地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 323-337.DOI: 10.13745/j.esf.sf.2025.7.8

• 岩石成因与效应新探 • 上一篇    下一篇

火山喷发对飞行安全的影响

马琳1(), 袁洁燕2, 郭正府3,4,5,*()   

  1. 1.天目山实验室, 浙江 杭州 310023
    2.山东理工大学 材料科学与工程学院, 山东 淄博 255000
    3.中国科学院 地质与地球物理研究所 岩石圈演化与环境演变全国重点实验室, 北京 100029
    4.中国科学院大学 地球与行星科学学院, 北京 100049
    5.中国科学院生物演化与环境卓越创新中心, 北京 100044
  • 收稿日期:2025-04-10 修回日期:2025-06-10 出版日期:2025-11-25 发布日期:2025-11-12
  • 通信作者: 郭正府
  • 作者简介:马 琳(1992—),女,博士后,主要从事火山灰对航空安全影响研究。E-mail: malin17@mails.ucas.ac.cn
  • 基金资助:
    中国科学院国际合作局国际伙伴计划“一带一路”科技合作专项计划(132A11KYSB20200036)

The impact of volcanic eruptions on aviation safety

MA Lin1(), YUAN Jieyan2, GUO Zhengfu3,4,5,*()   

  1. 1. Tianmushan Laboratory, Hangzhou 310023, China
    2. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
    3. State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    5. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
  • Received:2025-04-10 Revised:2025-06-10 Online:2025-11-25 Published:2025-11-12
  • Contact: GUO Zhengfu

摘要:

火山喷发不仅对地球历史气候变化产生重要影响,也对现代航空安全构成严重威胁。爆炸式喷发产生的火山灰可通过大气环流扩散至平流层,直接影响航空飞行器的飞行安全。在国产大飞机成功交付并将火山活动频繁的东南亚国家纳入潜在的出口对象的新形势下,深入研究火山喷发对航空安全的影响对提升国产大飞机国际市场竞争力,保障国际航空安全具有重要的现实意义。为此,本文在前人研究的基础上,系统总结了火山灰的物理化学性质及其与航空发动机的相互作用机制,并且以印度尼西亚火山活动(火山爆发指数VEI≥3,2010—2018年)为例,评估了火山活动对该地区飞行安全的潜在影响。得出的主要结论如下:(1)为防止火山灰进入飞机发动机,火山灰云的监测和预测对航线的设计和选择至关重要,遥感监测的精度受火山灰成分、密度、形状和光学性质等因素的影响。(2)当火山灰被发动机吸入后,颗粒的沉积行为影响其对发动机的破坏程度,该行为受颗粒成分、密度、形状、玻璃化转变温度和黏度等因素的影响。(3)沉积后的火山灰对发动机内热障涂层(TBCs)的腐蚀作用是影响其使用寿命的关键,相关的破坏机制可概括为熔融的火山灰渗透至TBCs内部并与其反应,析出新晶相的过程。目前主要的防护策略包括:物理隔离防渗、化学牺牲层防护、熔体结晶防护和表面特殊微纳结构构筑。(4)在空间上,印度尼西亚2010—2018年VEI≥3的火山灰在1 200 ℃,无挥发分情况下的黏度值近似(仅有1~2个数量级差异),暗示其相似的铺展潜力;在时间上,该地区2010—2018年的火山活动对飞行安全的威胁程度尽管波动较小,但持续存在。未来亟需深化的方面应包括:(1)加强火山灰实时监测技术;(2)改进分散模型的算法和精度;(3)建立火山灰性质依赖的沉积模型;(4)完善TBCs防护策略;(5)推动火山灰与飞行安全综合实验平台建设,以保障国产大飞机在全球范围内特别是火山活跃区域的安全运行,从而提升其国际市场竞争力。

关键词: 火山灰, 飞行安全, 热障涂层, 腐蚀, 印度尼西亚火山活动

Abstract:

Volcanic eruptions not only play a significant role in the Earth’s historical climate changes but also pose a serious threat to modern aviation safety. Explosive eruptions can eject volcanic ash into the atmosphere, where it is dispersed into the stratosphere by atmospheric circulation, directly endangering the safety of aircraft operations. With the successful delivery of China’s domestically produced large aircraft and potential exports to volcanically active Southeast Asia, research on the impact of volcanic ash on aviation safety holds critical practical significance for enhancing the global competitiveness of China’s aircraft and ensuring international flight safety. To address these challenges, this study aims to: (1) systematically summarize the physicochemical properties of volcanic ash; (2) comprehensively assess its interaction mechanisms with aircraft engines based on previous literatures; (3) conduct a case study using Indonesian volcanoes (Volcanic Explosivity Index VEI≥3, during 2010-2018) to evaluate the potential impact of volcanic hazards on the regional flight safety. Key findings include: (1) To prevent volcanic ash from entering aircraft engines, the monitoring and prediction of volcanic ash clouds are critical for flight route planning and selection. The accuracy of remote sensing monitoring is influenced by the composition, density, shape, and optical properties of volcanic ash. (2) Once volcanic ash is ingested by the engine, the deposition behavior of the particles influences the extent of damage to the engine. This process is affected by factors such as particle composition, density, shape, glass transition temperature, and viscosity. (3) The corrosive effect of deposited volcanic ash on thermal barrier coatings (TBCs) within aircraft engines is a critical factor affecting their service life. The associated degradation mechanism can be summarized as the infiltration of molten ash into the TBCs, followed by chemical reactions and the precipitation of new crystalline phases. Current protection strategies mainly include physical isolation to prevent infiltration, chemical sacrificial layer protection, melt crystallization protection, and the construction of special micro-nano surface structures. (4) Spatially, the viscosity of volcanic ash from VEI ≥ 3 eruptions in Indonesia between 2010 and 2018, calculated at 1200 ℃ under volatile-free conditions, are relatively similar (within 1-2 orders of magnitude), suggesting comparable spreading potential. Temporally, volcanic activity in this region during the same period posed a consistent threat to aviation safety, despite only minor fluctuations in intensity. Future efforts should focus on the following key points: (1) enhancing real-time volcanic ash monitoring technologies; (2) improving the algorithms and accuracy of dispersion models; (3) developing property-dependent deposition models for volcanic ash; (4) optimizing protective strategies for TBCs; and (5) advancing the construction of integrated experimental platforms for studying volcanic ash and aviation safety. These actions will safeguard China’s aircraft operations in volcanic zones and bolster its global market competitiveness.

Key words: volcanic ash, aviation safety, thermal barrier coatings, corrosion, Indonesian volcanic activity

中图分类号: