| [1] |
ZHAO G C, CAWOOD P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222/223: 13-54.
|
| [2] |
朱强, 施珂, 吴礼彬, 等. 扬子板块新元古代中期的持续俯冲作用: 来自南华纪岛弧火山岩年代学和岩石地球化学新证据[J]. 地学前缘, 2020, 27(4): 17-32.
|
| [3] |
刘树文, 杨恺, 李秋根, 等. 新元古代宝兴杂岩的岩石成因及其对扬子西缘构造环境的制约[J]. 地学前缘, 2009, 16(2): 107-118.
|
| [4] |
ZHAO J H, LI Q W, LIU H, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth Science Reviews, 2018, 187: 1-18.
|
| [5] |
ZHAO J H, ZHOU M F, WU Y B, et al. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton[J]. Contributions to Mineralogy Petrology, 2019, 174: 36.
|
| [6] |
ZHU Y, LAI S C, XIE W L, et al. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: petrological evidence of Nb-enriched basalts and arc-type intrusive rocks[J]. Gondwana Research, 2023, 122: 163-180.
|
| [7] |
LI H B, ZHANG Z, SANTOSH M, et al. Geochronological, geochemical and Sr-Nd isotopic fingerprinting of Neoproterozoic mafic dykes in the western margin of the Yangtze block, SW China: implications for Rodinia supercontinent breakup[J]. Precambrian Research, 2019, 105371.
|
| [8] |
刘磊鑫, 李江海, 马昌明. 扬子板块、澳大利亚板块、印度板块在新元古代晚期(750-540 Ma)古板块再造: 来自古地磁制约[J]. 地学前缘, 2023, 30(2): 154-162.
|
| [9] |
刘俊来, 王安建, 曹淑云, 等. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵[J]. 岩石学报, 2008, 24(3): 413-420.
|
| [10] |
冀磊, 刘福来, 王舫. 点苍山—哀牢山变质杂岩带中、北段多期花岗质岩浆事件及其构造意义[J]. 岩石学报, 2017, 33(9): 2957-2974.
|
| [11] |
WANG Y J, ZHOU Y Z, CAI Y F, et al. Geochronological and geochemical constraints on the petrogenesis of the Ailaoshan granitic and migmatite rocks and its implications on Neoproterozoic subduction along the SW Yangtze Block[J]. Precambrian Research, 2016, 283: 106-124.
|
| [12] |
云南地质矿产局. 云南省1∶200 000地质填图[M]. 元阳幅, 1976.
|
| [13] |
翟明国, 从柏林, 乔广生, 等. 中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学[J]. 岩石学报, 1990(4): 1-11.
|
| [14] |
CAI Y F, WANG Y J, CAWOOD P A, et al. Neoproterozoic subduction along the Ailaoshan zone, South China: geochronological and geochemical evidence from amphibolite[J]. Precambrian Research, 2014, 245: 13-28.
|
| [15] |
王中良, 林木森, 周瑞辉. 滇东南荒田钨矿床白钨矿原位U-Pb年代学、Sr同位素组成及成矿启示[J]. 现代地质, 2025, 39(1): 133-145.
|
| [16] |
张少颖, 和文言, 肖仪武. 镁铁质岩浆周期性补给对云南普朗斑岩Cu-Au矿床的制约: 能量约束下热力学模拟[J]. 现代地质, 2024, 38(4): 922-933.
|
| [17] |
YUAN H L, GAO S, LIU X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry[J]. Geostandards Geoanalytical Research, 2004, 28(3): 353-370.
|
| [18] |
JOCHUM K P, NOHL U. Reference materials in geochemistry and environmental research and the GeoReM database[J]. Chemical Geology, 2008, 253: 50-53.
|
| [19] |
LIU Y S, HU Z C, ZONG K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
|
| [20] |
YUAN H L, GAO S, DAI M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247: 100-118.
|
| [21] |
LI J Y, WANG X L, WANG D, et al. Pre Neoproterozoic continental growth of the Yangtze Block: from continental rifting to subduction-accretion[J]. Precambrian Research, 2021, 355: 106081.
|
| [22] |
LEBAS M J, MAITRE L R W, STRECKEISEN A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27: 745-750.
|
| [23] |
ROBERT M P, CLEMENS J D. Origin of high potassium, calc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828.
|
| [24] |
KEPEZHINSKAS P, DEFANT M J, DRUMMOND M S. Progressive enrichment of Island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60(7): 1217-1229.
|
| [25] |
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London, Specical Publication, 1989, 42: 313-345.
|
| [26] |
ZHAO J H, ZHOU M F, ZHENG J P. Metasomatic mantle source and crustal contamination for the formation of the Neoproterozoic mafic dike swarm in the northern Yangtze Block, South China[J]. Lithos, 2010, 115: 177-189.
|
| [27] |
HIESS J, BENNETT V C, NUTMAN A P, et al. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust[J]. Geochimica et Cosmochimica Acta, 2009, 73: 4489-4516.
|
| [28] |
HAWKESWORTH C J, TURNER S P, MCDERMOTT F, et al. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust[J]. Science, 1997, 276: 551-555.
|
| [29] |
LAFLÈCHE M R, CAMIRE G, JENNER G A. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada[J]. Chemical Geology, 1988, 148: 115-136.
|
| [30] |
EVANS B W, HATTORI K, BARONNET A. SERPENTINITE: what, why, where?[J]. Elements, 2013, 9(2): 99-106.
|
| [31] |
TURNER S, HAWKESWORTH C, ROGERS N, et al. 238U-230Th disequilibrium, magma petrogenesis, and flux rates beneath the depleted Tonga Kermadec island arc[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4855-4884.
|
| [32] |
HASTIE A R, MITCHELL S F, KERR A C, et al. Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts?[J]. Geochimica et Cosmochimica Acta, 2011, 75: 5049-5072.
|
| [33] |
CHAUVEL C, LEWIN E, CARPENTIER M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 2008, 1: 64-67.
|
| [34] |
MA L, WANG Q, WYMAN D A, et al. Late cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349/350: 54-70.
|
| [35] |
ZHAO J H, ZHOU M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1): 27-47.
|
| [36] |
ZHANG Y, LIANG X, WANG C, et al. Experimental constraints on the partial melting of sediment metasomatized lithospheric mantle in subduction zones[J]. American Mineralogist, 2020, 105: 1191-1203.
|
| [37] |
SHINJO R, CHUNG S L, KATO Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin[J]. Journal of Geophysical Research: Solid Earth, 1999, 104: 10591-10608.
|
| [38] |
WOOD D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50: 11-30.
|
| [39] |
李光洁, 陈永清, 尚志, 等. 扬子地块西缘峨山新元古代高分异Ⅰ型花岗岩地球化学特征及岩石成因[J]. 地学前缘, 2024, 31(3): 20-39.
|
| [40] |
李路顺, 汪泽成, 肖安成, 等. 扬子板块北缘新元古代盆地结构与马槽园群归属研究[J]. 地学前缘, 2022, 29(6): 291-304.
|
| [41] |
LEE C T A, LEEMAN W P, CANIL D, et al. Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions[J]. Journal of Petrology, 2005, 46: 2313-2336.
|
| [42] |
李欣懿, 董栩含, 黄慧, 等. 中国东部大地幔楔氧化的证据和机理[J]. 现代地质, 2025, 39(2): 239-247.
|
| [43] |
ZHENG Y F, CHEN R X, XU Z, et al. The transport of water in subduction zones[J]. Science China: Earth Science, 2016, 59: 651-682.
|
| [44] |
ZHANG Y Y, YUAN C, SUN M, et al. Two late Carboniferous belts of Nb-enriched mafic magmatism in the Eastern Tianshan: heterogeneous mantle sources and geodynamic implications[J]. GSA Bulletin, 2020, 132(9/10): 1863-1880.
|
| [45] |
ZHANG J W, LIAO M Y, SANTOSH M, et al. Middle Tonian calc-alkaline picrites, basalts, and basaltic andesites from the Jiangnan orogen: evidence for rear-arc magmatism[J]. Precambrian Research, 2020, 350(1), 105943.
|
| [46] |
SHENG Z J S. Dynamics of back-arc extension controlled by subducting slab retreat: insights from 2d thermo-mechanical modelling[J]. Geological Journal, 2019, 54(6).
|
| [47] |
马昌前, 孙洋, 张超. 大别山鲁家寨花岗岩地球化学、锆石年代学和Hf同位素特征: 扬子克拉通北东缘新元古代岩浆活动证据[J]. 地学前缘, 2011, 18(2): 85-99.
|
| [48] |
ZHAO J H, ZHOU M F, YAN D P, et al. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny[J]. Geology, 2011, 39(4): 299-302.
|
| [49] |
ZHU Y, LAI S C, QIN J F, et al. Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China[J]. Journal of Asian Earth Science, 2019, 183.
|
| [50] |
HU P Y, ZHAI Q G, WANG J, et al. U-Pb zircon geochronology, geochemistry, and Sr-Nd-Hf-O isotopic study of middle Neoproterozoic magmatic rocks in the Kangdian rift, south China: slab rollback and back arc extension at the northwestern edge of the Rodinia[J]. Precambrian Research, 2020, 347, 105863.
|
| [51] |
ZHAO J H, ZHOU M F. Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze Block, South China[J]. Journal of Geology, 2007, 115: 675-689.
|