地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 205-219.DOI: 10.13745/j.esf.sf.2025.8.100

• 流体运聚表征 • 上一篇    下一篇

跨圈层油气系统与石油地质学发展新方向

陶士振1(), 杨怡青1,*(), 张功成2, 李江海3, 郭秋麟1, 刘祥柏1, 陈悦1,*()   

  1. 1.中国石油勘探开发研究院, 北京 100083
    2.中国海油南海油气能源院士工作站, 海南 海口 570300
    3.北京大学, 北京 100091
  • 收稿日期:2023-08-29 修回日期:2023-12-05 出版日期:2025-09-25 发布日期:2025-10-14
  • 通信作者: 杨怡青,陈悦
  • 作者简介:陶士振(1966—),男,教授级高级工程师,博士生导师,主要从事岩性地层油气藏、非常规油气及氦气地质研究与综合评价工作。E-mail: tsz@petrochina.com.cn
  • 基金资助:
    中国石油天然气集团有限公司关键核心技术攻关项目(2021ZG13);国家自然科学企业创新发展联合基金项目(U24B2016)

The trans-spheric petroleum system and the new development direction of Petroleum Geology

TAO Shizhen1(), YANG Yiqing1,*(), ZHANG Gongcheng2, LI Jianghai3, GUO Qiulin1, LIU Xiangbai1, CHEN Yue1,*()   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    2. CNOOC South China Sea Oil and Gas Energy Academician Workstation, Haikou 570300, China
    3. Peking University, Beijing 100091, China
  • Received:2023-08-29 Revised:2023-12-05 Online:2025-09-25 Published:2025-10-14
  • Contact: YANG Yiqing, CHEN Yue

摘要:

近年来随着地质科学“三深一系统”发展战略的实施推进,地球系统演化研究推动油气地质理论创新发展,跨越地球不同圈层构造耦合作用与有机-无机复合成烃及共伴生He/H2等稀有非烃资源是未来油气地质学科发展的重大新兴方向。基于地球系统演化与油气成藏及环境效应综合分析,提出了“跨圈层油气系统”,指出了未来《石油天然气地质学》创新发展趋势:一是未来油气地质学研究面临从“盆地级含油气系统”到地球圈层间“碳循环—烃转化系统”——“跨圈层油气系统”的大尺度跨越;二是面向跨越层圈构造活动不同圈层作用下的油气资源效应,聚焦深部动力学过程和圈层间物质能量作用下碳“汇—转—聚—散”循环过程轨迹线,与之对应的“成盆—成烃—成藏—环境”资源环境效应链,推动油气地质理论创新发展;三是不同圈层耦合作用触发有机-无机复合成烃,深部构造动力学机制、壳幔耦合作用、物质和能量交换促使深部富氢流体上涌侵入盆地成藏系统,引发无机-有机复合生烃和油气聚集及He/H2共伴生稀有和非烃气体资源、地热等新资源形成和富集;四是地球演化圈层间碳循环伴随着“动力响应—物质作用—能量传输”及多成因油气资源形成和演化的同时,由于不同圈层碳释放及油气资源开发利用引起的碳排放,引发不同的气候环境效应,推动针对性评估方法技术创新,为油气开发利用和“碳中和”提供理论支撑;五是指出未来油气地质学科发展及重大领域基础研究发展方向:①跨圈层构造演化与盆地充填机制;②壳幔耦合作用下有机-无机复合生烃与伴生资源形成;③深部物质能量作用与油气运移聚集机理;④油气开发利用与碳中和理论技术。研究成果将为未来“石油天然气地质学”学科发展战略和油气产业发展方向奠定理论基础。

关键词: 地球跨圈层构造, 圈层耦合作用, 跨圈层油气系统, 有机-无机复合成烃, 共伴生资源, 石油地质学发展方向

Abstract:

The study of Earth system evolution drives innovation in oil and gas geology theories, and the coupling of cross-sphere tectonics and organo-inorganic hydrocarbon generation and associated rare gases (e.g., helium [He], hydrogen [H2]) represents a major emerging direction for the discipline in the future. Based on integrated analysis of Earth system dynamics, hydrocarbon generation, and environmental effects, this study proposes the future development innovation trend of the petroleum geology: (1) The future research on oil and gas geology is facing a large-scale shift from “petroleum system” within the basins to “cross-sphere petroleum systems” (i.e., “carbon cycle-hydrocarbon transformation systems” across Earth's spheres); (2) Research focused on oil and gas resources effects under multi-sphere tectonic activities, emphasizing the carbon cycle trajectory converge-transform-accumulate-disperse cycle process driven by deep dynamic processes and inter-sphere material-energy fluxes, as well as the corresponding resource-environmental chain of “basin formation-hydrocarbon generation-reservoir formation-end utilization”; (3) The coupling of different spheres facilitates organo-inorganic hydrocarbon generation, and the deep tectonic dynamics, crust-mantle interactions, and material-energy exchanges drive upwelling of deep-sourced H2-rich fluids into the basin reservoir-accumulation system, enabling the generation, accumulation and enrichment of organo-inorganic hydrocarbon and associated rare non-hydrocarbon gases (e.g., He, H2); (4) The Earth’s inter-sphere carbon cycle is accompanied by the “kinetic response-material interaction-energy transfer” and multi-genesis hydrocarbon evolution. Concurrently, the carbon release from different spheres and carbon emissions caused by oil-gas resource development and utilization facilitate different climate-environmental effects, this study promotes the innovation of targeted assessment methods and technologies, providing theoretical support for oil-gas development and utilization as well as “carbon neutrality”. (5) This study proposes that the future development and major research direction of “Petroleum Geology” field: 1) Evolution of cross-sphere tectonics and basin dynamics; 2) Organo-inorganic hydrocarbon generation and co-resources under crust-mantle coupling generation under crust-mantle coupling; 3) Deep material-energy interaction and hydrocarbon migration- accumulation mechanism; 4) Hydrocarbon utilization and carbon-neutral technologies. These findings will lay a theoretical foundation for the disciplinary development strategy of petroleum geology and the development direction of the energy industry in the future.

Key words: trans-layer tectonics, layer coupling, trans-layer petroleum system, organic-inorganic composite hydrocarbon formation, co-associated non-hydrocarbon resources, development direction of petroleum geology

中图分类号: