地学前缘 ›› 2024, Vol. 31 ›› Issue (2): 299-312.DOI: 10.13745/j.esf.sf.2023.2.85
吴锟言1,2(), 刘飚1,2,*(
), 吴堑虹1,2, 李欢1,2
收稿日期:
2022-09-08
修回日期:
2023-03-14
出版日期:
2024-03-25
发布日期:
2024-04-18
通信作者:
*刘 飚(1989—),男,博士,硕士生导师,主要从事矿床学方面研究。E-mail: 作者简介:
吴锟言(1998—),女,硕士研究生,主要从事矿物地球化学研究。E-mail: wukunyan@csu.edu.cn
基金资助:
WU Kunyan1,2(), LIU Biao1,2,*(
), WU Qianhong1,2, LI Huan1,2
Received:
2022-09-08
Revised:
2023-03-14
Online:
2024-03-25
Published:
2024-04-18
摘要:
南岭地区中生代发育大量岩浆热液型钨矿床,但是成矿岩体类型、侵位深度以及围岩性质存在差异,且成矿过程中受多期流体活动与大气降水的影响,流体源区与演化过程复杂。本文对不同类型钨矿床中多阶段白钨矿进行了氧同位素组成分析,研究结果显示与S型花岗岩侵入相关的白钨矿氧同位素值最高(5.7‰~7.8‰),A型花岗岩侵入相关的最低(2.9‰~4.5‰),I型花岗岩侵入相关的落在二者之间(5.6‰)。不同类型钨成矿早期流体均主要为岩浆水,后期成矿过程中外来流体贡献不同,其中大气降水对夕卡岩和云英岩型钨矿化影响较小,而石英脉型矿化存在较大比例的大气降水的加入。此外,单颗粒石英脉型白钨矿的氧同位素组成也存在较大的不均一性,核部到边部逐渐降低的趋势反映了多期次的流体活动。综合分析认为,早期结晶的白钨矿尽管经历岩浆分异、流体出溶与热液沉淀,仍保留岩浆熔体的部分氧同位素特征,而早—晚阶段白钨矿氧同位素组成的变化详细记录了流体源区特征与演化过程。夕卡岩与云英岩型白钨矿形成主要与强烈的水岩反应相关,而石英脉中白钨矿沉淀主要与大量的大气降水加入有关。
中图分类号:
吴锟言, 刘飚, 吴堑虹, 李欢. 岩浆热液白钨矿氧同位素组成研究:对流体源区与演化过程的示踪[J]. 地学前缘, 2024, 31(2): 299-312.
WU Kunyan, LIU Biao, WU Qianhong, LI Huan. Oxygen isotope composition of scheelite in magmatic-hydrothermal W deposits: Tracing fluid source and evolution process[J]. Earth Science Frontiers, 2024, 31(2): 299-312.
图2 柿竹园矿床地质图(a,b据文献[15]修改) (a)—柿竹园矿床地质图;(b)—柿竹园矿床剖面图;(c)—钨矿灯下石榴子石夕卡岩中白钨矿的荧光反应;(d)—进变质阶段白钨矿的镜下照片,白钨矿与石榴子石共生;(e)—云英岩与夕卡岩接触带,脉状云英岩穿切夕卡岩;(f)—钨矿灯下云英岩中白钨矿的荧光反应。
Fig.2 Geological map and cross-section with sample locations of the Shizhuyuan deposit (a and b modified after [15])
图3 铜山岭矿田地质图(a,b,c据文献[9]修改) (a)—铜山岭矿田地质图;(b)—江永矿床剖面图;(c)—江华矿床剖面图;(d)—钨矿灯下透辉石夕卡岩中白钨矿的荧光反应;(e)—进变质期白钨矿与透辉石共生;(f)—钨矿灯下石英-硫化物脉中白钨矿的荧光反应;(g)—石英-硫化物期白钨矿与黄铜矿、闪锌矿共生。
Fig.3 Geological map and cross-section with sample locations of the Tongshanling ore field (a, b and c modified after [9])
图5 瑶岗仙矿床地质图(a据文献[49]修改) (a)—瑶岗仙矿床地质图;(b)—瑶岗仙矿床夕卡岩矿体部分剖面图;(c)—瑶岗仙矿床石英脉矿体部分剖面图;(d)—黑钨矿-石英脉及云英岩矿体;(e)—云英岩矿体中白钨矿与云母共生;(f)—黑钨矿-石英脉中白钨矿与方解石、石英共生。
Fig.5 Geological map and cross-section with sample locations of the Yaogangxian deposit (a modified after [49])
图6 石英脉型和云英岩型钨矿床中白钨矿CL图像 (a)—黑钨矿-石英脉型白钨矿CL图像,样品来自大义山矿床;(b)—白钨矿-石英脉型白钨矿CL图像,样品来自香花铺矿床;(c)—夕卡岩-云英岩型白钨矿CL图像,样品来自柿竹园矿床;(d)—石英脉-云英岩型白钨矿CL图像,样品来自瑶岗仙矿床。
Fig.6 CL images of scheelite grains from greisen and quartz-vein types of W deposits
图8 夕卡岩型白钨矿氧同位素组成-温度投图 (a)—氧化型夕卡岩矿床白钨矿氧同位素组成-温度投图;(b)—还原型夕卡岩矿床白钨矿氧同位素组成-温度投图。
Fig.8 Temperature (℃) versus δ18Oscheelite plot for the skarn-type scheelite grains, with isopleths of δ18 O H 2 O calculated using the scheelite-H2O fractionation equation
图9 石英脉型和云英岩型白钨矿氧同位素组成-温度投图 (a)—石英脉型矿床白钨矿氧同位素组成-温度投图;(b)—云英岩型矿床白钨矿氧同位素组成-温度投图。
Fig.9 Temperature (℃) versus δ18Oscheelite plot for the quartz-type and greisen-type scheelite, with isopleths of δ18 O H 2 O calculated using the scheelite-H2O fractionation equation
图10 不同类型钨矿床成矿示意图 (a)—钨矿床成矿示意图;(b)—矿物生长图。
Fig.10 Metallogenic model of different types of W deposits. (a) Metallogenic model of W deposits; (b) The crystallization processes of scheelite grains with oxygen isotope.
[1] | 毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338. |
[2] | 陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学: 地球科学, 2014, 44(1): 111-121. |
[3] | 蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律、 地质特征与成矿机制研究进展[J]. 科学通报, 2020, 65(33): 3730-3745. |
[4] | 李晓峰, 韦星林, 朱艺婷, 等. 华南稀有金属矿床: 类型、 特点、 时空分布与背景[J]. 岩石学报, 2021, 37(12): 3591-3614. |
[5] | 夏庆霖, 汪新庆, 刘壮壮, 等. 中国钨矿成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3): 50-58. |
[6] | 陈骏, 陆建军, 陈卫锋, 等. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 2008, 14(4): 459-473. |
[7] | 丁腾. 湘东南中生代花岗岩与多金属矿床成因关系的地球化学研究[D]. 南京: 南京大学, 2016. |
[8] | 章荣清. 湘南含钨和含锡花岗岩成因及成矿作用: 以王仙岭和新田岭为例[D]. 南京: 南京大学, 2015. |
[9] | LIU B, KONG H, WU Q H, et al. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence[J]. Ore Geology Reviews, 2022, 143: 104764. |
[10] | 李晓峰, 胡瑞忠, 华仁民, 等. 华南中生代与同熔型花岗岩有关的铜铅锌多金属矿床时空分布及其岩浆源区特征[J]. 岩石学报, 2013, 29(12): 4037-4050. |
[11] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits[J]. Economic Geology, 2005, 100th Anniversary Volume: 299-336. |
[12] | LI W S, NI P, PAN J Y, et al. Fluid inclusion characteristics as an indicator for tungsten mineralization in the MesozoicYaogangxian tungsten deposit, central Nanling district, South China[J]. Journal of Geochemical Exploration, 2018, 192: 1-17. |
[13] | BRUGGER J, BETTIOL AA, COSTA S, et al. Mapping REE distribution in scheelite using luminescence[J]. Mineralogical Magazine, 2000, 64(5): 891-903. |
[14] | BRUGGER J, ETSCHMANN B, POWNCEBY M, et al. Oxidation state of europium in scheelite: tracking fluid-rock interaction in gold deposits[J]. Chemical Geology, 2008, 257(1/2): 26-33. |
[15] | LU H Z. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 2003, 98(5): 955-974. |
[16] | 吴胜华, 戴盼, 王旭东. 柿竹园钨多金属矽卡岩云英岩与铅锌银矿脉C、 H、 O、 Pb同位素地球化学研究[J]. 矿床地质, 2016, 35(3): 633-647. |
[17] | PALMER M C, SCOTT J M, LUO Y, et al. In-situ scheelite LASS-ICPMS reconnaissance Sm-Nd isotope characterisation and prospects for dating[J]. Journal of Geochemical Exploration, 2021, 224: 106760. |
[18] | SCIUBA M, BEAUDOIN G, GRZELA D, et al. Trace element composition of scheelite in orogenic gold deposits[J]. Mineralium Deposita, 2020, 55(6): 1149-1172. |
[19] | SOLOVIEV S G, KRYAZHEV S G. Tungsten mineralization in the Tien Shan Gold Belt: geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, western Uzbekistan[J]. Ore Geology Reviews, 2018, 101: 700-724. |
[20] | SU S Q, QIN K Z, LI G M, et al. Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit, South China[J]. American Mineralogist, 2021, 106(9): 1503-1519. |
[21] | HSU L C, GALLI P E. Origin of the scheelite-powellite series of minerals[J]. Economic Geology, 1973, 68(5): 681-696. |
[22] | 王汝成, 朱金初, 张文兰, 等. 南岭地区钨锡花岗岩的成矿矿物学: 概念与实例[J]. 高校地质学报, 2008, 14(4): 485-495. |
[23] | CRISS R E, TAYLOR H P Jr. Chapter 11. METEORIC-HYDROTHERMAL SYSTEMS[M]// VALLEYJ W, TAYLORH P, O’NEILJ R. Stable isotopes in high temperature geological processes. Berlin: De Gruyter, 1986: 373-424. |
[24] | BINDEMAN I N, O’NEIL J. Earth’s earliest hydrosphere recorded by the oldest hydrothermally-altered oceanic crust: triple oxygen and hydrogen isotopes in the 4.3-3.8 Ga Nuvvuagittuq belt, Canada[J]. Earth and Planetary Science Letters, 2022, 586: 117539. |
[25] | LI G, YANG R, XU Z, et al. Oxygen isotopic alteration rate of continental crust recorded by detrital zircon and its implication for deep-time weathering[J]. Earth and Planetary Science Letters, 2022, 578: 117292. |
[26] | LI L, WEI S W, SHERWOOD LOLLAR B, et al. In situ oxidation of sulfide minerals supports widespread sulfate reducing bacteria in the deep subsurface of the Witwatersrand Basin (South Africa): insights from multiple sulfur and oxygen isotopes[J]. Earth and Planetary Science Letters, 2022, 577: 117247. |
[27] | NGUYEN T H, NEVOLKO P A, PHAM T D, et al. Age and genesis of the W-Bi-Cu-F (Au) Nui Phao deposit, Northeast Vietnam: constrains from U-Pb and Ar-Ar geochronology, fluid inclusions study, S-O isotope systematic and scheelite geochemistry[J]. Ore Geology Reviews, 2020, 123: 103578. |
[28] | BETTENCOURT J S, LEITE W B Jr, GORAIEB C L, et al. Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites, Brazil: fluid inclusion and stable isotope characteristics[J]. Lithosphere, 2005, 80(1/2/3/4): 363-386. |
[29] | GAO S, ZOU X Y, HOFSTRA A H, et al. Trace elements in quartz: insights into source and fluid evolution in magmatic-hydrothermal systems[J]. Economic Geology, 2022, 117(6): 1415-1428. |
[30] | POULIN R S. A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotope in scheelite: application towards discriminating among differing ore-deposit systems[D]. Sudbury: Laurentian University, 2016. |
[31] | GHOSH U, UPADHYAY D. The retrograde evolution of F-rich skarns: clues from major and trace element chemistry of garnet, scheelite, and vesuvianite from the Belka Pahar wollastonite deposit, India[J]. Lithosphere, 2022, 422/423: 106750. |
[32] | MIRANDA A C R, BEAUDOIN G, ROTTIER B. Scheelite chemistry from skarn systems: implications for ore-forming processes and mineral exploration[J]. Mineralium Deposita, 2022, 57(8): 1469-1497. |
[33] | VANDER AUWERA J, ANDRE L. Trace elements (REE) and isotopes (O, C, Sr) to characterize the metasomatic fluid sources: evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy)[J]. Contributions to Mineralogy and Petrology, 1991, 106(3): 325-339. |
[34] | GALLAGHER V. Geological and isotope studies of microtonalite-hosted W-Sn mineralization in SE Ireland[J]. Mineralium Deposita, 1989, 24(1): 19-28. |
[35] | YUVAN J. Fluid inclusion and oxygen isotope studies of high-grade quartz-scheelite veins, Cantung mine, Northwest Territories, Canada: products of a late-stage magmatic-hydrothermal event[D]. Columbia: University of Missouri, 2006. |
[36] | 张国新, 谢越宁. 江西大吉山钨矿碳酸盐阶段白钨矿的氧同位素组成[J]. 地球化学, 1989, 18(1): 77-83. |
[37] | WESOLOWSKI D, OHMOTO H. Calculated oxygen isotope fractionation factors between water and the minerals scheelite and powellite[J]. Economic Geology, 1986, 81(2): 471-477. |
[38] | LI Z X, LI X H. Formation of the 1300-km-wide intracontinental orogen andpostorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35(2): 179. |
[39] | 蒋少涌, 赵葵东, 姜耀辉, 等. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及成因讨论[J]. 高校地质学报, 2008, 14(4): 496-509. |
[40] | 毛景文, 谢桂青, 李晓峰, 等. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘, 2004, 11(1): 45-55. |
[41] | 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. |
[42] | CHEN Y X, LI H, SUN W D, et al. Generation of Late Mesozoic Qianlishan A 2-type granite in Nanling Range, South China: implications for Shizhuyuan W-Sn mineralization and tectonic evolution[J]. Lithosphere, 2016, 266/267: 435-452. |
[43] | 黄旭栋, 陆建军, SIZARET S, 等. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异: 以湘南铜山岭和魏家矿床为例[J]. 中国科学: 地球科学, 2017, 47(7): 766-782. |
[44] | 于志峰, 赵正, 王艳丽, 等. 湖南瑶岗仙矽卡岩型白钨矿床成矿流体演化特征研究[J]. 岩石学报, 2022, 38(2): 513-528. |
[45] | 祝新友, 傅迷, 程细音, 等. “带外脉式” 钨矿床成矿模型: 以湖南白云仙钨矿田头天门矿床为例[J]. 矿床地质, 2017, 36(1): 107-125. |
[46] | 祝新友, 王京彬, 王艳丽, 等. 湖南瑶岗仙钨矿稳定同位素地球化学研究[J]. 地质与勘探, 2014, 50(5): 947-960. |
[47] | 张东亮, 彭建堂, 符亚洲, 等. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学[J]. 岩石学报, 2012, 28(1): 65-74. |
[48] | 黄旭栋. 南岭中-晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用: 以铜山岭和魏家矿床为例[D]. 南京: 南京大学, 2018. |
[49] | JIANG H, LIU B, KONG H, et al. In situ geochemistry and Sr-O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W (-Sn) deposit, South China[J]. Ore Geology Reviews, 2022, 149: 105066. |
[50] | LIU B, LI H, LIU Y G, et al. Crystallization processes and genesis of scheelite in a quartz vein-type W deposit (Xianghuapu, South China)[J]. Chemical Geology, 2022, 613: 121142. |
[51] | 祝新友, 王京彬, 王艳丽, 等. 论石英脉型与矽卡岩型钨矿床成矿流体的差异性[J]. 岩石学报, 2015, 31(4): 941-953. |
[52] | 祝新友, 王艳丽, 程细音, 等. 湖南瑶岗仙石英脉型钨矿床成矿系统[J]. 矿床地质, 2015, 34(5): 874-894. |
[53] | 程细音. 湖南柿竹园钨锡多金属矿床矽卡岩形成机制研究[D]. 昆明: 昆明理工大学, 2012. |
[54] | WU K Y, LIU B, WU Q H, et al. Trace element geochemistry, oxygen isotope and U-Pb geochronology of multistage scheelite: implications for W-mineralization and fluid evolution of Shizhuyuan W-Sn deposit, South China[J]. Journal of Geochemical Exploration, 2023, 248: 107192. |
[55] | LIU B, WU Q H, KONG H, et al. Tungsten mineralization process and oxygen fugacity evolution in the Weijia W deposit, South China: constraints from the microstructures, geochemistry, and oxygen isotopes of scheelite, garnet, and calcite[J]. Ore Geology Reviews, 2022, 146: 104952. |
[56] | KANG F, LIU B, LI H, et al. Multistage W-Sn metallogenic processes in the Xitian ore field, South China: evolution from skarn-type to vein-type mineralization[J]. Ore Geology Reviews, 2023, 158: 105495. |
[57] | XIAO M, QIU H N, CAI Y, et al. Progressively released gases from fluid inclusions reveal new insights on W-Sn mineralization of the Yaogangxian tungsten deposit, South China[J]. Ore Geology Reviews, 2021, 138: 104353. |
[58] | BRUGGER J, LAHAYE Y, COSTA S, et al. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, western Australia)[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 251-264. |
[59] | GHADERI M, PALIN J M, CAMPBELL I H, et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman Region, western Australia[J]. Economic Geology, 1999, 94(3): 423-437. |
[60] | 卢焕章, 施继锡, 喻茨玫. 华南某矿区成岩成矿温度的研究[J]. 地球化学, 1974, 3(3): 145-156. |
[61] | ZHU Y N, PENG J T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J]. Ore Geology Reviews, 2015, 65(P1): 55-69. |
[1] | 字艳梅, 田世洪, 陈欣阳, 侯增谦, 杨志明, 龚迎莉, 唐清雨. 埃达克岩与热液成矿过程中钾镁同位素分馏及其指示意义:以驱龙斑岩铜矿床为例[J]. 地学前缘, 2024, 31(3): 150-169. |
[2] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
[3] | 韩润生, 赵冻. 初论岩浆热液成矿系统控岩控矿构造深延格局研究方法[J]. 地学前缘, 2022, 29(5): 420-437. |
[4] | 窦衍光, 李清, 吴永华, 赵京涛, 孙呈慧, 蔡峰, 陈晓辉, 张勇, 范佳慧, 石学法. 冲绳海槽MIS6期以来底栖有孔虫碳氧同位素特征及其古海洋指示意义[J]. 地学前缘, 2022, 29(4): 84-92. |
[5] | 王文祥, 李文鹏, 蔡月梅, 安永会, 邵新民, 吴玺, 尹德超. 黑河流域中游盆地水文地球化学演化规律研究[J]. 地学前缘, 2021, 28(4): 184-193. |
[6] | 李瑞鹏, 崔晓亮, 苏尚国, 张雅南, 梁存涛, 陈学根. 河北武安地区隐爆角砾岩特征及成因探讨[J]. 地学前缘, 2021, 28(1): 353-362. |
[7] | 戴蔓, 蒋小伟, 罗银飞, 张鸿, 雷玉德, 童珏. 地热水氢氧同位素控制因素识别与定量计算:以青海贵德盆地为例[J]. 地学前缘, 2021, 28(1): 420-427. |
[8] | 韩润生, 赵冻, 吴鹏, 王雷, 邱文龙, 隆运清, 刘凤平, 邓安平, 宗志宏. 湘南黄沙坪铜锡多金属矿床构造控岩控矿机制及深部找矿勘查启示[J]. 地学前缘, 2020, 27(4): 199-218. |
[9] | 钟军,陈擎,范洪海,史长昊. 柴北缘查查香卡铀钍铌稀土矿床地质特征及矿床成因:一种与钠长岩相关的新矿化类型[J]. 地学前缘, 2018, 25(5): 222-237. |
[10] | 王浩洋,赵正,陈伟,周辉,陈振宇,侯可军,李超. 江西梅树坪钨钼矿床地质、成岩成矿时代与找矿方向[J]. 地学前缘, 2017, 24(5): 109-119. |
[11] | 刘善宝,刘战庆,王成辉,王登红,赵正,胡正华. 赣东北朱溪超大型钨矿床中白钨矿的稀土、微量元素地球化学特征及其Sm-Nd定年[J]. 地学前缘, 2017, 24(5): 17-30. |
[12] | 陈芳,周洋,吴聪,刘坚,苏新,庄畅,陆红锋,余少华. 珠江口盆地东部陆坡末次冰期天然气水合物冷泉活动的记录与时间[J]. 地学前缘, 2017, 24(4): 66-77. |
[13] | 肖晓牛,余新明,张晓坤,肖娥,齐秋菊,王武名,游奔,刘荣芳. 滇中播卡金矿床流体包裹体研究[J]. 地学前缘, 2017, 24(3): 309-318. |
[14] | 郑梦天, 张连昌, 朱明田, 李智泉. 西昆仑喀来子钡铁矿床地质特征、时代及成因探讨[J]. 地学前缘, 2016, 23(5): 252-265. |
[15] | 王淑丽, 郑绵平, 张震, 苏奎. 四川盆地寒武系含盐盆地演化及其找钾意义:来自碳氧同位素的证据[J]. 地学前缘, 2016, 23(5): 202-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||