地学前缘 ›› 2026, Vol. 33 ›› Issue (1): 523-533.DOI: 10.13745/j.esf.sf.2025.10.11

• 水文地质新技术新方法 • 上一篇    

低渗透介质热示踪传热过程的ERT动态监测方法研究

赵永胜(), 王锦国*(), 乔斐, 刘芮彤, 陈舟   

  1. 河海大学 地球科学与工程学院, 江苏 南京 210098
  • 收稿日期:2025-07-13 修回日期:2025-09-10 出版日期:2026-01-25 发布日期:2025-11-10
  • 通信作者: *王锦国(1974—),男,博士,教授,博士生导师,主要从事水文地质、地下水污染机理与评价方面的研究与教学。E-mail: wang_jinguo@hhu.edu.cn
  • 作者简介:赵永胜(1995—),男,博士研究生,主要从事地下水资源与环境和地下水有机污染方面的研究。E-mail: yszhao@hhu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3706000);国家自然科学基金项目(42477181)

Dynamic characterization of heat transfer processes in low-permeability media using ERT during thermal tracer tests

ZHAO Yongsheng(), WANG Jinguo*(), QIAO Fei, LIU Ruitong, CHEN Zhou   

  1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
  • Received:2025-07-13 Revised:2025-09-10 Online:2026-01-25 Published:2025-11-10

摘要:

热示踪技术作为获取多孔介质渗透特性与热力学参数的重要手段,在水文地质领域应用十分广泛。然而,传统热示踪方法严重依赖监测井内的点尺度温度探头数据,难以重构多孔介质传热过程的空间结构。针对传统热示踪试验点尺度温度探头数据在传热过程刻画时的空间分辨率不足问题,本文在低渗透介质热示踪试验中引入高密度电阻率法(electrical resistivity tomography,ERT)。通过开展热示踪与高密度电阻率法联合监测,探究ERT在低渗透介质热示踪试验过程中提高传热过程监测空间分辨率方面的效果。此外,本文建立了黏土地层电阻率-温度的定量反演方法。通过数值模拟正演验证了该方法的可靠性,并对影响可靠性的因素进行了分析。研究结果表明:由ERT监测得到的电阻率反演温度数据在以传热过程为主导的区域(监测井位置),与地下水温度变化趋势与幅度具有一致性;在以局部热对流为主导的区域(注水井位置),与地下水温度变化趋势一致,证实了ERT在弱透水层传热过程监测的可靠性。同时,通过ERT成功识别出优势通道或热敏感区,证实其对地下非均质性具有高度敏感性,能够显著提升热示踪试验传热过程的空间分辨率。本文构建的电阻率-温度反演方法为低渗透介质热示踪提供了新方法,证实了ERT技术能够弥补传统热示踪试验传热过程空间分辨率不足的问题。

关键词: 高密度电阻率法, 低渗透介质, 热示踪试验, 黏土电阻率-温度关系, 空间分辨率

Abstract:

Thermal tracer technology is a critical method for characterizing hydraulic and thermophysical properties of porous media, with extensive applications in hydrogeology. However, conventional thermal tracer tests rely on point-scale temperature data from monitoring wells, which can not resolve the spatial architecture of heat transport processes. To overcome the spatial resolution limitations of point-scale temperature monitoring, this study integrated electrical resistivity tomography (ERT) into thermal tracer tests in low-permeability media. We combined ERT with thermal tracer tests to investigate its capacity to map heat transport dynamics with high spatial resolution. We also developed a quantitative resistivity-temperature inversion model for clay formations. The model’s reliability was verified through numerical forward modeling, and key influencing factors were analyzed to demonstrate its field applicability. Key findings include: In heat conduction-dominated zones (monitoring wells), ERT-derived temperatures closely matched groundwater temperature trends and amplitudes. In local thermal convection zones (e.g., near the injection well), ERT captured trends identical to point measurements, confirming its reliability in low-permeability settings. ERT successfully identified preferential flow paths and thermally sensitive zones, demonstrating high sensitivity to subsurface heterogeneity and substantially improving the spatial resolution of heat transport visualization. The developed resistivity-temperature inversion framework provides a novel approach for thermal tracing in low-permeability media, effectively overcoming the spatial resolution constraints of conventional methods.

Key words: electrical resistivity tomography, low-permeability media, thermal tracer test, clay resistivity-temperature relationship, spatial resolution

中图分类号: