地学前缘 ›› 2025, Vol. 32 ›› Issue (5): 432-439.DOI: 10.13745/j.esf.sf.2025.5.50

• 地学智能计算 • 上一篇    下一篇

面向可见光无人机遥感的轻量级检测算法研究与应用

曾风山()   

  1. 湖南省地质调查所, 湖南 长沙 410114
  • 收稿日期:2025-05-13 修回日期:2025-07-09 出版日期:2025-09-25 发布日期:2025-10-14
  • 作者简介:曾风山(1974—),男,高级工程师,主要从事测绘地理信息研究。E-mail: 651820102@qq.com
  • 基金资助:
    湖南省重点研发计划项目(2024AQ2044)

Research on lightweight UAV image target detection method based on improved GhostNetv3

ZENG Fengshan()   

  1. Geological Survey Institute of Hunan Province, Changsha 410114, China
  • Received:2025-05-13 Revised:2025-07-09 Online:2025-09-25 Published:2025-10-14

摘要:

针对低功耗硬件环境中轻量级模型对无人机遥感目标检测精度较低的问题,提出一种基于改进GhostNetv3的轻量级检测模型。以GhostNetv3为骨干网络,引入对偶卷积核提升网络挖掘性能,使用深度可分离卷积下采样(DSC Down),进一步降低计算开销,通过Simplified SPPF,聚合多尺度下的目标特征。在特征融合阶段,构建多尺度特征金字塔,让不同层次的特征图充分参与融合。在检测阶段,使用一致双重分配检测头,避免非极大值抑制(NMS)算法带来的推理延迟。实验结果表明,本研究所构建模型在不同数据集上的检测精度优于当前主流轻量级模型,同时具备良好的泛化性能,在测试硬件平台,也能够开展快速检测推理。

关键词: 无人机遥感, 轻量级目标检测, 第三代幽灵卷积网络, 对偶卷积核, 多尺度特征金字塔, 一致双重分配检测头

Abstract:

To address the problem of low accuracy exhibited by lightweight models for UAV remote sensing target detection in low-power hardware environments, a lightweight detection model based on improved GhostNetv3 is proposed. Taking GhostNetv3 as the backbone network, a dual-branch convolution module is introduced to improve feature representation capability, and depthwise separable convolution down sampling (DSConv-Down) is used to further reduce computational overhead. Through simplified SPPF, target features at multiple scales are aggregated. In the feature fusion stage, a multi-scale feature pyramid is constructed to fully integrate multi-level features. In the detection stage, a consistent dual-assignment detection head is used to avoid the computational overhead caused by the non-maximum suppression (NMS) algorithm. Experimental results show that the proposed model outperforms current mainstream lightweight models in detection accuracy across different datasets, and demonstrates good generalization ability. On the test hardware platform, it also achieves fast detection inference.

Key words: UAV remote sensing, lightweight target detection, GhostNetv3, DualConv, multi-scale feature pyramid, DLA Head

中图分类号: