地学前缘 ›› 2025, Vol. 32 ›› Issue (4): 353-362.DOI: 10.13745/j.esf.sf.2025.4.14
黄毅1,2,*(), 董璇3, 马志远4, 田西昭4, 朱帅1,2, 朱云1
收稿日期:
2025-02-26
修回日期:
2025-04-10
出版日期:
2025-07-25
发布日期:
2025-08-04
通信作者:
*黄 毅(1979—),女,高级工程师,主要从事新污染物分析、地球化学研究。E-mail: 基金资助:
HUANG Yi1,2,*(), DONG Xuan3, MA Zhiyuan4, TIAN Xizhao4, ZHU Shuai1,2, ZHU Yun1
Received:
2025-02-26
Revised:
2025-04-10
Online:
2025-07-25
Published:
2025-08-04
摘要:
酚类物质是新污染物中内分泌干扰物(EDCs)的一类,具有致畸致癌致突变的“三致”效应,对生态环境和人体健康产生严重影响。本研究基于高灵敏度快速液相色谱-三重四极杆-线性离子阱质谱(LC-TQ-LIT-MS)技术,对华北地区3个典型城市的32个点位水样(包括地表水、地下水及垃圾渗滤液)中10种酚类内分泌干扰物进行了分析,研究了赋存特征并利用美国EPA方法对地表水和地下水中酚类化合物进行生态风险评价。地表水酚类化合物检出率为72%,地下水检出率为35%,垃圾渗滤液的检出率为89%。地表水中酚类化合物检出浓度的极大值为622 ng/L,地下水中检出浓度最大值为21.8 ng/L,垃圾渗滤液中检出浓度最大值为753 ng/L。对当地居民生活常用水源的地表水和地下水进行生态风险评价,发现地表水中有点位呈现高生态风险,地下水均呈低生态风险。各城市的地表水与地下水污染物种类显著相关,浓度变化趋势一致,表明地表水渗漏是重要污染途径之一。需要持续关注地下水中酚类内分泌干扰物的含量及赋存状态,并关注其对环境和人体健康潜在影响。
中图分类号:
黄毅, 董璇, 马志远, 田西昭, 朱帅, 朱云. 华北地区典型城市水体中内分泌干扰物酚类化合物赋存特征及风险评价[J]. 地学前缘, 2025, 32(4): 353-362.
HUANG Yi, DONG Xuan, MA Zhiyuan, TIAN Xizhao, ZHU Shuai, ZHU Yun. Rapid detection and risk assessment of endocrine disrupting chemicals in typical urban waters in northern cities of China[J]. Earth Science Frontiers, 2025, 32(4): 353-362.
标准编号 | 标准名称 | 检出限 |
---|---|---|
HJ 1192—2021 | 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 | 40~60 ng/L |
(EU) 2018/213 | 食品接触用清漆和涂料中双酚A的测定 | 0.05 mg/kg |
GB/T 5009.99—2003 | 食品容器及包装材料用聚碳酸酯树脂卫生标准的分析方法 | 0.05 mg/kg |
美国EPA | 环境水体中烷基酚的测定 | 20~70 ng/L |
本方法 | 水体中10种酚类内分泌干扰物的测定 | 1~2 ng/L |
表1 本方法与国内外标准方法对比
Table 1 This method is compared with domestic and foreign standards
标准编号 | 标准名称 | 检出限 |
---|---|---|
HJ 1192—2021 | 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 | 40~60 ng/L |
(EU) 2018/213 | 食品接触用清漆和涂料中双酚A的测定 | 0.05 mg/kg |
GB/T 5009.99—2003 | 食品容器及包装材料用聚碳酸酯树脂卫生标准的分析方法 | 0.05 mg/kg |
美国EPA | 环境水体中烷基酚的测定 | 20~70 ng/L |
本方法 | 水体中10种酚类内分泌干扰物的测定 | 1~2 ng/L |
物质名称 | 酚类化合物浓度/(ng·L-1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S市(n=9) | X市(n=13) | Y市(n=10) | ||||||||||||||||||
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||||||||||
4-叔丁基苯酚 | 753 | <2.00 | 89.1 | 622 | 6.30 | 161 | 537 | 18.6 | 78.2 | |||||||||||
4-丁基苯酚 | 16.7 | <1.00 | 1.86 | 33.7 | <1.00 | 7.94 | 22.2 | <1.00 | 2.82 | |||||||||||
4-叔辛基苯酚 | 1.39 | <1.00 | 0.15 | 1.05 | <1.00 | <1.00 | 4.25 | <1.00 | 0.42 | |||||||||||
4-戊基苯酚 | 15.1 | <1.00 | 1.84 | 5.69 | <1.00 | 1.55 | <1.00 | <1.00 | <1.00 | |||||||||||
4-己基苯酚 | <1.00 | <1.00 | <1.00 | 1.41 | <1.00 | 0.30 | 9.77 | <1.00 | 0.98 | |||||||||||
4-庚基苯酚 | <1.00 | <1.00 | <1.00 | 3.50 | <1.00 | 0.27 | <1.00 | <1.00 | <1.00 | |||||||||||
4-辛基苯酚 | 48.0 | <1.00 | 5.33 | 2.76 | <1.00 | 0.41 | <1.00 | <1.00 | <1.00 | |||||||||||
4-n-壬基酚 | 11.1 | <1.00 | 1.23 | <1.00 | <1.00 | <1.00 | 16.7 | <1.00 | 2.25 | |||||||||||
壬基酚 | 23.5 | <1.00 | 2.61 | 6.88 | <1.00 | 0.89 | <1.00 | <1.00 | <1.00 | |||||||||||
双酚A | 525 | <1.00 | 59.0 | 710 | <1.00 | 56.5 | 236 | <1.00 | 24.9 |
表2 样品中酚类化合物浓度(最大值、最小值和平均值)
Table 2 Concentration of alkylphenol in the sample (maximum, minimum and average values)
物质名称 | 酚类化合物浓度/(ng·L-1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S市(n=9) | X市(n=13) | Y市(n=10) | ||||||||||||||||||
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||||||||||
4-叔丁基苯酚 | 753 | <2.00 | 89.1 | 622 | 6.30 | 161 | 537 | 18.6 | 78.2 | |||||||||||
4-丁基苯酚 | 16.7 | <1.00 | 1.86 | 33.7 | <1.00 | 7.94 | 22.2 | <1.00 | 2.82 | |||||||||||
4-叔辛基苯酚 | 1.39 | <1.00 | 0.15 | 1.05 | <1.00 | <1.00 | 4.25 | <1.00 | 0.42 | |||||||||||
4-戊基苯酚 | 15.1 | <1.00 | 1.84 | 5.69 | <1.00 | 1.55 | <1.00 | <1.00 | <1.00 | |||||||||||
4-己基苯酚 | <1.00 | <1.00 | <1.00 | 1.41 | <1.00 | 0.30 | 9.77 | <1.00 | 0.98 | |||||||||||
4-庚基苯酚 | <1.00 | <1.00 | <1.00 | 3.50 | <1.00 | 0.27 | <1.00 | <1.00 | <1.00 | |||||||||||
4-辛基苯酚 | 48.0 | <1.00 | 5.33 | 2.76 | <1.00 | 0.41 | <1.00 | <1.00 | <1.00 | |||||||||||
4-n-壬基酚 | 11.1 | <1.00 | 1.23 | <1.00 | <1.00 | <1.00 | 16.7 | <1.00 | 2.25 | |||||||||||
壬基酚 | 23.5 | <1.00 | 2.61 | 6.88 | <1.00 | 0.89 | <1.00 | <1.00 | <1.00 | |||||||||||
双酚A | 525 | <1.00 | 59.0 | 710 | <1.00 | 56.5 | 236 | <1.00 | 24.9 |
[1] |
MORGAN M, DEORAJ A, FELTY Q, et al. Environmental estrogen-like endocrine disrupting chemicals and breast cancer[J]. Molecular and Cellular Endocrinology, 2017, 457: 89-102.
DOI PMID |
[2] | BIRGERSSON L, ODENLUND S, STURVE J. Effects of environmental enrichment on exposure to human-relevant mixtures of endocrine disrupting chemicals in Zebrafish[J]. Animals: An Open Access Journal from MDPI, 2024, 14(9): 1296. |
[3] | OLIVAS-MARTíNEZ A, VENTURA-WISCHNER P S, FERNANDEZ M F, et al. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: a systematic review of human studies[J]. International Journal of Hygiene and Environmental Health, 2025, 263: 114487. |
[4] | LI Z X, LI M G, LI D, et al. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: characterization methods, toxic effects and mechanisms[J]. Environmental Research, 2024, 246: 118010. |
[5] | POP C E, DRAGA S, MȦCIUCȦ R, et al. Bisphenol a effects in aqueous environment on Lemna minor[J]. Processes, 2021, 9(9): 1512. |
[6] | SHARMA N, KUMAR V, Vimal S, et al. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans[J]. Environmental Toxicology and Pharmacology, 2024, 109: 104480. |
[7] | VARTICOVSKI L, STAVREVA D A, MCGOWAN A, et al. Endocrine disruptors of sex hormone activities[J]. Molecular and Cellular Endocrinology, 2022, 539: 111415. |
[8] | MATIKE D M E, NGOLE-JEME V M. A review of phthalates and phenols in landfill environments: occurrence, fate and environmental implications[J]. International Journal of Environmental Research, 2024, 18(5): 79. |
[9] | GIL-SOLSONA R, CASTAÑO-ORTIZ J M, MUÑOZ-MAS R, et al. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain)[J]. Environmental Pollution, 2022, 314: 120310. |
[10] | CHAFI S, AZZOUZ A, BALLESTEROS E. Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco)[J]. Chemosphere, 2022, 287: 132202. |
[11] | BEHNISCH P A, FUJII K, SHIOZAKI K, et al. Estrogenic and dioxin-like potency in each step of a controlled landfill leachate treatment plant in Japan[J]. Chemosphere, 2001, 43(4/5/6/7): 977-984. |
[12] |
CRYSTAL Y O, LUO Y L, DUANGTHIP D, et al. A scoping review of the links between early childhood caries and clean water and sanitation: the Sustainable Development Goal 6[J]. BMC Oral Health, 2024, 24(1): 769.
DOI PMID |
[13] | WEE S Y, ARIS A Z. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water[J]. NPJ Clean Water, 2019, 2(1): 4. |
[14] | LEE K H, NOH J, KHIM J S. The Blue Economy and the United Nations’ sustainable development goals: challenges and opportunities[J]. Environment International, 2020, 137: 105528. |
[15] | BORNMAN M S, ANECK-HAHN N H, DE JAGER C, et al. Endocrine disruptors and health effects in Africa: a call for action[J]. Environmental Health Perspectives, 2017, 125(8): 085005. |
[16] | VESELI M, ROŽMAN M, VILENICA M, et al. Bioaccumulation and bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects[J]. Science of The Total Environment, 2022, 838: 156208. |
[17] | 陈雨, 刘德柱, 罗锦, 等. UV/MgO2体系对水体中双酚A的降解机制研究[J]. 环境科学学报, 2024, 44(2): 1-10. |
[18] | 黄苑, 张维, 王瑞国, 等. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1): 60-81. |
[19] | 陈亮平, 黄颖. 紫外分光光度法及毛细管电泳法测定烷基酚与环糊精的包合常数[J]. 分析测试学报, 2015, 34(7): 836-839. |
[20] | 刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6): 2329-2336. |
[21] |
ISMAIL N A H, WEE S Y, ARIS A Z. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota[J]. Chemosphere, 2017, 188: 375-388.
DOI PMID |
[22] | TOYO’OKA T, OSHIGE Y. Determination of Alkylphenols in mineral water contained in PET Bottles by liquid chromatography with coulometric detection[J]. Analytical Sciences, 2000, 16(10): 1071-1076. |
[23] | ZHANG H, OUYANG W, HE K, et al. Developing water quality and land use surrogates to predict endocrine-disrupting chemical profiles in a highly urbanized river basin[J]. Environmental Pollution, 2024, 362: 124951. |
[24] | LIU S Y, LIU J. An integrated approach of bioassays and non-target screening for the assessment of endocrine-disrupting activities in tap water and identification of novel endocrine-disrupting chemicals[J]. Toxics, 2024, 12(4): 247. |
[25] | LV X M, XIAO S H, ZHANG G, et al. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes[J]. Scientific Reports, 2016, 6(3): 22860. |
[26] | 王梦圆, 史永富, 吴迪, 等. 水生环境中OH-PCBs的来源、污染现状及其内分泌干扰机制研究进展[J]. 环境化学, 2023, 42(9): 3075-3089. |
[27] | 樊静静, 王赛, 唐金鹏, 等. 广州市流溪河水体中6种内分泌干扰素时空分布特征与环境风险[J]. 环境科学, 2018, 39(3): 1053-1064. |
[28] | ERRICO S, NICOLUCCI C, MIGLIACCIO M, et al. Analysis and occurrence of some phenol endocrine disruptors in two marine sites of the northern coast of Sicily (Italy)[J]. Marine Pollution Bulletin, 2017, 120(1): 68-74. |
[29] | BEN SGHAIER R, NET S, GHORBEL-ABID I, et al. Simultaneous detection of 13 endocrine disrupting chemicals in water by a combination of SPE-BSTFA derivatization and GC-MS in transboundary rivers (France-Belgium)[J]. Water Air and Soil Pollution, 2017, 228(1): 2. |
[30] |
LALONDE B, GARRON C. Nonylphenol, octylphenol, and nonylphenol ethoxylates dissemination in the Canadian freshwater environment[J]. Archives of Environmental Contamination and Toxicology, 2021, 80(2): 319-330.
DOI PMID |
[31] | HASNI N A K, ANUAL Z F, RASHID S A, et al. Occurrence of endocrine disruptors in Malaysia’s water systems: a scoping review[J]. Environmental Pollution, 2023, 324: 121095. |
[32] | GAO A F, WANG J Y, POETZSCHER J, et al. Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain[J]. Environmental Research, 2022, 208: 112671. |
[33] | LIU H J, XU M Y, YANG Y, et al. The oxidative potential of fine ambient particulate matter in Xinxiang, North China: pollution characteristics, source identification and regional transport[J]. Environmental Pollution, 2024, 360: 124615. |
[34] | ZHU Y, ZHANG J P, WANG J X, et al. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements[J]. Atmospheric Chemistry and Physics, 2016, 16(19): 12551-12565. |
[35] | KANG B, WANG D, DU S H. Source identification and degradation pathway of multiple persistent organic pollutants in groundwater at an abandoned chemical site in Hebei, China[J]. Exposure and Health, 2017, 9(2): 135-141. |
[36] | COLÓN L P, RASCÓN A J, BALLESTEROS E. Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography-mass spectrometry[J]. Food Control, 2022, 146: 109564. |
[37] | MA J Q, REN J Y, WANG L L, et al. Covalent triazine-based frameworks/iron oxide for highly sensitive magnetic solid-phase extraction of phenolic pollutants in water samples[J]. Journal of Separation Science, 2018, 41(19): 3724-3732. |
[38] | HAN X X, ZHAO R J, TIAN Y, et al. Simple high-performance liquid chromatography-ultraviolet method for simultaneous separation and detection of 14 bisphenol pollutants in building materials[J]. Journal of Separation Science, 2023, 46(11): 2300006. |
[39] |
ARISMENDI D, BECERRA-HERRERA M, CERRATO I, et al. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction-derivatization-gas chromatography/mass spectrometry[J]. Talanta, 2019, 201: 480-489.
DOI PMID |
[40] | 中华人民共和国住房和城乡建设部. GB/T 18772—2017生活垃圾卫生填埋场环境监测技术要求[S]. 北京: 中国标准出版社, 2017. |
[41] |
YAMAZAKI E, YAMASHITA N, TANIYASU S, et al. Bisphenol a and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572.
DOI PMID |
[42] | SAHA S, NARAYANAN N, SINGH N, et al. Occurrence of endocrine disrupting chemicals (EDCs) in river water, ground water and agricultural soils of India[J]. International Journal of Environmental Science and Technology, 2022, 19(11): 11459-11474. |
[43] | KURATA Y, ONO Y, ONO Y. Occurrence of phenols in leachates from municipal solid waste landfill sites in Japan[J]. Journal of Material Cycles and Waste Management, 2008, 10(2): 144-152. |
[1] | 徐东辉, 黎涛, 林艳竹, 陈添斐. 基于关联性监测指标的辽东湾地下水硝酸盐源解析[J]. 地学前缘, 2025, 32(4): 376-387. |
[2] | 黄诗雯, 夏绮文, 何江涛, 何宝南, 陈翠柏, 孙继朝. 华北平原浅层地下水碘的分区特征及成因研究[J]. 地学前缘, 2025, 32(4): 510-522. |
[3] | 张学航, 何宝南, 何江涛, 马硕, 刘菲, 杨珊珊, 史芫芫, 何炜, 杨白驹. 永定河回补区地下水污染风险演化研究[J]. 地学前缘, 2025, 32(4): 523-536. |
[4] | 谌宏伟, 朱智超, 李正最, 喻娓厚, 周慧, 于莎莎, 彭向训. 极端气候下洞庭湖河水-地下水相互作用:以资江洞庭湖河段为例[J]. 地学前缘, 2025, 32(2): 445-455. |
[5] | 褚宴佳, 何宝南, 陈珍, 何江涛. 基于随机森林模型识别浅层地下水TDS异常的方法研究[J]. 地学前缘, 2025, 32(2): 456-468. |
[6] | 王威, 程行, 高旭波, 田振环, 刘春华, 武占辉, 李成城, 孔淑琼. 黄河三角洲地区地下水水质成因研究:以山东省东营市孤岛镇为例[J]. 地学前缘, 2025, 32(2): 469-483. |
[7] | 钟林健, 郭朝晖, 谢慧民, 黄驰岳, 高梓伦, 梁学超, 徐锐. 地下水位对尾矿中重金属释放及其在土壤中吸附的影响研究[J]. 地学前缘, 2025, 32(2): 484-494. |
[8] | 欧阳恺皋, 蒋小伟, 杜亚楠, 张志远, 韩鹏飞, 吴业楠, 王旭升. 华北“23·7”强降雨事件对不同埋深地下水的补给机理:以雄安新区为例[J]. 地学前缘, 2025, 32(1): 432-439. |
[9] | 何佳汇, 毛海如, 薛洋, 廖福, 高柏, 饶志, 杨扬, 刘媛媛, 王广才. 赣抚平原东北部地下水硝酸盐浓度变化特征及成因[J]. 地学前缘, 2024, 31(3): 360-370. |
[10] | 付宇, 曹文庚, 张春菊, 翟文华, 任宇, 南天, 李泽岩. 基于集成学习优化的河套盆地地下水砷风险评估[J]. 地学前缘, 2024, 31(3): 371-380. |
[11] | 杨冰, 孟童, 郭华明, 连国玺, 陈帅瑶, 杨曦. 基于Kd的某酸法地浸铀矿山地下水铀运移模拟[J]. 地学前缘, 2024, 31(3): 381-391. |
[12] | 谌宏伟, 杨瑶, 黄荷, 周慧, 彭向训, 于莎莎, 喻娓厚, 李正最, 王赵国. 基于氡同位素示踪的洞庭湖区枯水期湖水与地下水交互作用研究[J]. 地学前缘, 2024, 31(2): 423-434. |
[13] | 吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东. 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性[J]. 地学前缘, 2024, 31(2): 472-480. |
[14] | 蒿梦秋月, 刘大庆, 闫振飞, 冯承莲. 基于生态风险的土壤短链氯化石蜡环境基准研究[J]. 地学前缘, 2024, 31(2): 54-63. |
[15] | 郭华明, 尹嘉鸿, 严松, 刘超. 陕北靖边高铬地下水中硝酸根分布及来源[J]. 地学前缘, 2024, 31(1): 384-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||