem),Ap,Amp,Ab,Bt,Act, | 板状矿体向下延 伸至少 1 500 m | 块状矿石为主,角砾状、脉状矿石次之,含有树枝状和气孔状构造 | 1.89~ 1.88 Ga | [ | ||||||||||
Malmberget | 971Mt@ 42%~ 61%Fe, <0.8%P | 变质长英质-基性火山岩(又称长英粒变岩,Leptites) | Mag,Hem; Ap,Ab,Kfs,Bt,Di,Scp,Act,Anh | 透镜状、岩墙状 | 角砾状、脉状-网脉状、块状 | 1.89~ 1.88 Ga | [ | |||||||||||
瑞典, Bergslagen地区 | Gräng-esberg | 152 Mt@ 58%Fe, 0.8%P | (变)英安岩-安山岩 | Mag,Hem; Ap,Amp,Bt,Chl,Ab,Kfs,Bt,Am,Scp | 透镜状、脉状 | 块状矿石为主,“条纹状(Grainy)”次之,少量“泡沫状(Foamy)”或变斑晶结构矿石 | >1 895 Ma | [ | ||||||||||
美国, Missouri地区 | Pea Ridge | 210Mt Fe,2kt@12%REE | 流纹岩 | Mag,Hem,Py;Cpx,Act,Ap,Rt,Brt,Qz,Kfs,Fl,Cal,Dol,REE fluorocarbonate | 急剧倾斜的板状矿体 | 块状、角砾状 | 约1 470 Ma | 480~> 530 ℃,54%~>60% NaCleq | [ | |||||||||
位置 | 矿床名称 | 矿床规模 | 赋矿围岩 | 主要矿物 | 矿体形态 | 主要矿石类型 | 主成矿时代 | 成矿早期流体 温度和盐度 | 参考文献 | |||||||||
美国, Adiro ndacks 地区 | Mineville | 铁储量未 报道; 0.160 Mt@ 1.04% REE | 花岗质片麻岩 | Mag,Hem;Cpx,Act,Ap,Scp,Tit,Ilm,REE-bearing minerals(Mnz,Xtm),Qz, Kfs,Mus, | 席状或岩脉状 | 脉状 | 约1 033 Ma | [ | ||||||||||
加拿大, Great Bear 地区 | Terra | Fe矿体, Ag-Ni-Co-Bi-U矿体 | 火山碎屑岩 | Mag; Ap,Act, Bt,Qz, | 穹隆状岩墙 | 网脉状 | 约1 873 Ma | [ | ||||||||||
智利, Coastal Cordillera 铁成 矿带 | Los Colorados | 491Mt@ 36.5%Fe | 玄武安山岩和安山岩熔岩流和火山碎屑岩 | Mag,(Hem),Py,Ccp; Act,Ap,Chl,Kfs,Tur,Ser,Clays | 近垂直岩脉状 | 块状、角砾状 | 115~ 110 Ma | 800~900 ℃(阳起石Mg#温度计) | [ | |||||||||
El Romeral | 451Mt@ 28.3%Fe, 1.1%V | 安山岩熔岩、安山斑岩(andesite porphyry) | Mt,Py,Ccp; Ab,Act,Scp,Ap,Bt,Chl | 近直立矿体 | 块状、浸染状、角砾状 | 约128 Ma | [ | |||||||||||
智利, Coastal Cordillera 铁成 矿带 | Carmen | 未报道 | 斑岩安山岩(porphyritic andesite) | Mag,(Hem),Py,Ccp;Act,Ap,Chl,Qz,Tur,Ser,Clays | 近垂直席状 | 块状矿石为主,伟晶状、角砾状、梳状 | (131± 1) Ma | [ | ||||||||||
智利, High Andes | El Laco | 734Mt@ 49.2%Fe | 层状矿体位于安山岩-流纹岩火山的两翼,岩墙状矿体位于安山岩内 | Mag,(Hem); Di,Ap,Scp,Kfs,Anh,Act | 上部近地表是层控矿体,根部是垂直脉状和穹隆状 | 块状矿石为主,与安山岩流互层;气孔状矿石次之,浸染状和脉状矿石;树枝状构造,熔流构造(lava flows),火山碎屑构造,骨架状结构,圆柱状构造,磁铁矿火山灰结构(magnetite tephra) | (5.3±1.9)~(1.6±0.5) Ma (赋矿火山岩) | >900 ℃ (磁铁矿-透辉石氧同位素温度);40%~60% NaCleq | [ | |||||||||
秘鲁 | Marcona | 1.9Gt@ 55.4%Fe,0.12%Cu | 变质碎屑岩、安山岩、沉积岩 | Mag,Po,Ccp,(Sph); Ab,Phl,Scp,Kfs,Bt,Act,Tr, | 透镜状 | 块状矿石为主(>90%),少量浸染状、网脉状和热液角砾状矿石;火山弹、磁铁矿熔流结构 | 约159 Ma | 700~800 ℃(磁铁矿-磷灰石、阳起石、云母、透闪石氧同位素对) | [ | |||||||||
伊朗, Bafq 地区 | Se-Chahu | 140Mt,Anomaly XI矿体@36%~37% Fe,0.08%P; Anomaly X矿体@ <67%Fe, 0.13%P | 流纹凝灰岩,沉积岩(砂岩、白云质灰岩和页岩) | Mag,(Hem),Sulfides; Ab,Amp,Ap, Mon,Ilm,Tit, Cal,Chl, | 板状-透镜状 | 块状矿石为主,角砾状 | 525~ 510 Ma | [ | ||||||||||
伊朗, Zanjan 地区 | Morvarid | <1 000 t Fe | 石英二长岩、安山质火山岩 | Mag,Py,Ccp,Bn; Ap,Px,Act,Kfs,Phl,Ep,Chl,Qz,Tur,Cal | 透镜状、脉状 | 脉状矿石为主,网脉状和层状矿石次之,少量浸染状矿石 | 约40 Ma | <600 ℃ | [ |
表1 中国长江中下游成矿带玢岩铁矿与世界典型IOA矿床对比
Table 1 A brief comparison of IOA deposits from the MLYRVMB and global IOA deposits
位置 | 矿床名称 | 矿床规模 | 赋矿围岩 | 主要矿物 | 矿体形态 | 主要矿石类型 | 主成矿时代 | 成矿早期流体 温度和盐度 | 参考文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中国, 宁芜 盆地 | 梅山 | 338Mt@ 39.14%Fe | 闪长玢岩、辉石安山岩 | Mag,Hem; Ab,Scp,Kfs,Grt,Di,Ap,Act,Ep,Chl,Cal,Qz,Kln | 透镜状 | 块状、浸染状、脉状矿石为主,局部气孔状构造 | 暂无;成矿岩体为129.2 Ma | ≥780 ℃, 90% NaCleq | [ | |||||||||
凹山 | 207Mt@ 25%Fe | 闪长玢岩、安山质火山岩 | Mag; Ab,Scp(Ab),Kfs,Ap,Act,Tur,Ep,Chl,Qz,Kln | 囊状 | 块状、脉状、角砾状矿石 | 暂无;成矿岩体为 131.7 ~130.2 Ma | 600~ 800 ℃, 80% NaCleq | [ | ||||||||||
姑山 | 180Mt@ 50%~ 56%Fe | 闪长玢岩、砂岩、页岩和少量碳酸岩 | Hem,Mag; Ap,Qz, Cal,Kln | 似穹 隆状 | 块状、角砾状矿石为主 | 暂无;成矿岩体为129.2 Ma | 720~1 040 ℃(赤铁矿和磁铁矿热爆温度) | [ | ||||||||||
和睦山 | 80Mt@ 45%Fe | 辉长闪长岩、含膏盐层碳酸岩 | Mag,(Hem),Py,Ccp; Ab,Phl,Di,Ap,Tur,Anh,Chl,Ep,Cal,Qz | 扁豆状、 似层状 | 浸染状、脉状和角砾状矿石 | 132.9~ 129.1 Ma | 410~430 ℃ (磁铁矿化流体包裹体均一温度) | [ | ||||||||||
中国, 庐枞 盆地 | 泥河 | 200Mt@ 35.5%Fe | 闪长玢岩、粗安岩 | Mag,(Hem),Py,Ccp; Ab,Kfs,Di,Grt,Ap,Wo,Anh,Chl,Ep,Cal,Qz,Kln | 似层状、透镜状 | 脉状、网脉状、浸染状、块状矿石 | 131.2~ 130.9 Ma | ≥857 ℃, 达90% NaCleq | [ | |||||||||
罗河 | 372Mt@ 35.5%Fe | 闪长玢岩、粗安岩 | Mag,(Hem),Py,Ccp; Ab,Kfs,Di,Grt,Ap,Wo,Anh,Chl,Ep,Cal, Qz | 似层状、透镜状 | 脉状、网脉状和浸染状矿石,少量块状矿石 | 131.0~ 129.1 Ma | >830 ℃, 达90% NaCleq | [ | ||||||||||
瑞典, Kiruna 地区 | Kiirunavaara | 1539Mt@ 47%Fe, 1%P | 粗安岩为底板,流纹英安岩岩为顶板 | Mag,(Hem),Ap,Amp,Ab,Bt,Act, | 板状矿体向下延 伸至少 1 500 m | 块状矿石为主,角砾状、脉状矿石次之,含有树枝状和气孔状构造 | 1.89~ 1.88 Ga | [ | ||||||||||
Malmberget | 971Mt@ 42%~ 61%Fe, <0.8%P | 变质长英质-基性火山岩(又称长英粒变岩,Leptites) | Mag,Hem; Ap,Ab,Kfs,Bt,Di,Scp,Act,Anh | 透镜状、岩墙状 | 角砾状、脉状-网脉状、块状 | 1.89~ 1.88 Ga | [ | |||||||||||
瑞典, Bergslagen地区 | Gräng-esberg | 152 Mt@ 58%Fe, 0.8%P | (变)英安岩-安山岩 | Mag,Hem; Ap,Amp,Bt,Chl,Ab,Kfs,Bt,Am,Scp | 透镜状、脉状 | 块状矿石为主,“条纹状(Grainy)”次之,少量“泡沫状(Foamy)”或变斑晶结构矿石 | >1 895 Ma | [ | ||||||||||
美国, Missouri地区 | Pea Ridge | 210Mt Fe,2kt@12%REE | 流纹岩 | Mag,Hem,Py;Cpx,Act,Ap,Rt,Brt,Qz,Kfs,Fl,Cal,Dol,REE fluorocarbonate | 急剧倾斜的板状矿体 | 块状、角砾状 | 约1 470 Ma | 480~> 530 ℃,54%~>60% NaCleq | [ | |||||||||
位置 | 矿床名称 | 矿床规模 | 赋矿围岩 | 主要矿物 | 矿体形态 | 主要矿石类型 | 主成矿时代 | 成矿早期流体 温度和盐度 | 参考文献 | |||||||||
美国, Adiro ndacks 地区 | Mineville | 铁储量未 报道; 0.160 Mt@ 1.04% REE | 花岗质片麻岩 | Mag,Hem;Cpx,Act,Ap,Scp,Tit,Ilm,REE-bearing minerals(Mnz,Xtm),Qz, Kfs,Mus, | 席状或岩脉状 | 脉状 | 约1 033 Ma | [ | ||||||||||
加拿大, Great Bear 地区 | Terra | Fe矿体, Ag-Ni-Co-Bi-U矿体 | 火山碎屑岩 | Mag; Ap,Act, Bt,Qz, | 穹隆状岩墙 | 网脉状 | 约1 873 Ma | [ | ||||||||||
智利, Coastal Cordillera 铁成 矿带 | Los Colorados | 491Mt@ 36.5%Fe | 玄武安山岩和安山岩熔岩流和火山碎屑岩 | Mag,(Hem),Py,Ccp; Act,Ap,Chl,Kfs,Tur,Ser,Clays | 近垂直岩脉状 | 块状、角砾状 | 115~ 110 Ma | 800~900 ℃(阳起石Mg#温度计) | [ | |||||||||
El Romeral | 451Mt@ 28.3%Fe, 1.1%V | 安山岩熔岩、安山斑岩(andesite porphyry) | Mt,Py,Ccp; Ab,Act,Scp,Ap,Bt,Chl | 近直立矿体 | 块状、浸染状、角砾状 | 约128 Ma | [ | |||||||||||
智利, Coastal Cordillera 铁成 矿带 | Carmen | 未报道 | 斑岩安山岩(porphyritic andesite) | Mag,(Hem),Py,Ccp;Act,Ap,Chl,Qz,Tur,Ser,Clays | 近垂直席状 | 块状矿石为主,伟晶状、角砾状、梳状 | (131± 1) Ma | [ | ||||||||||
智利, High Andes | El Laco | 734Mt@ 49.2%Fe | 层状矿体位于安山岩-流纹岩火山的两翼,岩墙状矿体位于安山岩内 | Mag,(Hem); Di,Ap,Scp,Kfs,Anh,Act | 上部近地表是层控矿体,根部是垂直脉状和穹隆状 | 块状矿石为主,与安山岩流互层;气孔状矿石次之,浸染状和脉状矿石;树枝状构造,熔流构造(lava flows),火山碎屑构造,骨架状结构,圆柱状构造,磁铁矿火山灰结构(magnetite tephra) | (5.3±1.9)~(1.6±0.5) Ma (赋矿火山岩) | >900 ℃ (磁铁矿-透辉石氧同位素温度);40%~60% NaCleq | [ | |||||||||
秘鲁 | Marcona | 1.9Gt@ 55.4%Fe,0.12%Cu | 变质碎屑岩、安山岩、沉积岩 | Mag,Po,Ccp,(Sph); Ab,Phl,Scp,Kfs,Bt,Act,Tr, | 透镜状 | 块状矿石为主(>90%),少量浸染状、网脉状和热液角砾状矿石;火山弹、磁铁矿熔流结构 | 约159 Ma | 700~800 ℃(磁铁矿-磷灰石、阳起石、云母、透闪石氧同位素对) | [ | |||||||||
伊朗, Bafq 地区 | Se-Chahu | 140Mt,Anomaly XI矿体@36%~37% Fe,0.08%P; Anomaly X矿体@ <67%Fe, 0.13%P | 流纹凝灰岩,沉积岩(砂岩、白云质灰岩和页岩) | Mag,(Hem),Sulfides; Ab,Amp,Ap, Mon,Ilm,Tit, Cal,Chl, | 板状-透镜状 | 块状矿石为主,角砾状 | 525~ 510 Ma | [ | ||||||||||
伊朗, Zanjan 地区 | Morvarid | <1 000 t Fe | 石英二长岩、安山质火山岩 | Mag,Py,Ccp,Bn; Ap,Px,Act,Kfs,Phl,Ep,Chl,Qz,Tur,Cal | 透镜状、脉状 | 脉状矿石为主,网脉状和层状矿石次之,少量浸染状矿石 | 约40 Ma | <600 ℃ | [ |
图10 区域尺度碱性蚀变的分带及成矿作用演化模型(改自文献[16,134])
Fig.10 Alteration zoning model for vectoring to potential mineralization during regional-scale mapping. Modified from [16,134].
图11 IOA矿床代表性岩浆-热液复合成因模型(修改自文献[42,44]) (a)—El Laco铁矿床富水铁熔体的上升、脱气和侵位成因模型;(b)—Los Colorado矿床岩浆磁铁矿-气泡悬浮模型。
Fig.11 Typical combination of magmatic and magmatic-hydrothermal processes for IOA deposits. Modified from [42,44].
[1] | 宁芜研究项目编写小组. 宁芜玢岩铁矿[M]. 北京: 地质出版社, 1978:1-196. |
[2] | 翟裕生, 林新多, 池三川, 等. 长江中下游内生铁矿床成因类型及成矿系列探讨[J]. 地质与勘探, 1980, 16(3): 9-14. |
[3] | 常印佛, 吴言昌. 长江中下游铜铁成矿带[M]. 北京: 地质出版社, 1991. |
[4] | 翟裕生, 姚书振, 林新多, 等. 长江中下游地区铁铜 (金) 成矿规律[M]. 北京: 地质出版社, 1992. |
[5] | 唐永成, 吴言昌, 储国政. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社, 1998: 1-351. |
[6] | 周涛发, 范裕, 袁峰, 等. 安徽庐枞(庐江—枞阳)盆地火山岩的年代学及其意义[J]. 中国科学: D辑地球科学, 2008, 38(11): 1342-1353. |
[7] | 毛景文, 段超, 刘佳林, 等. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型:以长江中下游为例[J]. 岩石学报, 2012, 28(1): 1-14. |
[8] | 周涛发, 范裕, 袁峰, 等. 庐枞盆地侵入岩的时空格架及其对成矿的制约[J]. 岩石学报, 2010, 26(9): 2694-2714. |
[9] | 周涛发, 范裕, 袁峰, 等. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 2011, 85(5): 712-730. |
[10] |
GEIJER P. Igneous rocks and iron ores of Kiirunavaara, Luossavaara and Tuollavaara[J]. Economic Geology, 1910, 5(8): 699-718.
DOI URL |
[11] |
FRIETSCH R. On the magmatic origin of iron ores of the Kiruna type[J]. Economic Geology, 1978, 73(4): 478-485.
DOI URL |
[12] |
HITZMAN M W, ORESKES N, EINAUDI M T. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits[J]. Precambrian Research, 1992, 58(1/2/3/4): 241-287.
DOI URL |
[13] |
NYSTROEM J O, HENRIQUEZ F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry[J]. Economic Geology, 1994, 89(4): 820-839.
DOI URL |
[14] | LUPULESCU M V, PYLE J M. The Fe-P-REE deposit at Mineville, Essex Co., NY: manifestations of Precambrian and Mesozoic fluid infiltration events[C]// Proceedings of the 40th Annual Meeting of the Geological Society of America. 2005: 4. |
[15] |
CHEN H Y, CLARK A H, KYSER T K. The Marcona magnetite deposit, Ica, south-central Peru: a product of hydrous, iron oxide-rich melts?[J]. Economic Geology, 2010, 105(8): 1441-1456.
DOI URL |
[16] |
CORRIVEAU L, MONTREUIL J F, POTTER E G. Alteration facies linkages among iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the Great Bear magmatic zone, Northwest Territories, Canada[J]. Economic Geology, 2016, 111(8): 2045-2072.
DOI URL |
[17] | 任启江, 刘孝善, 徐兆文, 等. 安徽庐枞中生代火山构造洼地及其成矿作用[M]. 北京: 地质出版社, 1991: 1-206. |
[18] | 宋学信, 陈毓川, 盛继福, 等. 论火山-浅成矿浆铁矿床[J]. 地质学报, 1981, 55(1): 41-54, 84. |
[19] | 卢冰, 胡受奚, 蔺雨时, 等. 宁芜型铁矿床成因和成矿模式的探讨[J]. 矿床地质, 1990(1): 13-25. |
[20] | 袁家铮. 梅山铁矿矿石类型及成因: 高温实验结果探讨[J]. 现代地质, 1990, 4(4): 77-84. |
[21] |
HOU T, ZHANG Z C, KUSKY T. Gushan magnetite-apatite deposit in the Ningwu Basin, Lower Yangtze River Valley, SE China: hydrothermal or Kiruna-type?[J]. Ore Geology Reviews, 2011, 43(1): 333-346.
DOI URL |
[22] | 张荣华. 长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理[J]. 地质学报, 1980, 54(1): 70-84, 88. |
[23] | 储雪蕾, 陈锦石, 王守信. 安徽罗河铁矿的硫同位素温度及意义[J]. 地球化学, 1984, 13(4): 350-356. |
[24] | 黄清涛. 论罗河铁矿床地质特征及矿床成因[J]. 矿床地质, 1984, 3(4): 9-19. |
[25] |
ZHANG R H. Sulfur isotopes and pyrite-anhydrite equilibria in a volcanic basin hydrothermal system of the Middle to Lower Yangtze River valley[J]. Economic Geology, 1986, 81(1): 32-45.
DOI URL |
[26] | 储雪蕾, 陈锦石, 王守信. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究[J]. 地质科学, 1986, 21(3): 276-289. |
[27] | 赵永鑫. 长江中下游地区接触带铁矿床形成机理[M]. 武汉: 中国地质大学出版社, 1993: 1-156. |
[28] | 张乐骏. 安徽庐枞盆地成岩成矿作用研究[D]. 合肥: 合肥工业大学, 2011. |
[29] |
LIU Y N, FAN Y, ZHOU T F, et al. In-situ LA-ICP-MS trace element analysis of magnetite from Mesozoic iron oxide apatite (IOA) deposits in the Luzong volcanic basin, eastern China[J]. Journal of Asian Earth Sciences, 2018, 166: 233-246.
DOI URL |
[30] | 吴利仁. 我国东部中生代陆相火山岩宁芜型铁矿形成的基本原理[J]. 地质与勘探, 1978(6): 1-8. |
[31] | 陈毓川. 梅山铁矿: 一个矿浆热液矿床[G]//中国地质科学院矿床地质研究所文集(2). 北京:中国地质学会, 1981: 28-50. |
[32] | 李秉伦, 谢奕汉, 王英兰. 根据矿物中包裹体的研究对玢岩铁矿的新认识[J]. 矿床地质, 1983(2): 25-32. |
[33] | 中国科学院地球化学研究所. 宁芜型铁矿床形成机理[M]. 北京: 科学出版社, 1987. |
[34] | 黄清涛, 尹恭沛. 安徽庐江罗河铁矿[M]. 北京: 地质出版社, 1989: 1-193. |
[35] | 林新多. 岩浆-热液过渡型矿床的若干特征[J]. 现代地质, 1998, 12(4): 485-492. |
[36] | 李延河, 段超, 韩丹, 等. 矿浆型铁矿的氧同位素判别标志: 以宁芜玢岩铁矿为例[J]. 岩石学报, 2017, 33(11): 3411-3421. |
[37] |
SUN W A, YUAN F, JOWITT S M, et al. In situ LA-ICP-MS trace element analyses of magnetite: genetic implications for the Zhonggu orefield, Ningwu volcanic basin, Anhui Province, China[J]. Mineralium Deposita, 2019, 54(8): 1243-1264.
DOI URL |
[38] | 孙喜华, 高丽坤, 张龙生, 等. 梅山铁矿外围金、铜、钼多金属矿地质特征[J]. 地质学刊, 2014, 38(1): 128-134. |
[39] | 孙喜华, 徐明钻, 邹芝红, 等. 江苏南京梅山铁矿床外围多金属矿体地质地球化学特征初探[J]. 矿床地质, 2015, 34(5): 965-980. |
[40] |
MAO J W, XIE G Q, DUAN C, et al. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, eastern China[J]. Ore Geology Reviews. 2011, 43(1): 294-314.
DOI URL |
[41] |
HU H, LI J W, HARLOV D E, et al. A genetic link between iron oxide-apatite and iron skarn mineralization in the Jinniu volcanic basin, Daye district, eastern China: evidence from magnetite geochemistry and multi-mineral U-Pb geochronology[J]. Geological Society of America Bulletin, 2019. DOI: 10.1130/B35180.1
DOI |
[42] |
KNIPPING J L, BILENKER L D, SIMON A C, et al. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions[J]. Geology, 2015, 43(7): 591-594.
DOI URL |
[43] |
KNIPPING J L, BILENKER L D, SIMON A C, et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes[J]. Geochimica et Cosmochimica Acta, 2015, 171: 15-38.
DOI URL |
[44] |
TORNOS F, VELASCO F, HANCHAR J M. Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile[J]. Geology, 2016, 44(6): 427-430.
DOI URL |
[45] |
TORNOS F, VELASCO F, HANCHAR J M. The magmatic to magmatic-hydrothermal evolution of the El Laco deposit (Chile) and its implications for the genesis of magnetite-apatite deposits[J]. Economic Geology, 2017, 112(7): 1595-1628.
DOI URL |
[46] | 赵玉琛. 宁芜玢岩铁硫矿床成矿规律和找矿预测研究[J]. 矿床地质, 1990(1): 1-12. |
[47] | 杜建国, 马晓红. 长江中下游成矿带陆相火山岩型铁矿成矿规律[J]. 安徽地质, 2011, 21(2): 131-137. |
[48] |
ZENG L P, ZHAO X F, LI X C, et al. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: constraints on fluid metasomatism[J]. American Mineralogist, 2016, 101(11): 2468-2483.
DOI URL |
[49] |
LI W T, AUDÉTAT A, ZHANG J. The role of evaporites in the formation of magnetite-apatite deposits along the Middle and Lower Yangtze River, China: evidence from LA-ICP-MS analysis of fluid inclusions[J]. Ore Geology Reviews, 2015, 67: 264-278.
DOI URL |
[50] | 段超, 李延河, 袁顺达, 等. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约[J]. 岩石学报, 2012, 28(1): 243-257. |
[51] |
LIU Y N, FAN Y, ZHOU T F, et al. Geochemical characteristics of magnetite in Longqiao skarn iron deposit in the Middle-Lower Yangtze metallogenic belt, eastern China[J]. Mineralium Deposita, 2019, 54(8): 1229-1242.
DOI URL |
[52] | 范裕, 周涛发, 袁峰, 等. 庐枞盆地高硫化型浅成低温热液成矿系统: 来自矾山明矾石矿床地质特征和硫同位素地球化学的证据[J]. 岩石学报, 2010, 26(12): 3657-3666. |
[53] | 余金杰, 毛景文. 宁芜玢岩铁矿磷灰石的稀土元素特征[J]. 矿床地质, 2002, 21(1): 65-73. |
[54] | 张旗, 简平, 刘敦一, 等. 宁芜火山岩的锆石 SHRIMP 定年及其意义[J]. 中国科学: D 辑, 2003, 33(4): 309-314. |
[55] | 马芳, 蒋少涌, 姜耀辉, 等. 宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究[J]. 岩石学报, 2006, 22(10): 2581-2589. |
[56] | 侯可军, 袁顺达. 宁芜盆地火山-次火山岩的锆石 U-Pb 年龄、 Hf 同位素组成及其地质意义[J]. 岩石学报, 2010, 26(3): 888-902. |
[57] | 马芳, 蒋少湧, 薛怀民. 宁芜盆地凹山和东山铁矿床中阳起石的激光39Ar-40Ar年代学研究[J]. 矿床地质, 2010, 29(2): 283-289. |
[58] | 袁顺达, 侯可军, 刘敏. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义[J]. 岩石学报, 2010, 26(3): 797-808. |
[59] |
ZHANG R H, ZHANG X T, HU S M. Pyrite-anhydrite-magnetite-pyroxene-type deposits and coexisting hydrothermal fluids in Mesozoic volcanic basins, Yangtze River Valley, China[J]. Ore Geology Reviews, 2011, 43(1): 315-332.
DOI URL |
[60] | 段超, 毛景文, 李延河, 等. 宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石 U-Pb 年龄及其地质意义[J]. 地质学报, 2011, 85(7): 1159-1171. |
[61] |
ZHOU T F, FAN Y, YUAN F, et al. Geology and geochronology of magnetite-apatite deposits in the Ning-Wu volcanic basin, eastern China[J]. Journal of Asian Earth Sciences, 2013, 66: 90-107.
DOI URL |
[62] | 王跃, 朱祥坤, 毛景文, 等. 安徽姑山矿浆型铁矿床 Fe 同位素初步研究[R]. 北京: 中国地质科学院地质研究所, 2014. |
[63] | 范裕, 刘一男, 周涛发, 等. 安徽庐枞盆地泥河铁矿床年代学研究及其意义[J]. 岩石学报, 2014, 30(5): 1369-1381. |
[64] | 孙维安, 蒋小娟, 袁峰, 等. 钟姑矿田太平山铁矿床二长岩年代学及地球化学特征[J]. 大地构造与成矿学, 2016, 40(6): 1200-1214. |
[65] |
NIE L Q, ZHOU T F, FAN Y, et al. Geology, geochemistry and genesis of the Makou magnetite-apatite deposit in the Luzong volcanic basin, Middle-Lower Yangtze River Valley metallogenic belt, eastern China[J]. Ore Geology Reviews, 2017, 91: 264-277.
DOI URL |
[66] |
LIU Y N, FAN Y, ZHOU T F, et al. LA-ICP-MS titanite U-Pb dating and mineral chemistry of the Luohe magnetite-apatite(MA)-type deposit in the Lu-Zong volcanic basin, Eastern China[J]. Ore Geology Reviews, 2018, 92: 284-296.
DOI URL |
[67] | 李顺庭. 宁芜地区蒋庙和姑山岩体的特征和成因[D]. 北京: 中国地质大学(北京), 2008. |
[68] | 徐祥, 邢凤鸣. 宁芜地区三个辉长岩的全岩和矿物Rb-Sr等时线年龄[J]. 地质科学, 1994, 29(3): 309-312. |
[69] | 覃永军. 安徽庐枞盆地燕山期成矿地球动力学背景及成矿模式[D]. 武汉: 中国地质大学(武汉), 2010. |
[70] | 薛怀民, 董树文, 马芳. 长江中下游地区庐(江)—枞(阳)和宁(南京)—芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U-Pb年龄[J]. 岩石学报, 2010, 26(9): 2653-2664. |
[71] | 范裕, 周涛发, 袁峰, 等. 宁芜盆地玢岩型铁矿床的成矿时代: 金云母40Ar-39Ar同位素年代学研究[J]. 地质学报, 2011, 85(5): 810-820. |
[72] |
LIU W H, ZHANG J, SUN T, et al. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China[J]. Journal of Geochemical Exploration, 2014, 138: 22-32.
DOI URL |
[73] | 汪晶, 吴明安, 李小东, 等. 庐枞盆地早白垩世闪长玢岩锆石U-Pb年龄、地球化学特征及其成矿指示意义[J]. 地质学报, 2014, 88(4): 547-561. |
[74] | 王丽娟, 王汝成, 于津海, 等. 宁芜盆地火山-侵入岩的时代、地球化学特征及其地质意义[J]. 地质学报, 2014, 88(7): 1247-1272. |
[75] | 杨颍鹤, 王丽娟, 张少琴. 宁芜盆地火山作用峰期锆石U-Pb定年和Lu-Hf同位素研究[J]. 地质学刊, 2015, 39(4): 556-566. |
[76] |
SUN W A, YUAN F, JOWITT S M, et al. Geochronology and geochemistry of the Fe ore-bearing Zhonggu intrusions of the Ningwu basin: implications for tectonic setting and contemporaneous Cu-Au mineralization in the Middle-Lower Yangzte metallogenic belt[J]. Ore Geology Reviews, 2017, 84: 246-272.
DOI URL |
[77] | 范裕, 周涛发, 袁峰, 等. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J]. 岩石学报, 2010, 26(9): 2715-2728. |
[78] |
CHEN L, ZHENG Y F, ZHAO Z F. Geochemical constraints on the origin of Late Mesozoic andesites from the Ningwu basin in the Middle-Lower Yangtze Valley, South China[J]. Lithos, 2016, 254/255: 94-117.
DOI URL |
[79] | CHEN L, ZHENG Y F, ZHAO Z F. A common crustal component in the sources of bimodal magmatism: geochemical evidence from Mesozoic volcanics in the Middle-Lower Yangtze Valley, South China[J]. Geological Society of America Bulletin, 2018, 130(11/12): 1959-1980. |
[80] |
LUO G, ZHANG Z Y, DU Y S, et al. Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, eastern China, and their metallogenic significance[J]. Journal of Asian Earth Sciences, 2015, 113: 1100-1116.
DOI URL |
[81] |
SU Z K, ZHAO X F, ZENG L P, et al. Tourmaline boron and strontium isotope systematics reveal magmatic fluid pulses and external fluid influx in a giant iron oxide-apatite (IOA) deposit[J]. Geochimica et Cosmochimica Acta, 2019, 259: 233-252.
DOI URL |
[82] |
YU J J, CHE L R, WANG T Z. Alteration, oxygen isotope, and fluid inclusion study of the Meishan iron oxide-apatite deposit, SE China[J]. Mineralium Deposita, 2015, 50(7): 847-869.
DOI URL |
[83] | 陈毓川. 玢岩铁矿矿化蚀变作用及成矿机理[G]//中国地质科学院矿床地质研究所文集(3). 北京: 中国地质学会, 1982: 5-32, 211. |
[84] | 草广金. 长江中下游及华北地区内生铁铜矿床与膏盐的关系[J]. 地质与勘探, 1977, 13(1): 26-33. |
[85] | 蔡本俊. 长江中下游地区内生铁铜矿床与膏盐的关系[J]. 地球化学, 1980, 9(2): 193-199. |
[86] | 巫全淮, 王华田, 章纯荪, 等. 大鲍庄和罗河铁矿区硫同位素特征及其成因的探讨[J]. 矿床地质, 1983, 2(4): 26-34. |
[87] | 李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2014, 30(5): 1355-1368. |
[88] | 李婉婷. 宁芜及庐枞地区陆相次火山岩型铁矿床成矿流体及矿床成因研究[D]. 武汉: 中国地质大学(武汉), 2015. |
[89] | 吴明安, 张千明, 汪祥云, 等. 安徽庐江龙桥铁矿[M]. 北京: 地质出版社, 1996. |
[90] | 唐敏惠. 安徽庐枞盆地大矾山明矾石矿床地质特征及成因研究[D]. 合肥: 合肥工业大学, 2008. |
[91] | 刘一男. 安徽庐枞盆地罗河—小包庄铁矿床成矿作用研究[D]. 合肥: 合肥工业大学, 2015. |
[92] | OHMOTO H, RYE R D. Isotopes of sulfur and carbon[M]// BARNES H L. Geochemistry of hydrothermal ore deposits.New York: Wiley, 1979: 509-567. |
[93] | 陈锦石, 储雪蕾, 邵茂茸. 三叠纪海的硫同位素[J]. 地质科学, 1986, 21(4): 330-338. |
[94] | 李荫清, 魏家秀, 周兴汉, 等. 某玢岩铁矿床中气液包裹体特征和成矿温度[J]. 地质学报, 1979, 53(1): 50-59, 93. |
[95] | 魏家秀. 白象山铁矿流体包裹体、热晕及矿床成因的研究[G]//中国地质科学院矿床地质研究所文集(20). 北京: 中国地质学会, 1987: 115-132. |
[96] |
BROMAN C, NYSTRÖM J O, HENRÍQUEZ F, et al. Fluid inclusions in magnetite-apatite ore from a cooling magmatic system at El Laco, Chile[J]. GFF, 1999, 121(3): 253-267.
DOI URL |
[97] |
ZHOU T F, WU M G, FAN Y, et al. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, eastern China[J]. Ore Geology Reviews, 2011, 43(1): 154-169.
DOI URL |
[98] | 林刚, 许德如. 在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨: 以宁芜铁矿南段为例[J]. 矿床地质, 2010, 29(3): 427-436. |
[99] |
LI W, XIE G Q, MAO J W, et al. Mineralogy, fluid inclusion, and stable isotope studies of the Chengchao deposit, Hubei Province, eastern China: implications for the formation of high-grade Fe skarn deposits[J]. Economic Geology, 2019, 114(2): 325-352.
DOI URL |
[100] | 康文凯. 江苏梅山铁矿外围铜金矿体成矿流体和成矿物质来源研究[D]. 成都: 成都理工大学, 2015. |
[101] | 王铁柱, 余金杰, 车林睿, 等. 宁芜地区梅山金矿床的成矿流体特征及矿床成因[J]. 矿床地质, 2015, 34(3): 565-580. |
[102] |
APUKHTINA O B, KAMENETSKY V S, EHRIG K, et al. Early, deep magnetite-fluorapatite mineralization at the Olympic dam Cu-U-Au-Ag deposit, South Australia[J]. Economic Geology, 2017, 112(6): 1531-1542.
DOI URL |
[103] |
WESTHUES A, HANCHAR J M, WHITEHOUSE M J, et al. New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna district, Norrbotten, Sweden[J]. Economic Geology, 2016, 111(7): 1595-1618.
DOI URL |
[104] | NARANJO J A, HENRÍQUEZ F, NYSTRÖM J O. Subvolcanic contact metasomatism at El Laco volcanic complex, central Andes[J]. Andean Geology, 2010, 37(1): 110-120. |
[105] | OYARZUN J, FRUTOS J. Tectonic and petrological frame of the Cretaceous iron deposits of North Chile[J]. Mining Geology, 1984, 34: 21-31. |
[106] | BERGMAN S, KÜBLER L, MARTINSSON O. Description of regional geological and geophysical maps of northern Norrbotten County (east of the Caledonian orogen)[J]. Geological Survey of Sweden, 2001, 56: 110. |
[107] |
MARTINSSON O, BILLSTRÖM K, BROMAN C, et al. Metallogeny of the northern Norrbotten ore province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits[J]. Ore Geology Reviews, 2016, 78: 447-492.
DOI URL |
[108] |
JONSSON E, TROLL V R, HÖGDAHL K, et al. Magmatic origin of giant ‘Kiruna-type’apatite-iron-oxide ores in central Sweden[J]. Scientific Reports, 2013, 3: 1644.
DOI URL |
[109] | WEIS F. Oxygen and iron isotope systematics of the Gräng-esberg mining district (GMD), central Sweden[R]. Uppsala: Uppsala University, 2013: 1-77. |
[110] |
HOFSTRA A H, MEIGHAN C J, SONG X Y, et al. Mineral thermometry and fluid inclusion studies of the pea ridge iron oxide-apatite-rare earth element deposit, Mesoproterozoic St. Francois mountains terrane, Southeast Missouri, USA[J]. Economic Geology, 2016, 111(8): 1985-2016.
DOI URL |
[111] |
CHIARENZELLI J, LUPULESCU M, REGAN S A, et al. Age and origin of the Mesoproterozoic iron oxide-apatite mineralization, Cheever mine, eastern Adirondacks, NY[J]. Geosciences, 2018, 8(9): 345.
DOI URL |
[112] |
ACOSTA-GONGORA P, GLEESON S A, SAMSON I M, et al. Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone, NWT, Canada[J]. Economic Geology, 2014, 109(7): 1901-1928.
DOI URL |
[113] |
ROJAS P A, BARRA F, REICH M, et al. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile[J]. Mineralium Deposita, 2018, 53(7): 947-966.
DOI URL |
[114] |
TRELOAR P J, COLLEY H. Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications[J]. Mineralogical Magazine, 1996, 60(399): 285-301.
DOI URL |
[115] |
BONYADI Z, DAVIDSON G J, MEHRABI B, et al. Significance of apatite REE depletion and monazite inclusions in the brecciated Sechahun iron oxide-apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry[J]. Chemical Geology, 2011, 281(3/4): 253-269.
DOI URL |
[116] |
NABATIAN G, GHADERI M, CORFU F, et al. Geology, alteration, age, and origin of iron oxide-apatite deposits in Upper Eocene quartz monzonite, Zanjan district, NW Iran[J]. Mineralium Deposita, 2014, 49(2): 217-234.
DOI URL |
[117] |
PARK C F. A magnetite “flow” in northern Chile[J]. Economic Geology, 1961, 56(2): 431-436.
DOI URL |
[118] | HENRÍQUEZ F, MARTIN R F. Crystal-growth textures in magnetite flows and feeder dykes, El Laco, Chile[J]. The Canadian Mineralogist, 1978, 16(4): 581-589. |
[119] |
HENRÍQUEZ F, NYSTRÖM J O. Magnetite bombs at El Laco volcano, Chile[J]. GFF, 1998, 120(3): 269-271.
DOI URL |
[120] | NASLUND H R. Magmatic iron ores and associated miner-alisation: examples from the Chilean High Andes and Coastal Cordillera[M]//PORTER T M. Hydrothermal iron oxide copper-gold and related deposits: a global perspective (2). Adelaine: PGC Publishing, 2002: 207-226. |
[121] |
PHILPOTTS A R. Origin of certain iron-titanium oxide and apatite rocks[J]. Economic Geology, 1967, 62(3): 303-315.
DOI URL |
[122] |
NASLUND H R. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts[J]. American Journal of Science, 1983, 283(10): 1034-1059.
DOI URL |
[123] | 李九玲, 张桂兰, 苏良赫. 与矿浆成矿有关的 FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6 四元体系模拟实验研究[G]//中国地质科学院矿床地质研究所文集 (18). 北京:中国地质学会, 1986 : 207-213. |
[124] |
LESTER G W, CLARK A H, KYSER T K, et al. Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas[J]. Contributions to Mineralogy and Petrology, 2013, 166(1): 329-349.
DOI URL |
[125] | SILLITOE R H, BURROWS D R. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile[J]. Economic Geology, 2002, 97(5): 1101-1109. |
[126] |
WESTHUES A, HANCHAR J M, LEMESSURIER M J, et al. Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide-apatite ore (northern Sweden) from zircon Hf and O isotopes[J]. Geology, 2017, 45(6): 571-574.
DOI URL |
[127] |
KODĚRA P, HEINRICH C A, WÄLLE M, et al. Magmatic salt melt and vapor: extreme fluids forming porphyry gold deposits in shallow subvolcanic settings[J]. Geology, 2014, 42(6): 495-498.
DOI URL |
[128] |
HILDEBRAND R S. Kiruna-type deposits; their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada[J]. Economic Geology, 1986, 81(3): 640-659.
DOI URL |
[129] |
CLINE J S, BODNAR R J. Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit[J]. Economic Geology, 1994, 89(8): 1780-1802.
DOI URL |
[130] |
WEBSTER J D. The exsolution of magmatic hydrosaline chloride liquids[J]. Chemical Geology, 2004, 210(1/2/3/4): 33-48.
DOI URL |
[131] |
ENGVIK A K, PUTNIS A, FITZ GERALD J D, et al. Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite[J]. The Canadian Mineralogist, 2008, 46(6): 1401-1415.
DOI URL |
[132] |
SILLITOE R H. Iron oxide-copper-gold deposits: an Andean view[J]. Mineralium Deposita, 2003, 38(7): 787-812.
DOI URL |
[133] | 毛景文, 余金杰, 袁顺达, 等. 铁氧化物-铜-金 (IOCG) 型矿床: 基本特征、 研究现状与找矿勘查[J]. 矿床地质, 2008, 27(3): 267-278. |
[134] | CORRIVEAU L, POTTER E G, MONTREUIL J F, et al. Iron-oxide and Alkali-calcic alteration ore systems and their polymetallic IOA, IOCG, skarn, albitite-hosted U±Au±Co, and affiliated deposits: a short-course series. Part Z: overview of deposit types, distribution, ages, settings, alteration racies, and ore deposit models[R]. Ottawa: Geological Resources Canada, 2018. |
[135] |
HEINRICH C A, GUNTHER D, AUDETAT A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions[J]. Geology, 1999, 27(8): 755-758.
DOI URL |
[136] | SIMON A C, KNIPPING J, REICH M, et al. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt[M]// Metals, minerals and society. Littleton: Society of Economic Geologists, 2018. |
[137] |
HOU T, CHARLIER B, HOLTZ F, et al. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits[J]. Nature Communications, 2018, 9(1): 1415.
DOI URL |
[138] | NASLUND H R, MUNGALL J E, HENRIQUEZ F, et al. Melt inclusions in silicate lavas and iron-oxide tephra of the El Laco volcano, Chile[C]// Proceedings of the XII Congreso Geológico Chileno, Santiago. 2009: S8_033. |
[139] |
VELASCO F, TORNOS F, HANCHAR J M. Immiscible iron-and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits[J]. Ore Geology Reviews, 2016, 79: 346-366.
DOI URL |
[140] |
XIE Q H, ZHANG Z C, HOU T, et al. New insights for the formation of Kiruna-type iron deposits by immiscible hydrous Fe-P melt and high-temperature hydrothermal processes: evidence from El Laco deposit[J]. Economic Geology, 2019, 114(1): 35-46.
DOI URL |
[141] |
DARE S A S, BARNES S J, BEAUDOIN G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7): 785-796.
DOI URL |
[142] |
DUPUIS C, BEAUDOIN G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335.
DOI URL |
[143] |
HU H, LENTZ D, LI J W, et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1): 1-8.
DOI URL |
[144] |
WEN G, LI J W, HOFSTRA A H, et al. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: insights from the Handan-Xingtai iron district, North China Craton[J]. Geochimica et Cosmochimica Acta, 2017, 213: 255-270.
DOI URL |
[145] |
BILENKER L D, SIMON A C, REICH M, et al. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits[J]. Geochimica et Cosmochimica Acta, 2016, 177: 94-104.
DOI URL |
[146] |
TROLL V R, WEIS F A, JONSSON E, et al. Global Fe-O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores[J]. Nature Communications, 2019, 10(1): 1712.
DOI URL |
[1] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424. |
[2] | 陈欣, 王辉, 毛景文, 于淼, 乔建峰, 王治安. 东昆仑夏日哈木矿区热液型铅锌矿体成因及地质意义[J]. 地学前缘, 2023, 30(2): 347-369. |
[3] | 徐林刚, 付雪瑞, 叶会寿, 郑伟, 陈勃, 方正龙. 南秦岭地区下寒武统黑色页岩赋存的千家坪大型钒矿地球化学特征及成矿环境[J]. 地学前缘, 2022, 29(1): 160-175. |
[4] | 王武名, 盛涛, 王丽娟, 董少波. 刚果(金)加丹加鲁苏西铜钴矿床S、C、O、Sr同位素特征及矿床成因[J]. 地学前缘, 2021, 28(6): 318-330. |
[5] | 洪双, 左仁广, 胡浩, 熊义辉, 王子烨. 磁铁矿元素地球化学大数据构建及其在矿床成因分类中的应用[J]. 地学前缘, 2021, 28(3): 87-96. |
[6] | 吕庆田, 孟贵祥, 严加永, 张昆, 龚雪婧, 高凤霞. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 2020, 27(2): 232-253. |
[7] | 邓军, 王庆飞, 陈福川, 李龚健, 杨立强, 王长明, 张静, 孙祥, 舒启海, 和文言, 高雪, 高亮, 刘学飞, 郑远川, 邱昆峰, 薛胜超, 徐佳豪. 再论三江特提斯复合成矿系统[J]. 地学前缘, 2020, 27(2): 106-136. |
[8] | 刘家军, 翟德高, 王大钊, 高燊, 尹超, 柳振江, 王建平, 王银宏, 张方方. Au-(Ag)-Te-Se成矿系统与成矿作用[J]. 地学前缘, 2020, 27(2): 79-98. |
[9] | 李洪梁,李光明. 不同类型热液金矿床主成矿期黄铁矿成分标型特征[J]. 地学前缘, 2019, 26(3): 202-210. |
[10] | 王小龙, 曾键年, 马昌前, 李小芬, 吴亚飞, 陆顺富. 宁镇地区燕山期侵入岩锆石U-Pb定年:长江中下游新一期成岩成矿作用的年代学证据[J]. 地学前缘, 2014, 21(6): 289-301. |
[11] | 章永梅, 顾雪祥, 彭义伟, 郑硌, 张岩, 高海军, 董树义. 安哥拉Bonga碳酸岩型铌矿床地质地球化学特征及成因[J]. 地学前缘, 2014, 21(5): 50-68. |
[12] | 李小虎, 初凤友, 雷吉江, 余星, 张平萍. 青海德尔尼铜(锌钴)矿床硫化物Cu同位素组成及矿床成因探讨[J]. 地学前缘, 2014, 21(1): 196-204. |
[13] | 任广利,王核,刘建平,王彪,吴玉峰,黄朝阳. 安徽繁昌地区桃冲铁矿床地球化学特征及矿床成因研究[J]. 地学前缘, 2012, 19(4): 82-95. |
[14] | 武广, 糜梅, 高峰军, 李宗彦, 乔翠杰. 满洲里地区银铅锌矿床成矿流体特征及矿床成因[J]. 地学前缘, 2010, 17(2): 239-255. |
[15] | 侯通, 张招崇, 杜杨松. 宁芜南段钟姑矿田的深部矿浆-热液系统[J]. 地学前缘, 2010, 17(1): 186-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||