地学前缘 ›› 2025, Vol. 32 ›› Issue (1): 322-342.DOI: 10.13745/j.esf.sf.2024.7.51
• “印度欧亚大陆碰撞及其远程效应”专栏之十一 • 上一篇 下一篇
王国灿1,2(), 赵子豪2, 申添毅1, 马骋1, 周亚波1
收稿日期:
2024-04-01
修回日期:
2024-12-10
出版日期:
2025-01-25
发布日期:
2025-01-15
作者简介:
王国灿(1963—),男,教授,博士生导师,长期从事区域地质、构造地质学教学与研究工作。E-mail: wgcan@cug.edu.cn
基金资助:
WANG Guocan1,2(), ZHAO Zihao2, SHEN Tianyi1, MA Cheng1, ZHOU Yabo1
Received:
2024-04-01
Revised:
2024-12-10
Online:
2025-01-25
Published:
2025-01-15
摘要:
本文基于系统收集的天山及北部中亚区域磷灰石裂变径迹年龄、 U-Th/He年龄和裂变径迹长度数据,通过频度分析和年龄分阶段插值分析,综合刻画了天山和中亚地区中新生代的岩石快速冷却事件的时空差异。结合不同阶段不同区域构造变形的表现,探讨了天山地区不同阶段不同区段岩石快速冷却事件与不同板块边界动力之间的联系。结果显示,天山地区主要经历了晚三叠世、晚侏罗世—早白垩世、晚白垩世—古新世、新生代中晚期4次快速冷却事件。晚三叠世的快速冷却主要分布于天山西段,反映逆冲断层活动引起的岩石抬升剥露,受控于西部图兰(Turan)地体与古亚洲大陆的碰撞。晚侏罗世—早白垩世的快速冷却主要分布于西部的吉尔吉斯天山和东部的东天山地区,均表现为逆冲断层活动引起的岩石抬升剥露。其中西部吉尔吉斯天山的逆冲抬升主要受控于南部的拉萨地体与古亚洲大陆碰撞的远程效应,而东天山主要受控于北部蒙古—鄂霍茨克洋主体闭合的远程效应。晚白垩世—古新世的快速冷却主要为沿大型断裂分布的热冷却事件。其中,西部吉尔吉斯天山、中国西天山和东部东天山南部的觉罗塔格地区,断裂活动引发的快速冷却事件主要发生在晚白垩世晚期—古新世,受控于Kohistan-Dras等岛弧的增生拼贴和最后的印度与欧亚大陆的碰撞,而东天山北部哈尔里克山,右旋转换伸展断裂导致的快速热冷却事件主要发生在相对较早的晚白垩世中期,与北部蒙古—鄂霍茨克造山带后碰撞伸展塌陷事件同步。新生代中晚期的快速冷却主要表现在帕米尔及其以北的天山西段,反映为印度与欧亚板块碰撞后高原崛起向北扩展导致的陆内强烈挤压的远程效应。总之,天山造山带不同区段中新生代不同阶段的岩石快速冷却事件是南部特提斯构造域多块体碰撞和北部蒙古—鄂霍茨克构造域洋盆闭合以及其后的后碰撞伸展塌陷等板块边界动力远程效应综合影响的结果。
中图分类号:
王国灿, 赵子豪, 申添毅, 马骋, 周亚波. 从中亚岩石冷却的时空差异性浅析天山中新生代隆升剥露的动力来源[J]. 地学前缘, 2025, 32(1): 322-342.
WANG Guocan, ZHAO Zihao, SHEN Tianyi, MA Cheng, ZHOU Yabo. A brief analysis on the dynamic sources of the uplift and exhumation of the Tianshan Mountains during the Meso-Cenozoic based on the spatio-temporal differences of rock cooling in the Central Asia[J]. Earth Science Frontiers, 2025, 32(1): 322-342.
图1 天山及邻近地区地理区划及主干断裂分布简图 a—中亚造山带构造位置(据文献[1]修改);b—天山及其邻近地区地理区划及主干断裂分布简图。图中天山地区各主干断裂与单元标注如下:1—Talas-Fergana断裂;2—尼古拉耶夫线;3—阿特巴什-科克夏尔缝合带;4—天山主剪切带;5—南中天山缝合带;6—塔里木北界断裂;7—戈壁-天山断裂;8—阿尔金断裂。NTS—北天山;CTS—中天山(中国境内);YLB—伊犁地块;MTS—中天山(吉尔吉斯斯坦境内);STS—南天山。
Fig.1 Geographic division and main fault distribution of the Tianshan Mountains and adjacent areas
图2 天山及北部中亚地区磷灰石裂变径迹年龄(a)和磷灰石(U-Th)/He年龄(b)频度分布图
Fig.2 Frequency distribution of fission track ages of apatite (a) and (U-Th)/He ages of apatite (b) in the Tianshan Mountains and northern Central Asia regions
图4 天山及北部中亚地区低温热年代学数据插值图 a—磷灰石裂变径迹年龄分布插值图; b—磷灰石裂变径迹长度分布插值图;c—磷灰石(U-Th)/He年龄分布插值图。
Fig.4 Interpolation maps of low-temperature thermochronology data for the Tianshan Mountains and northern Central Asia regions. a—Interpolation map of apatite fission track age distribution; b—Interpolation map of apatite fission track length distribution; c—Interpolation map of apatite (U-Th)/He age distribution.
图5 天山及北部中亚地区晚三叠世—早侏罗世AFT年龄分布和磷灰石MTL分布插值图
Fig.5 Interpolation map of the AFT age and MTL distribution during Late Triassic-Early Jurassic in the Tianshan Mountains and northern Central Asia
图6 天山及北部中亚地区晚侏罗世—早白垩世AFT年龄分布与磷灰石MTL分布插值图
Fig.6 Interpolation map of the AFT age and MTL distribution during Late Jurassic-Early Cretaceous in the Tianshan Mountains and northern Central Asia
图7 天山及北部中亚地区晚白垩世—古新世AFT年龄分布与磷灰石MTL分布插值图
Fig.7 Interpolation map of the AFT age and MTL distribution during Late Cretaceous-Paleocene in the Tianshan Mountains and northern Central Asia
图8 天山及北部中亚地区始新世至今AFT年龄分布和磷灰石MTL插值图
Fig.8 Interpolation map of the AFT age and MTL distribution since Eocene in the Tianshan Mountains and northern Central Asia
图9 天山中新生代不同时期岩石快速冷却剥露的潜在动力来源
Fig.9 Potential dynamic sources of rock rapid cooling and exhumation in different periods of Meso-Cenozoic in the Tianshan Mountains
[1] | ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. |
[2] | CHARVET J, SHU L S, LAURENT-CHARVET S, et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China Earth Sciences, 2011, 54(2): 166-184. |
[3] | WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[4] | XIAO W J, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6), doi: 10.1029/2002TC001484.6. |
[5] | FANG Y N, WU C D, WANG Y Z, et al. Topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins, central Asia, from the Permian to the Neogene[J]. Gondwana Research, 2019, 75: 47-67. |
[6] | XIANG D F, ZHANG Z Y, XIAO W J, et al. Episodic meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences, 2019, 175: 199-212. |
[7] | MORIN J, JOLIVET M, BARRIER L, et al. Planation surfaces of the Tian Shan range (central Asia): insight on several 100 million years of topographic evolution[J]. Journal of Asian Earth Sciences, 2019, 177: 52-65. |
[8] | JEPSON G, GLORIE S, KONOPELKO D, et al. The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan[J]. Gondwana Research, 2018, 64: 122-136. |
[9] | DUMITRU T A, ZHOU D, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[J]. Memoir of the Geological Society of America, 2001, 194: 71-99. |
[10] | CHEN Y, WANG G C, KAPP P, et al. Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, Northwestern China[J]. Tectonophysics, 2020, 796: 228647. |
[11] | GLORIE S, DE GRAVE J, BUSLOV M M, et al. Structural control on meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: insights from multi-method thermochronometry[J]. Tectonophysics, 2012, 544: 75-92. |
[12] | JOLIVET M, BARRIER L, DAUTEUIL O, et al. Late Cretaceous-palaeogene topography of the Chinese Tian Shan: new insights from geomorphology and sedimentology[J]. Earth and Planetary Science Letters, 2018, 499: 95-106. |
[13] | LI Y J, ZHANG Q, ZHANG G Y, et al. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): effects of the collisions on the southern margin of the Eurasian plate[J]. Journal of Asian Earth Sciences, 2016, 132: 40-57. |
[14] | ENGLAND P, MOLNAR P. Surface uplift, uplift of rocks, and exhumation of rocks[J]. Geology, 1990, 18(12): 1173. |
[15] | YUAN J, YANG Z Y, DENG C L, et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision[J]. National Science Review, 2021, 8(7): nwaa173. |
[16] | ANDJIĆ G, ZHOU R J, JONELL T N, et al. A single dras-kohistan-Ladakh arc revealed by volcaniclastic records[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(3): e2021GC010042. |
[17] | SUI Q L, WANG Q, ZHU D C, et al. Compositional diversity of Ca. 110 Ma magmatism in the northern Lhasa terrane, Tibet: implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169: 144-159. |
[18] | GOLONKA J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic[J]. Tectonophysics, 2004, 381(1/2/3/4): 235-273. |
[19] | YANG Y T, GUO Z X, SONG C C, et al. A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous[J]. Gondwana Research, 2015, 28(3): 1096-1116. |
[20] | JOLIVET M, DE BOISGROLLIER T, PETIT C, et al. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology[J]. Tectonics, 2009, 28(3): TC3008. 1-21. |
[21] | MAHÉO G, FAYOUX X, GUILLOT S, et al. Relicts of an intra-oceanic arc in the sapi-shergol mélange zone (Ladakh, NW Himalaya, India): implications for the closure of the neo-Tethys ocean[J]. Journal of Asian Earth Sciences, 2006, 26(6): 695-707. |
[22] | 柳一鸣. 天山及邻区岩石圈密度结构及其地质意义[D]. 武汉: 中国地质大学(武汉), 2021. |
[23] | ZHAO G D, LIU J X, CHEN B, et al. Moho beneath Tibet based on a joint analysis of gravity and seismic data[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008849. |
[24] | 刘洁. 天山上地幔对流与造山运动数值模拟[D]. 北京: 中国地震局地质研究所, 2006. |
[25] | ALEKSEEV D V, ARISTOV V A, DEGTYAREV K E. The age and tectonic setting of volcanic and cherty sequences in the ophiolite complex of the Atbashe Ridge (Southern Tien Shan)[J]. Doklady Earth Sciences, 2007, 413(2): 380-383. |
[26] | GLORIE S, DE GRAVE J, BUSLOV M M, et al. Multi-method chronometric constraints on the evolution of thenorthern kyrgyz Tien Shan granitoids (central Asian Orogenic Belt): from emplacement to exhumation[J]. Journal of Asian Earth Sciences, 2010, 38(3/4): 131-146. |
[27] | KONOPELKO D, BISKE G, SELTMANN R, et al. Deciphering Caledonian events: timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 131-141. |
[28] | DE GRAVE J, GLORIE S, BUSLOV M M, et al. The thermo-tectonic history of the song-kul plateau, kyrgyz Tien Shan: constraints by apatite and titanite thermochronometry and zircon U/Pb dating[J]. Gondwana Research, 2011, 20(4): 745-763. |
[29] | ALEXEIEV D V, KRÖNER A, HEGNER E, et al. Middle to late Ordovician arc system in the kyrgyz middle Tianshan: from arc-continent collision to subsequent evolution of a palaeozoic continental margin[J]. Gondwana Research, 2016, 39: 261-291. |
[30] | KRÖNER A, ALEXEIEV D V, KOVACH V P, et al. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan-the oldest continental basement fragment in the Tianshan orogenic belt[J]. Journal of Asian Earth Sciences, 2017, 135: 122-135. |
[31] | SELTMANN R, KONOPELKO D, BISKE G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences, 2011, 42(5): 821-838. |
[32] | KONOPELKO D, BISKE G, SELTMANN R, et al. Hercynian post-collisional A-type granites of the kokshaal range, southern Tien Shan, Kyrgyzstan[J]. Lithos, 2007, 97(1/2): 140-160. |
[33] | KRÖNER A, HEGNER E, LEHMANN B, et al. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: shrimp zircon ages and whole-rock Nd isotopic systematics[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 118-130. |
[34] | DE GRAVE J, BUSLOV M M, VAN DEN HAUTE P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in central Asia: constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204. |
[35] | MACAULAY E A, SOBEL E R, MIKOLAICHUK A, et al. Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan[J]. Tectonics, 2014, 33(2): 135-165. |
[36] | DE PELSMAEKER E, JOLIVET M, LABORDE A, et al. Source-to-sink dynamics in the kyrgyz Tien Shan from the Jurassic to the Paleogene: insights from sedimentological and detrital zircon U-Pb analyses[J]. Gondwana Research, 2018, 54: 180-204. |
[37] | GLORIE S, DE GRAVE J. Exhuming the meso-Cenozoic kyrgyz Tianshan and Siberian Altai-Sayan: a review based on low-temperature thermochronology[J]. Geoscience Frontiers, 2016, 7(2): 155-170. |
[38] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[39] | KAPP P, DECELLES P G, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933. |
[40] | SCHWAB M, RATSCHBACHER L, SIEBEL W, et al. Assembly of the Pamirs: age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet[J]. Tectonics, 2004, 23(4): TC4002. 1-31. |
[41] | JOLIVET M, BOURQUIN S, HEILBRONN G, et al. The Upper Jurassic-lower Cretaceous alluvial-fan deposits of the kalaza formation (central Asia): tectonic pulse or increased aridity?[J]. Geological Society, London, Special Publications, 2017, 427(1): 491-521. |
[42] | SOBEL E R, OSKIN M, BURBANK D, et al. Exhumation of basement-cored uplifts: example of the kyrgyz range quantified with apatite fission track thermochronology[J]. Tectonics, 2006, 25(2): TC2008.1-17. |
[43] | BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Exhumation history of the western kyrgyz Tien Shan: implications for intramontane basin formation[J]. Tectonics, 2017, 36(1): 163-180. |
[44] | MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. |
[45] | BULLEN M E, BURBANK D W, GARVER J I, et al. Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building[J]. Geological Society of America Bulletin, 2001, 113(12): 1544-1559. |
[46] | KÄßNER A, RATSCHBACHER L, JONCKHEERE R, et al. Cenozoic intracontinental deformation and exhumation at the northwestern tip of the India-Asia collision-southwestern Tian Shan, Tajikistan, and Kyrgyzstan[J]. Tectonics, 2016, 35(9): 2171-2194. |
[47] | BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Talas-Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation[J]. Geological Society, London, Special Publications, 2017, 427(1): 295-311. |
[48] | GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238. |
[49] | BISKE Y S, SELTMANN R. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans[J]. Gondwana Research, 2010, 17(2/3): 602-613. |
[50] | ZHANG B, CHEN W, LIU J Q, et al. Thermochronological insights into the intracontinental orogeny of the Chinese western Tianshan orogen[J]. Journal of Asian Earth Sciences, 2020, 194: 103927. |
[51] | ALLEN M B, WINDLEY B F, ZHANG C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1/2/3/4): 89-115. |
[52] | GAO J, LI M S, XIAO X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, Northwestern China[J]. Tectonophysics, 1998, 287(1/2/3/4): 213-231. |
[53] | WANG Y N, CAI K D, SUN M, et al. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt[J]. Ore Geology Reviews, 2018, 100: 111-132. |
[54] | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131. |
[55] | HAN B F, HE G Q, WANG X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, Western China[J]. Earth-Science Reviews, 2011, 109(3/4): 74-93. |
[56] | JOLIVET M, DOMINGUEZ S, CHARREAU J, et al. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation[J]. Tectonics, 2010, 29(6): 391-420. |
[57] | ZHANG Z Y, ZHU W B, ZHENG D W, et al. Apatite fission track thermochronology in the kuluketage and Aksu areas, NW China: implication for tectonic evolution of the northern Tarim[J]. Geoscience Frontiers, 2016, 7(2): 171-180. |
[58] | GLORIE S, OTASEVIC A, GILLESPIE J, et al. Thermo-tectonic history of the Junggar alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology[J]. Geoscience Frontiers, 2019, 10(6): 2153-2166. |
[59] | BURBANK, MCLEAN, BULLEN, et al. Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyzstan[J]. Basin Research, 1999, 11(1): 75-92. |
[60] | CHANG J, LI D, MIN K, et al. Cenozoic deformation of the kalpin fold-and-thrust belt, southern Chinese Tian Shan: new insights from low-T thermochronology and sandbox modeling[J]. Tectonophysics, 2019, 766: 416-432. |
[61] | XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. |
[62] | 王国灿, 张孟, 冯家龙, 等. 东天山新元古代—古生代大地构造格架与演化新认识[J]. 地质力学学报, 2019, 25(5): 798-819. |
[63] | 王国灿, 张孟, 张雄华, 等. 天山东段“北天山洋” 构造涵义及演化模式再认识[J]. 地质学报, 2022, 96(10): 3494-3513. |
[64] | WANG Y F, CHEN H Y, FALLOON T J, et al. The Paleozoic-Mesozoic magmatic evolution of the eastern Tianshan, NW China: constraints from geochronology and geochemistry of the Sanchakou intrusive complex[J]. Gondwana Research, 2022, 103: 1-22. |
[65] | JI H J, TAO H F, WANG Q, et al. Petrography, geochemistry, and geochronology of lower Jurassic sedimentary rocks from the northern Tianshan (west bogda area), Northwest China: implications for provenance and tectonic evolution[J]. Geological Journal, 2019, 54(3): 1688-1714. |
[66] | MA X X, SHU L S, MEERT J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J]. Gondwana Research, 2015, 27(1): 228-243. |
[67] | 汪传胜, 顾连兴, 张遵忠, 等. 东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义[J]. 岩石学报, 2009, 25(6): 1499-1511. |
[68] | WARTES M A, CARROLL A R, GREENE T J. Permian sedimentary record of the Turpan-Hami Basin and adjacent regions, Northwest China: constraints on postamalgamation tectonic evolution[J]. Geological Society of America Bulletin, 2002, 114(2): 131-152. |
[69] | 舒良树, 朱文斌, 王博, 等. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J]. 岩石学报, 2005, 21(1): 25-36. |
[70] | JI H J, TAO H F, WANG Q, et al. Early to Middle Jurassic tectonic evolution of the bogda mountains, Northwest China: evidence from sedimentology and detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2018, 153: 57-74. |
[71] | HE Z Y, ZHANG Z M, ZONG K Q, et al. Zircon U-Pb and Hf isotopic studies of the xingxingxia complex from eastern Tianshan (NW China): significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt[J]. Lithos, 2014, 190: 485-499. |
[72] | SUN J B, CHEN W, QIN K Z, et al. Mesozoic exhumation of the jueluotage area, eastern Tianshan, NW China: constraints from (U-Th)/He and fission-track thermochronology[J]. Geological Magazine, 2021, 158(11): 1960-1976. |
[73] | 孙敬博, 孙腾飞, 陈文, 等. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束[J]. 岩石学报, 2015, 31(12): 3732-3742. |
[74] | HE Z Y, WANG B, GLORIE S, et al. Mesozoic building of the Eastern Tianshan and East Junggar (NW China) revealed by low-temperature thermochronology[J]. Gondwana Research, 2022, 103: 37-53. |
[75] | GONG L, KOHN B P, ZHANG Z Y, et al. Exhumation and preservation of Paleozoic porphyry Cu deposits: insights from the yandong deposit, southern Central Asian Orogenic Belt[J]. Economic Geology, 2021, 116(3): 607-628. |
[76] | TANG W H, ZHANG Z C, LI J F, et al. Mesozoic and Cenozoic uplift and exhumation of the bogda mountain, NW China: evidence from apatite fission track analysis[J]. Geoscience Frontiers, 2015, 6(4): 617-625. |
[77] | 朱文斌, 舒良树, 万景林, 等. 新疆博格达—哈尔里克山白垩纪以来剥露历史的裂变径迹证据[J]. 地质学报, 2006, 80(1): 16-22. |
[78] | CHEN Y, WANG G C, SHEN T Y, et al. Tectono-geomorphic evolution of Harlik Mountain in the Eastern Tian Shan, insight from thermochronological data and geomorphic analysis[J]. Geological Journal, 2020, 55(11): 7322-7334. |
[79] | GILLESPIE J, GLORIE S, JEPSON G, et al. Differential exhumation and crustal tilting in the easternmost Tianshan (Xinjiang, China), revealed by low-temperature thermochronology[J]. Tectonics, 2017, 36(10): 2142-2158. |
[80] | HUANGFU P P, LI Z H, FAN W M, et al. Dynamics of crustal overthrust versus underthrust in the continental collision zones: numerical modelling[J]. Terra Nova, 2019, 31(4): 332-342. |
[81] | YIN A, RUMELHART P E, BUTLER R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295. |
[82] |
HARRISON T M, COPELAND P, KIDD W S F, et al. Raising Tibet[J]. Science, 1992, 255: 1663-1670.
PMID |
[83] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[84] | TAPPONNIER P, MOLNAR P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459. |
[85] | MOLNAR P, TAPPONNIER P. Relation of the tectonics of Eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics[J]. Geology, 1977, 5(4): 212. |
[86] | SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, et al. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature, 2018, 559(7712): 89-93. |
[87] | GALLAGHER K, BROWN R, JOHNSON C. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 519-572. |
[88] | 蒋毅, 常宏. 磷灰石(U-Th)/He定年方法综述[J]. 岩石矿物学杂志, 2012, 31(5): 757-766. |
[89] | CHANG J, QIU N S. Closure temperature of (U-Th)/He system in apatite obtained from natural drillhole samples in the Tarim basin and its geological significance[J]. Chinese Science Bulletin, 2012, 57(26): 3482-3490. |
[90] | 杨静, 施炜, 王森, 等. 磷灰石裂变径迹实验流程的建立及验证: 外探测器法和LA-ICP-MS/FT法[J]. 地质学报, 2023, 97(5): 1701-1710. |
[91] | KETCHAM R A, CARTER A, DONELICK R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 92(5/6): 799-810. |
[92] | CARLSON W D, DONELICK R A, KETCHAM R A. Variability of apatite fission-track annealing kinetics; I, Experimental results[J]. American Mineralogist, 1999, 84(9): 1213-1223. |
[93] | REINERS P W, BRANDON M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 419-466. |
[94] | SIBSON R. A brief description of natural neighbor interpolation[M]//BARNETT V. Interpreting multivariate data. New York: John Wiley and Sons, 1981: 21-36. |
[95] | WATSON D F. Contouring: a guide to the analysis and display of spatial data[M]. New York: Pergamon Press, 1992. |
[96] | DE PELSMAEKER E, GLORIE S, BUSLOV M M, et al. Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement[J]. Tectonophysics, 2015, 662: 416-433. |
[97] | ZHAO R, ZHANG J Y, ZHOU C M, et al. Tectonic evolution of Tianshan-Bogda-Kelameili mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar Basin[J]. Marine and Petroleum Geology, 2020, 114: 104200. |
[98] | SHEN T Y, CHEN Y, WANG G C, et al. Detrital zircon geochronology analysis of the late Mesozoic deposition in the Turpan-Hami Basin: implications for the uplift history of the eastern Tian Shan, north-Western China[J]. Terra Nova, 2020, 32(2): 166-178. |
[99] | HENDRIX M S, GRAHAM S A, CARROLL A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan Basins, Northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79. |
[100] | XIANG D F, ZHANG Z Y, CHEW D, et al. Mesozoic-Cenozoic topographic evolution of the South Tianshan (NW China): insights from detrital apatite geo-thermochronological and geochemical analyses[J]. Lithosphere, 2023, 2023(Special 14): https://doi.org/10.2113/2023/lithosphere_2023_190. |
[101] | ZHANG W, CHEN W, SUN J B, et al. Thermal history and exhumation processes in the Chinese South Tianshan: constraints from 40Ar/39Ar and (U-Th)/He ages[J]. International Journal of Earth Sciences, 2021, 110(5): 1575-1592. |
[102] | CHANG J, ZHANG Y L, QIU N S, et al. Uplift and exhumation in the Tianshan, Western China: new insights from detrital zircon morphology and thermochronology[J]. Science China Earth Sciences, 2022, 65(3): 449-461. |
[103] | JEPSON G, GLORIE S, KHUDOLEY A K, et al. The Mesozoic exhumation history of the Karatau-Talas range, western Tian Shan, Kazakhstan-Kyrgyzstan[J]. Tectonophysics, 2021, 814: 228977. |
[104] | GILLESPIE J, GLORIE S, JEPSON G, et al. Inherited structure as a control on Late Paleozoic and Mesozoic exhumation of the Tarbagatai Mountains, southeastern Kazakhstan[J]. Journal of the Geological Society, 2021, 178(6): jgs2020-121. |
[105] | DE GRAVE J, GLORIE S, BUSLOV M M, et al. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia)[J]. Gondwana Research, 2013, 23(3): 998-1020. |
[106] | NACHTERGAELE S, DE PELSMAEKER E, GLORIE S, et al. Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology[J]. Geoscience Frontiers, 2018, 9(5): 1495-1514. |
[107] | DE GRAVE J, DE PELSMAEKER E, ZHIMULEV F I, et al. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: thermotectonic history of the tuva region[J]. Tectonophysics, 2014, 621: 44-59. |
[108] | DE GRAVE J, VAN DEN HAUTE P, BUSLOV M M, et al. Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region[J]. Radiation Measurements, 2008, 43(1): 38-42. |
[109] | DE GRAVE J, VAN DEN HAUTE P. Denudation and cooling of the Lake Teletskoye Region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology[J]. Tectonophysics, 2002, 349(1/2/3/4): 145-159. |
[110] | WANG Q C, LI S J, DU Z L. Differential uplift of the Chinese Tianshan since the Cretaceous: constraints from sedimentary petrography and apatite fission-track dating[J]. International Journal of Earth Sciences, 2009, 98(6): 1341-1363. |
[111] | 汪新, 贾承造, 杨树锋, 等. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例[J]. 地质学报, 2002, 76(1): 55-63. |
[112] | CHANG J, TIAN Y T, QIU N S. Mid-late Miocene deformation of the northern kuqa fold-and-thrust belt (southern Chinese Tian Shan): an apatite (U-Th-Sm)/He study[J]. Tectonophysics, 2017, 694: 101-113. |
[113] | CHEN H L, LIN X B, CHENG X G, et al. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau[J]. Journal of the Geological Society, 2022, 179(2): jgs2021-029. |
[114] | 汪新伟, 汪新文, 马永生. 新疆博格达山晚中生代以来的差异剥露史[J]. 地质学报, 2007, 81(11): 1507-1517. |
[115] | GILLESPIE J, GLORIE S, XIAO W J, et al. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology[J]. Gondwana Research, 2017, 43: 107-122. |
[116] | YIN J Y, CHEN W, HODGES K V, et al. The thermal evolution of Chinese central Tianshan and its implications: insights from multi-method chronometry[J]. Tectonophysics, 2018, 722: 536-548. |
[117] | ALEXEIEV D V, COOK H E, BUVTYSHKIN V M, et al. Structural evolution of the Ural-Tian Shan junction: a view from karatau ridge, South Kazakhstan[J]. Comptes Rendus Géoscience, 2009, 341(2/3): 287-297. |
[118] | ALLEN M B, VINCENT S J. Fault reactivation in the Junggar Region, Northwest China: the role of basement structures during Mesozoic-Cenozoic compression[J]. Journal of the Geological Society, 1997, 154(1): 151-155. |
[119] | ALLEN M B, ALSOP G I, ZHEMCHUZHNIKOV V G. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan[J]. Journal of the Geological Society, 2001, 158(1): 83-95. |
[120] | ARZHANNIKOVA A V, DEMONTEROVA E I, SIZOV A V, et al. Early Cretaceous topographic evolution associated with the collapse of the Mongol-okhotsk Orogen in western transbaikalia: an integrated analysis[J]. International Geology Review, 2023, 65(15): 2348-2369. |
[121] | WANG T, TONG Y, XIAO W J, et al. Rollback, scissor-like closure of the Mongol-okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9(5): 162-173. |
[122] | JIANG S H, JIANG Y, LIU Y M, et al. The bangong-Nujiang suture zone, Tibet Plateau: its role in the tectonic evolution of the eastern Tethys Ocean[J]. Earth-Science Reviews, 2021, 218: 103656. |
[123] | 曹勇, 孙知明, 李海兵, 等. 羌塘地块西部晚三叠世灰岩古地磁研究及其构造意义[J]. 地质学报, 2019, 93(10): 2463-2476. |
[124] | TIAN P F, YUAN W M, YANG X Y, et al. Multi-stage tectonic events of the Eastern Kunlun Mountains, Northern Tibetan Plateau constrained by fission track thermochronology[J]. Journal of Asian Earth Sciences, 2020, 198: 104428. |
[125] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47(3): 293-309. |
[126] | CHEN Z L, WANG Z X, HAN F B, et al. Late Cretaceous-Cenozoic uplift, deformation, and erosion of the SW Tianshan Mountains in Kyrgyzstan and Western China[J]. International Geology Review, 2018, 60(8): 1019-1037. |
[127] |
VAN HINSBERGEN D J J, LIPPERT P C, DUPONT-NIVET G, et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7659-7664.
DOI PMID |
[128] | SUO Y H, LI S Z, CAO X Z, et al. Two-stage eastward diachronous model of India-Eurasia collision: constraints from the intraplate tectonic records in northeast Indian Ocean[J]. Gondwana Research, 2022, 102: 372-384. |
[129] | 王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 713-727. |
[130] | WANG G C, CAO K, ZHANG K X, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Sciences, 2011, 54(1): 29-44. |
[131] | DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth and Environment, 2022, 3(10): 652-667. |
[132] | SOBEL E R, CHEN J, HEERMANCE R V. Late Oligocene-early Miocene initiation of shortening in the southwestern Chinese Tian Shan: implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 70-81. |
[133] | RUTTE D, RATSCHBACHER L, KHAN J, et al. Building the Pamir-Tibetan Plateau-crustal stacking, extensional collapse, and lateral extrusion in the central Pamir: 2. timing and rates[J]. Tectonics, 2017, 36(3): 385-419. |
[134] | SOBEL E R, SCHOENBOHM L M, CHEN J, et al. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 369-378. |
[1] | 刘德民, 王杰, 姜淮, 赵悦, 郭铁鹰, 杨巍然. 青藏高原形成演化动力机制及其远程效应[J]. 地学前缘, 2024, 31(1): 154-169. |
[2] | 梁光河. 贝加尔裂谷和汾渭地堑成因与印度-欧亚碰撞的远程效应[J]. 地学前缘, 2023, 30(3): 282-293. |
[3] | Vladimir A. SANKOV, Anna V. VETS, Andrey I. MIROSHNITCHENKO, Aleksey V. SANKOV, Amgalan BAYASGALAN, Sodnomsambuu DEMBEREL. 沿阿穆尔板块西边界的活动断层(蒙古领土)[J]. 地学前缘, 2022, 29(1): 245-265. |
[4] | 赵俊猛, 张培震, 张先康, Xiaohui YUAN, Rainer KIND, Robertvander HILST, 甘卫军, 孙继敏, 邓涛, 刘红兵, 裴顺平, 徐强, 张衡, 嘉世旭, 颜茂都, 郭晓玉, 卢占武, 杨小平, 邓攻, 琚长辉. 中国西部壳幔结构与动力学过程及其对资源环境的制约:“羚羊计划”研究进展[J]. 地学前缘, 2021, 28(5): 230-259. |
[5] | 余武,沈传波,杨超群. 秭归盆地中新生代构造热演化的裂变径迹约束[J]. 地学前缘, 2017, 24(3): 116-126. |
[6] | 田云涛,袁玉松,胡圣标,邱楠生. 低温热年代学在沉积盆地研究中的应用:以四川盆地北部为例[J]. 地学前缘, 2017, 24(3): 105-115. |
[7] | 常健,邱楠生. 磷灰石低温热年代学技术及在塔里木盆地演化研究中的应用[J]. 地学前缘, 2017, 24(3): 79-93. |
[8] | 汤良杰,邱海峻,云露,杨勇,黄太柱,王鹏昊,谢大庆. 塔里木盆地北缘—南天山造山带盆山耦合和构造转换[J]. 地学前缘, 2012, 19(5): 195-204. |
[9] | 张国伟,郭安林,董云鹏,姚安平. 大陆地质与大陆构造和大陆动力学[J]. 地学前缘, 2011, 18(3): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||