

地学前缘 ›› 2025, Vol. 32 ›› Issue (6): 323-337.DOI: 10.13745/j.esf.sf.2025.7.8
收稿日期:2025-04-10
修回日期:2025-06-10
出版日期:2025-11-25
发布日期:2025-11-12
通信作者:
郭正府
作者简介:马 琳(1992—),女,博士后,主要从事火山灰对航空安全影响研究。E-mail: malin17@mails.ucas.ac.cn
基金资助:
MA Lin1(
), YUAN Jieyan2, GUO Zhengfu3,4,5,*(
)
Received:2025-04-10
Revised:2025-06-10
Online:2025-11-25
Published:2025-11-12
Contact:
GUO Zhengfu
摘要:
火山喷发不仅对地球历史气候变化产生重要影响,也对现代航空安全构成严重威胁。爆炸式喷发产生的火山灰可通过大气环流扩散至平流层,直接影响航空飞行器的飞行安全。在国产大飞机成功交付并将火山活动频繁的东南亚国家纳入潜在的出口对象的新形势下,深入研究火山喷发对航空安全的影响对提升国产大飞机国际市场竞争力,保障国际航空安全具有重要的现实意义。为此,本文在前人研究的基础上,系统总结了火山灰的物理化学性质及其与航空发动机的相互作用机制,并且以印度尼西亚火山活动(火山爆发指数VEI≥3,2010—2018年)为例,评估了火山活动对该地区飞行安全的潜在影响。得出的主要结论如下:(1)为防止火山灰进入飞机发动机,火山灰云的监测和预测对航线的设计和选择至关重要,遥感监测的精度受火山灰成分、密度、形状和光学性质等因素的影响。(2)当火山灰被发动机吸入后,颗粒的沉积行为影响其对发动机的破坏程度,该行为受颗粒成分、密度、形状、玻璃化转变温度和黏度等因素的影响。(3)沉积后的火山灰对发动机内热障涂层(TBCs)的腐蚀作用是影响其使用寿命的关键,相关的破坏机制可概括为熔融的火山灰渗透至TBCs内部并与其反应,析出新晶相的过程。目前主要的防护策略包括:物理隔离防渗、化学牺牲层防护、熔体结晶防护和表面特殊微纳结构构筑。(4)在空间上,印度尼西亚2010—2018年VEI≥3的火山灰在1 200 ℃,无挥发分情况下的黏度值近似(仅有1~2个数量级差异),暗示其相似的铺展潜力;在时间上,该地区2010—2018年的火山活动对飞行安全的威胁程度尽管波动较小,但持续存在。未来亟需深化的方面应包括:(1)加强火山灰实时监测技术;(2)改进分散模型的算法和精度;(3)建立火山灰性质依赖的沉积模型;(4)完善TBCs防护策略;(5)推动火山灰与飞行安全综合实验平台建设,以保障国产大飞机在全球范围内特别是火山活跃区域的安全运行,从而提升其国际市场竞争力。
中图分类号:
马琳, 袁洁燕, 郭正府. 火山喷发对飞行安全的影响[J]. 地学前缘, 2025, 32(6): 323-337.
MA Lin, YUAN Jieyan, GUO Zhengfu. The impact of volcanic eruptions on aviation safety[J]. Earth Science Frontiers, 2025, 32(6): 323-337.
| 等级 | 标准 | 事件数量 | 各等级事件占比/% |
|---|---|---|---|
| 0 | 机舱内有硫磺气味; 观测到异常大气霾; 风挡、机头或发动机整流罩上有静电放电; 机组人员报告或怀疑有火山灰,但未发现其他影响或损坏。 | 23 | 17.83 |
| 1 | 在客舱内观察到轻度灰尘; 飞机外部有灰尘沉积; 排出的气体温度波动,可恢复至正常值。 | 12 | 9.30 |
| 2 | 大量机舱灰尘; 需要使用氧气的空气处理和空调系统的污染; 外表面,发动机进气口,和压气机风扇叶片的磨损损坏; 挡风玻璃或窗户的磨蚀、结霜或破裂; 全静压系统轻微堵塞,不足以影响仪表读数; 发动机内灰烬沉积。 | 53 | 41.09 |
| 3 | 发动机振动或喘振; 堵塞全静压系统,给出错误的仪表读数; 发动机滑油或液压系统油液污染; 损坏电气或计算机系统; 发动机损坏。 | 17 | 13.18 |
| 4 | 发动机临时故障,需要重启。 | 9 | 6.98 |
| 5 | 发动机损坏或者其他相关损坏导致坠机。 | 0 | 0 |
表1 火山灰对航空安全影响的等级划分(修改自文献[18])
Table 1 The classification of volcanic ash impacts on aviation safety. Modifed after [18].
| 等级 | 标准 | 事件数量 | 各等级事件占比/% |
|---|---|---|---|
| 0 | 机舱内有硫磺气味; 观测到异常大气霾; 风挡、机头或发动机整流罩上有静电放电; 机组人员报告或怀疑有火山灰,但未发现其他影响或损坏。 | 23 | 17.83 |
| 1 | 在客舱内观察到轻度灰尘; 飞机外部有灰尘沉积; 排出的气体温度波动,可恢复至正常值。 | 12 | 9.30 |
| 2 | 大量机舱灰尘; 需要使用氧气的空气处理和空调系统的污染; 外表面,发动机进气口,和压气机风扇叶片的磨损损坏; 挡风玻璃或窗户的磨蚀、结霜或破裂; 全静压系统轻微堵塞,不足以影响仪表读数; 发动机内灰烬沉积。 | 53 | 41.09 |
| 3 | 发动机振动或喘振; 堵塞全静压系统,给出错误的仪表读数; 发动机滑油或液压系统油液污染; 损坏电气或计算机系统; 发动机损坏。 | 17 | 13.18 |
| 4 | 发动机临时故障,需要重启。 | 9 | 6.98 |
| 5 | 发动机损坏或者其他相关损坏导致坠机。 | 0 | 0 |
图2 火山灰对航空安全的影响 (a)—火山灰对飞机飞行安全影响示意图;(b)—发动机内部温度范围;(c)和(d)—火山灰沉积前后航空发动机涡轮叶片图(d图为1982年加隆贡火山火山灰在波音747飞机涡轮叶片上的沉积)。
Fig.2 The impact of volcanic ash on aviation safety
图3 飞机发动机涡轮叶片热障涂层(TBCs)结构 (图片修改自[93-95],火山灰熔体在腐蚀严重的情况下可渗透至合金基底层)
Fig.3 Structure of thermal barrier coatings (TBCs) on turbine blades in aircraft engines. Modoffied after [93-95].
图4 印度尼西亚近15年火山爆发指数不小于3的火山分布与实时航线图(图片据文献[110]修改) 实时航线图来自Flightradar24网站(www.flightradar24.com),图中显示的为2025年2月19日15:00印度尼西亚上空航线情况;黑色边框的火山表示暂时没有收集到数据的火山。
Fig.4 Distribution of volcanoes in Indonesia with a Volcanic Explosivity Index of no less than 3 in the past 15 years and real-time flight route map. Modifed after [110].
图5 印度尼西亚近15年火山灰黏度随时间变化图 图中为间隔1个月的统计结果,蓝实线为平滑后的折线图,平滑方法为Savitzky-Golay法,窗口点数为5。黏度值越高,熔体越不容易铺展,从该角度看,其对热障涂层的影响程度越小,反之亦然。
Fig.5 Graph of volcanic ash viscosity changes over time in Indonesia over the past 15 years
| [1] | Global Volcanism Program. The volcanoes of the world[DB/OL]. Washington:Smithsonian Institution, [2025-01-20]. https://volcano.si.edu/. |
| [2] | DURANT A J, ROSE W I, SARNA-WOJCICKI A M, et al. Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens[J]. Journal of Geophysical Research: Solid Earth, 2009, 114: B03204. |
| [3] | ROSE W I, DURANT A J. Fate of volcanic ash: aggregation and fallout[J]. Geology, 2011, 39(9): 895-896. |
| [4] | TELLING J, DUFEK J, SHAIKH A. Ash aggregation in explosive volcanic eruptions[J]. Geophysical Research Letters, 2013, 40(10): 2355-2360. |
| [5] | BLONG R J. Volcanic hazards: a sourcebook on the effects of eruptions[M]. Orlando: Academic Press, 1984: 261-268. |
| [6] | CASADEVALL T J. Volcanic hazards and aviation safety: lessons of the past decade[J]. Flight Safety Foundation-Flight Safety Digest, 1993, 2: 1-9. |
| [7] | GUFFANTI M, EWERT J W, GALLINA G M, et al. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands[J]. Journal of Volcanology and Geothermal Research, 2005, 146(1/2/3): 241-255. |
| [8] | MILLER T P, CASADEVALL T. Ash hazards to aviation[M]// Encyclopedia of volcanoes. San Diego: Academic Press, 2000: 915. |
| [9] | ZIMANOWSKI B, WOHLETZ K, DELLINO P, et al. The volcanic ash problem[J]. Journal of Volcanology and Geothermal Research, 2003, 122(1/2): 1-5. |
| [10] | FOLCH A. A review of tephra transport and dispersal models: evolution, current status, and future perspectives[J]. Journal of Volcanology and Geothermal Research, 2012, 235: 96-115. |
| [11] | ROSE W I, DURANT A J. Fine ash content of explosive eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1/2): 32-39. |
| [12] | DUNN M G. Operation of gas turbine engines in an environment contaminated with volcanic ash[J]. Journal of Turbomachinery, 2012, 134: 051001. |
| [13] | SONG W, LAVALLéE Y, HESS K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions[J]. Nature Communications, 2016, 7(1): 10795. |
| [14] | 刘国明, 孙鸿雁, 郭峰. 长白山火山最新监测信息[J]. 岩石学报, 2011, 27(10): 2905-2911. |
| [15] | 赵慈平, 冉华, 陈坤华. 腾冲火山区壳内岩浆囊现今温度: 来自温泉逸出气体CO2, CH4间碳同位素分馏的估计[J]. 岩石学报, 2011, 27(10): 2883-2897. |
| [16] | LI Z, NI S, ZHANG B, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophysical Research Letters, 2016, 43(10): 4954-4961. |
| [17] | BUDD L C S, BELL M, WARREN A P. Taking care in the air: jet air travel and passenger health, a study of British Overseas Airways Corporation (1940-1974)[J]. Social History of Medicine, 2012, 25(2): 446-461. |
| [18] | GUFFANTI M, CASADEVALL T J, BUDDING K E. Encounters of aircraft with volcanic ash clouds:a compilation of known incidents, 1953-2009[M]. Washington: United States Government Printing Office, 2010: 1-10. |
| [19] | DOBSON A. A history of international civil aviation: from its origins through transformative evolution[M]. London and New York: Routledge, 2017: 4-5. |
| [20] | JOHNSON R W, CASADEVALL T J. Aviation safety and volcanic ash clouds in the Indonesia-Australia region[C]// Volcanic ash and aviation safety: proceedings of the first international symposium on volcanic ash and aviation safety. Washington: United States Government Printing Office, 1994, 2047: 191-197. |
| [21] | LECHNER P, TUPPER A, GUFFANTI M, et al. Volcanic ash and aviation-the challenges of real-time, global communication of a natural hazard[J]. Observing the Volcano World: Volcano Crisis Communication, 2018, 69: 51-64. |
| [22] | CASADEVALL T J. The 1989-1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations[J]. Journal of Volcanology and Geothermal Research, 1994, 62(1/2/34): 301-316. |
| [23] | GIEHL C, BROOKER R A, MARXER H, et al. An experimental simulation of volcanic ash deposition in gas turbines and implications for jet engine safety[J]. Chemical Geology, 2017, 461: 160-170. |
| [24] | WYLIE S, BUCKNELL A, FORSYTH P, et al. Reduction in flow parameter resulting from volcanic ash deposition in engine representative cooling passages[J]. Journal of Turbomachinery, 2017, 139(3): 031008. |
| [25] | BONADONNA C, FOLCH A, LOUGHLIN S, et al. Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forecast and civil aviation[J]. Bulletin of Volcanology, 2012, 74: 1-10. |
| [26] | FU G, LIN H X, HEEMINK A, et al. Satellite data assimilation to improve forecasts of volcanic ash concentrations[J]. Atmospheric Chemistry and Physics Discuss, 2016, 18: 1-22. |
| [27] | 赵谊, 李永生, 樊祺诚, 等. 火山灰云在航空安全领域研究进展[J]. 矿物岩石地球化学通报, 2014, 33(4): 531-539. |
| [28] | SEARCY C, DEAN K, STRINGER W. PUFF: a high-resolution volcanic ash tracking model[J]. Journal of Volcanology and Geothermal Research, 1998, 80(1/2): 1-16. |
| [29] | JONES A, THOMSON D, HORT M, et al. The UK Met Office’s next-generation atmospheric dispersion model, NAME III[M]// Air pollution modeling and its application XVII. New York: Springer US, 2007: 580-589. |
| [30] | PAVOLONIS M J, FELTZ W F, HEIDINGER A K, et al. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(11): 1422-1444. |
| [31] | ECKHARDT S, PRATA A J, SEIBERT P, et al. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling[J]. Atmospheric Chemistry and Physics, 2008, 8(14): 3881-3897. |
| [32] | 赵谊, 梁跃, 马宝君, 等. 基于FY-3A遥感数据的冰岛火山灰云识别[J]. 岩石学报, 2014(12): 3693-3700. |
| [33] | SHINOZAKI M, ROBERTS K A, VAN DE GOOR B, et al. Deposition of ingested volcanic ash on surfaces in the turbine of a small jet engine[J]. Advanced Engineering Materials, 2013, 15(10): 986-994. |
| [34] | PEREPEZKO J H. The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069. |
| [35] | PRATA F, ROSE B. Volcanic ash hazards to aviation[M]// The encyclopedia of volcanoes. 2nd ed. San Diego: Academic Press, 2015: 911-934. |
| [36] | DAVISON C R, RUTKE T A. Assessment and characterization of volcanic ash threat to gas turbine engine performance[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(8): 081201. |
| [37] | DREXLER J M, GLEDHILL A D, SHINODA K, et al. Jet engine coatings for resisting volcanic ash damage[J]. Advanced Materials, 2011, 23(21): 2419-2424. |
| [38] | MüLLER D, HESS K U, KUEPPERS U, et al. Effects of the dissolution of thermal barrier coating materials on the viscosity of remelted volcanic ash[J]. American Mineralogist, 2020, 105(7): 1104-1107. |
| [39] | WU Y, SONG W, DINGWELL D B, et al. Silicate ash-resistant novel thermal barrier coatings in gas turbines[J]. Corrosion Science, 2022, 194: 109929. |
| [40] | WANG L, GUO L, LI Z, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack[J]. Ceramics International, 2015, 41(9): 11662-11669. |
| [41] | YAO Y, YANG F, ZHAO X. Multicomponent high-entropy Zr-Y-Yb-Ta-Nb-O oxides for next-generation thermal barrier coating applications[J]. Journal of the American Ceramic Society, 2022, 105(1): 35-43. |
| [42] | AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia, 2007, 55(20): 6734-6745. |
| [43] | GUO Y, SONG W, GUO L, et al. Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure[J]. Advanced Science, 2023, 10(10): 2205156. |
| [44] | BECKETT F M, WITHAM C S, HORT M C, et al. Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(22): 11636-11652. |
| [45] | VOGEL A, DIPLAS S, DURANT A J, et al. Reference data set of volcanic ash physicochemical and optical properties[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(17): 9485-9514. |
| [46] | CASTRO J M, CORDONNIER B, TUFFEN H, et al. The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén[J]. Earth and Planetary Science Letters, 2012, 333: 63-69. |
| [47] | EYCHENNE J, LE PENNEC J L, RAMON P, et al. Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador)[J]. Earth and Planetary Science Letters, 2013, 361: 343-355. |
| [48] | ARZILLI F, LA SPINA G, BURTON M R, et al. Magma fragmentation in highly explosive basaltic eruptions induced by rapid crystallization[J]. Nature Geoscience, 2019, 12(12): 1023-1028. |
| [49] | WEN S, ROSE W I. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D3): 5421-5431. |
| [50] | ROSE W I, DELENE D J, SCHNEIDER D J, et al. Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects[J]. Nature, 1995, 375(6531): 477-479. |
| [51] | REALMUTO V J, WORDEN H M. Impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sulfur dioxide emissions: a case study from the Pu' u 'O' vent of Kilauea Volcano, Hawaii[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21497-21507. |
| [52] | BRAUE W, MECHNICH P, PETERS P W M. The CaSO4 phase in fully infiltrated electron-beam physical vapour deposited yttria stabilized zirconia top coats from engine hardware[J]. Materials at High Temperatures, 2011, 28(4): 315-323. |
| [53] | WEBB P A, ORR C. Analytical methods in fine particle technology[M]. Norcross: Micromeritics Instrument Corporation, 1997: 21-35. |
| [54] | BONADONNA C, CONNOR C B, HOUGHTON B F, et al. Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand[J]. Journal of Geophysical Research: Solid Earth, 2005, 110: B03203. |
| [55] | BECKETT F M, WITHAM C S, LEADBETTER S J, et al. Atmospheric dispersion modelling at the London VAAC: a review of developments since the 2010 Eyjafjallajökull volcano ash cloud[J]. Atmosphere, 2020, 11(4): 352. |
| [56] | DEVENISH B J, FRANCIS P N, JOHNSON B T, et al. Sensitivity analysis of dispersion modeling of volcanic ash from Eyjafjallajökull in May 2010[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D20): D00U21. |
| [57] | BONADONNA C, GENCO R, GOUHIER M, et al. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B12): B12202. |
| [58] | LEONELLI C, KAMSEU E, BOCCACCINI D N, et al. Volcanic ash as alternative raw materials for traditional vitrified ceramic products[J]. Advances in Applied Ceramics, 2007, 106(3): 135-141. |
| [59] | HORNBY A, KUEPPERS U, MAURER B, et al. Experimental constraints on volcanic ash generation and clast morphometrics in pyroclastic density currents and granular flows[J]. Volcanica, 2020, 3(2): 263-283. |
| [60] | LAU S, GRAINGER R G, TAYLOR I A. Characterizing volcanic ash density and its implications on settling dynamics[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(2): e2023JD039903. |
| [61] | SAXBY J, BECKETT F, CASHMAN K, et al. The impact of particle shape on fall velocity: implications for volcanic ash dispersion modelling[J]. Journal of Volcanology and Geothermal Research, 2018, 362: 32-48. |
| [62] | WILSON L, HUANG T C. The influence of shape on the atmospheric settling velocity of volcanic ash particles[J]. Earth and Planetary Science Letters, 1979, 44(2): 311-324. |
| [63] | BECKETT F, ROSSI E, DEVENISH B, et al. Modelling the size distribution of aggregated volcanic ash and implications for operational atmospheric dispersion modelling[J]. Atmospheric Chemistry and Physics, 2022, 22(5): 3409-3431. |
| [64] | DE GIORGI M G, CAMPILONGO S, FICARELLA A, et al. Experimental and numerical study of particle ingestion in aircraft engine[C]// Turbo Expo: power for land, sea, and air. New York: American Society of Mechanical Engineers, 2013, 55133: V002T01A026. |
| [65] | BROWN R J, BONADONNA C, DURANT A J. A review of volcanic ash aggregation[J]. Physics and Chemistry of the Earth, Parts a/b/c, 2012, 45: 65-78. |
| [66] | MASTIN L G, GUFFANTI M, SERVRANCKX R, et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1/2): 10-21. |
| [67] | ALFANO F, BONADONNA C, WATT S, et al. Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008-2013 Chaitén eruption[J]. Bulletin of Volcanology, 2016, 78: 1-21. |
| [68] | ITO G, FLAHAUT J, GONZáLEZ-MAUREL O, et al. Remote sensing survey of altiplano-puna volcanic complex rocks and minerals for planetary analog use[J]. Remote Sensing, 2022, 14(9): 2081. |
| [69] | DUBOVIK O, SINYUK A, LAPYONOK T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D11): D11208. |
| [70] | TANRé D, KAUFMAN Y J, HOLBEN B N, et al. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18205-18217. |
| [71] | VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science, 2001, 27(3): 237-429. |
| [72] | GIORDANO D, NICHOLS A R L, DINGWELL D B. Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process[J]. Journal of Volcanology and Geothermal Research, 2005, 142(1/2): 105-118. |
| [73] | WADSWORTH F B, VASSEUR J, VON AULOCK F W, et al. Nonisothermal viscous sintering of volcanic ash[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 8792-8804. |
| [74] | SPITSBERG I, STEIBEL J. Thermal and environmental barrier coatings for SiC/SiC CMCs in aircraft engine applications[J]. International Journal of Applied Ceramic Technology, 2004, 1(4): 291-301. |
| [75] | RUSSELL J K, HESS K U, DINGWELL D B. Models for viscosity of geological melts[J]. Reviews in Mineralogy and Geochemistry, 2022, 87(1): 841-885. |
| [76] | SHAW H R. Viscosities of magmatic silicate liquids; an empirical method of prediction[J]. American Journal of Science, 1972, 272(9): 870-893. |
| [77] | HUI H, ZHANG Y. Toward a general viscosity equation for natural anhydrous and hydrous silicate melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 403-416. |
| [78] | GIORDANO D, RUSSELL J K, DINGWELL D B. Viscosity of magmatic liquids: a model[J]. Earth and Planetary Science Letters, 2008, 271(1/2/3/4): 123-134. |
| [79] | DI GENOVA D, ROMANO C, HESS K U, et al. The rheology of peralkaline rhyolites from Pantelleria Island[J]. Journal of Volcanology and Geothermal Research, 2013, 249: 201-216. |
| [80] | YANG S, SONG W, LAVALLEE Y, et al. Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J]. Corrosion Science, 2020, 170: 108659. |
| [81] | MA L, SONG W, GUO Z, et al. Dynamic melting behavior of volcanic ash subjected to thermal shock relevant to aviation hazards[J]. Journal of Volcanology and Geothermal Research, 2022, 429: 107597. |
| [82] | LOKACHARI S, SONG W, YUAN J, et al. Influence of molten volcanic ash infiltration on the friability of APS thermal barrier coatings[J]. Ceramics International, 2020, 46(8): 11364-11371. |
| [83] | MüLLER D, HESS K U, KUEPPERS U, et al. Rheological and chemical interaction between volcanic ash and thermal barrier coatings[J]. Surface and Coatings Technology, 2021, 412: 127049. |
| [84] | KLEINHANS U, WIELAND C, BABAT S, et al. Ash particle sticking and rebound behavior: a mechanistic explanation and modeling approach[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2341-2350. |
| [85] | WHITE F M, MAJDALANI J. Viscous fluid flow[M]. New York: McGraw-Hill, 2006: 341-355. |
| [86] | SMITS A J, MCKEON B J, MARUSIC I. High-Reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 353-375. |
| [87] | CLIFT R, GRACE J R, WEBER M E. Bubbles, drops, and particles[M]. New York: Academic Press, 1978: 383. |
| [88] | HORNBY A, GAZEL E, BUSH C, et al. Phases in fine volcanic ash[J]. Scientific Reports, 2023, 13(1): 15728. |
| [89] | BRACH R M, DUNN P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology, 1992, 16(1): 51-64. |
| [90] | SREEDHARAN S S, TAFTI D K. Composition dependent model for the prediction of syngas ash deposition with application to a leading edge turbine vane[C]// Turbo Expo: power for land, sea, and air. New York: American Society of Mechanical Engineers, 2010, 43994: 615-626. |
| [91] | BOJDO N, FILIPPONE A. A simple model to assess the role of dust composition and size on deposition in rotorcraft engines[J]. Aerospace, 2019, 6(4): 44. |
| [92] | LIU X H, ZHU W, GUO J W, et al. Numerical investigation of the effect of CMAS deposition on the temperature and stress distribution of thermal barrier coatings coated on a turbine blade[J]. Aerospace Science and Technology, 2023, 140: 108456. |
| [93] | LI C, JACQUES S D M, CHEN Y, et al. Precise strain profile measurement as a function of depth in thermal barrier coatings using high energy synchrotron X-rays[J]. Scripta Materialia, 2016, 113: 122-126. |
| [94] | JING F, YANG J, TANG S, et al. Quantitative characterization of the interfacial damage in EB-PVD thermal barrier coating[J]. Coatings, 2022, 12(7): 984. |
| [95] | GENG X, WELLMAN R, ARROM L I, et al. Estimation of thermal barrier coating fracture toughness using integrated computational materials engineering[J]. Ceramics International, 2023, 49(15): 25788-25794. |
| [96] | SHAN X, ZOU Z, GU L, et al. Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack[J]. Scripta Materialia, 2016, 113: 71-74. |
| [97] | BAHAMIRIAN M. A comparative study on the phase stability of ZrO2-8 wt.% Y2O3: nano-and micro-particles[J]. Advanced Ceramics Progress, 2022, 8(2): 53-60. |
| [98] | LEVI C G, HUTCHINSON J W, VIDAL-SéTIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits[J]. MRS Bulletin, 2012, 37(10): 932-941. |
| [99] | LIU H, CAI J, ZHU J. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers[J]. Ceramics International, 2018, 44(1): 452-458. |
| [100] | WANG F, GUO L, WANG C, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln=Nd, Sm, Gd) thermal barrier oxides[J]. Journal of the European Ceramic Society, 2017, 37(1): 289-296. |
| [101] | CHEN L, LI B, FENG J. Rare-earth tantalates for next-generation thermal barrier coatings[J]. Progress in Materials Science, 2024, 144: 101265. |
| [102] | AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia, 2007, 55(20): 6734-6745. |
| [103] | ZHANG B, SONG W, GUO H. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J]. Journal of the European Ceramic Society, 2018, 38(10): 3564-3572. |
| [104] | GUO Y, SONG W, GUO L, et al. Molten-volcanic-ash-phobic thermal barrier coating based on biomimetic structure[J]. Advanced Science, 2023, 10(10): 2205156. |
| [105] | VERSTAPPEN H T. Indonesian landforms and plate tectonics[J]. Indonesian Journal on Geoscience, 2010, 5(3): 197-207. |
| [106] | BANI P, OPPENHEIMER C, TSANEV V, et al. Modest volcanic SO2emissions from the Indonesian archipelago[J]. Nature Communications, 2022, 13(1): 3366. |
| [107] | 马琳, 郭正府, 宋文佳, 等. 中国活火山喷发物对航空安全的影响评估[J]. 岩石学报, 2024, 40(7): 2267-2286. |
| [108] | NEWHALL C, HOBLITT R. Constructing event trees for volcanic crises[J]. Bulletin of Volcanology, 2002, 64: 3-20. |
| [109] | NEWHALL C G, PALLISTER J S. Using multiple data sets to populate probabilistic volcanic event trees[M]// Volcanic hazards, risks and disasters. Amsterdam: Elsevier, 2015: 203-232. |
| [110] | PRIMULYANA S, KERN C, LERNER A H, et al. Gas and ash emissions associated with the 2010-present activity of Sinabung Volcano, Indonesia[J]. Journal of Volcanology and Geothermal Research, 2019, 382: 184-196. |
| [111] | WALKER D, MULLINS J O. Surface tension of natural silicate melts from 1200-1500 ℃ and implications for melt structure[J]. Contributions to Mineralogy and Petrology, 1981, 76(4): 455-462. |
| [112] | ZELENSKI M, KAMENETSKY V S, NEKRYLOV N, et al. High sulfur in primitive arc magmas, its origin and implications[J]. Minerals, 2021, 12(1): 37. |
| [1] | 彭年,朱晓艳,刘永顺,聂保锋,李苏. 天池火山三期浮岩气孔形态的复杂性及其动力学成因[J]. 地学前缘, 2019, 26(6): 271-280. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||